Blame view
Scripts/steps/tandem/.svn/text-base/train_mmi_sgmm2.sh.svn-base
7.48 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # Korbinian Riedhammer # MMI training (or optionally boosted MMI, if you give the --boost option), # for SGMMs. 4 iterations (by default) of Extended Baum-Welch update. # # Begin configuration section. cmd=run.pl num_iters=4 boost=0.0 cancel=true # if true, cancel num and den counts on each frame. acwt=0.1 stage=0 update_opts= transform_dir= # End configuration section echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# -ne 6 ]; then echo "Usage: steps/tandem/train_mmi_sgmm2.sh <data1> <data2> <lang> <ali> <denlats> <exp>" echo " e.g.: steps/tandem/train_mmi_sgmm2.sh {mfcc,bottleneck}/data1/train_si84 data1/lang exp/tri2b_ali_si84 exp/tri2b_denlats_si84 exp/tri2b_mmi" echo "Main options (for others, see top of script file)" echo " --boost <boost-weight> # (e.g. 0.1), for boosted MMI. (default 0)" echo " --cancel (true|false) # cancel stats (true by default)" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --config <config-file> # config containing options" echo " --stage <stage> # stage to do partial re-run from." echo " --transform-dir <transform-dir> # directory to find fMLLR transforms." exit 1; fi data1=$1 data2=$2 lang=$3 alidir=$4 denlatdir=$5 dir=$6 mkdir -p $dir/log for f in $data1/feats.scp $alidir/{tree,final.mdl,ali.1.gz} $denlatdir/lat.1.gz; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done nj=`cat $alidir/num_jobs` || exit 1; [ "$nj" -ne "`cat $denlatdir/num_jobs`" ] && \ echo "$alidir and $denlatdir have different num-jobs" && exit 1; mkdir -p $dir/log echo $nj > $dir/num_jobs cp $alidir/{final.mdl,tree} $dir silphonelist=`cat $lang/phones/silence.csl` || exit 1; # Set up features sdata1=$data1/split$nj sdata2=$data2/split$nj [[ -d $sdata1 && $data1/feats.scp -ot $sdata1 ]] || split_data.sh $data1 $nj || exit 1; [[ -d $sdata2 && $data2/feats.scp -ot $sdata2 ]] || split_data.sh $data2 $nj || exit 1; splice_opts=`cat $alidir/splice_opts 2>/dev/null` # frame-splicing options. normft2=`cat $alidir/normft2 2>/dev/null` if [ -f $alidir/final.mat ]; then feat_type=lda; else feat_type=delta; fi case $feat_type in delta) echo "$0: feature type is $feat_type" ;; lda) echo "$0: feature type is $feat_type" cp $alidir/{lda,final}.mat $dir/ || exit 1; ;; *) echo "$0: invalid feature type $feat_type" && exit 1; esac # set up feature stream 1; this are usually spectral features, so we will add # deltas or splice them feats1="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata1/JOB/utt2spk scp:$sdata1/JOB/cmvn.scp scp:$sdata1/JOB/feats.scp ark:- |" if [ "$feat_type" == "delta" ]; then feats1="$feats1 add-deltas ark:- ark:- |" elif [ "$feat_type" == "lda" ]; then feats1="$feats1 splice-feats $splice_opts ark:- ark:- | transform-feats $dir/lda.mat ark:- ark:- |" fi # set up feature stream 2; this are usually bottleneck or posterior features, # which may be normalized if desired feats2="scp:$sdata2/JOB/feats.scp" if [ "$normft2" == "true" ]; then feats2="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata2/JOB/utt2spk scp:$sdata2/JOB/cmvn.scp $feats2 ark:- |" fi # assemble tandem features feats="ark,s,cs:paste-feats '$feats1' '$feats2' ark:- |" # add transformation, if applicable if [ "$feat_type" == "lda" ]; then feats="$feats transform-feats $dir/final.mat ark:- ark:- |" fi # splicing/normalization options cp $alidir/{splice_opts,normft2,tandem} $dir 2>/dev/null if [ ! -z "$transform_dir" ]; then echo "$0: using transforms from $transform_dir" [ ! -f $transform_dir/trans.1 ] && echo "$0: no such file $transform_dir/trans.1" \ && exit 1; feats="$feats transform-feats --utt2spk=ark:$sdata1/JOB/utt2spk ark,s,cs:$transform_dir/trans.JOB ark:- ark:- |" else echo "$0: no fMLLR transforms." fi if [ -f $alidir/vecs.1 ]; then echo "$0: using speaker vectors from $alidir" spkvecs_opt="--spk-vecs=ark:$alidir/vecs.JOB --utt2spk=ark:$sdata1/JOB/utt2spk" else echo "$0: no speaker vectors." spkvecs_opt= fi if [ -f $alidir/gselect.1.gz ]; then echo "$0: using Gaussian-selection info from $alidir" gselect_opt="--gselect=ark:gunzip -c $alidir/gselect.JOB.gz|" else echo "$0: error: no Gaussian-selection info found" && exit 1; fi lats="ark:gunzip -c $denlatdir/lat.JOB.gz|" if [[ "$boost" != "0.0" && "$boost" != 0 ]]; then lats="$lats lattice-boost-ali --b=$boost --silence-phones=$silphonelist $alidir/final.mdl ark:- 'ark,s,cs:gunzip -c $alidir/ali.JOB.gz|' ark:- |" fi cur_mdl=$alidir/final.mdl x=0 while [ $x -lt $num_iters ]; do echo "Iteration $x of MMI training" # Note: the num and den states are accumulated at the same time, so we # can cancel them per frame. if [ $stage -le $x ]; then $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \ sgmm2-rescore-lattice "$gselect_opt" $spkvecs_opt $cur_mdl "$lats" "$feats" ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ sum-post --merge=$cancel --scale1=-1 \ ark:- "ark,s,cs:gunzip -c $alidir/ali.JOB.gz | ali-to-post ark:- ark:- |" ark:- \| \ sgmm2-acc-stats2 "$gselect_opt" $spkvecs_opt $cur_mdl "$feats" ark,s,cs:- \ $dir/num_acc.$x.JOB.acc $dir/den_acc.$x.JOB.acc || exit 1; n=`echo $dir/{num,den}_acc.$x.*.acc | wc -w`; [ "$n" -ne $[$nj*2] ] && \ echo "Wrong number of MMI accumulators $n versus 2*$nj" && exit 1; $cmd $dir/log/den_acc_sum.$x.log \ sgmm2-sum-accs $dir/den_acc.$x.acc $dir/den_acc.$x.*.acc || exit 1; rm $dir/den_acc.$x.*.acc $cmd $dir/log/num_acc_sum.$x.log \ sgmm2-sum-accs $dir/num_acc.$x.acc $dir/num_acc.$x.*.acc || exit 1; rm $dir/num_acc.$x.*.acc $cmd $dir/log/update.$x.log \ sgmm2-est-ebw $update_opts $cur_mdl $dir/num_acc.$x.acc $dir/den_acc.$x.acc $dir/$[$x+1].mdl || exit 1; fi cur_mdl=$dir/$[$x+1].mdl # Some diagnostics: the objective function progress and auxiliary-function # improvement. Note: this code is same as in train_mmi.sh tail -n 50 $dir/log/acc.$x.*.log | perl -e '$acwt=shift @ARGV; while(<STDIN>) { if(m/sgmm2-acc-stats2.+Overall weighted acoustic likelihood per frame was (\S+) over (\S+) frames/) { $tot_aclike += $1*$2; $tot_frames1 += $2; } if(m|lattice-to-post.+Overall average log-like/frame is (\S+) over (\S+) frames. Average acoustic like/frame is (\S+)|) { $tot_den_lat_like += $1*$2; $tot_frames2 += $2; $tot_den_aclike += $3*$2; } } if (abs($tot_frames1 - $tot_frames2) > 0.01*($tot_frames1 + $tot_frames2)) { print STDERR "Frame-counts disagree $tot_frames1 versus $tot_frames2 "; } $tot_den_lat_like /= $tot_frames2; $tot_den_aclike /= $tot_frames2; $tot_aclike *= ($acwt / $tot_frames1); $num_like = $tot_aclike + $tot_den_aclike; $per_frame_objf = $num_like - $tot_den_lat_like; print "$per_frame_objf $tot_frames1 "; ' $acwt > $dir/tmpf objf=`cat $dir/tmpf | awk '{print $1}'`; nf=`cat $dir/tmpf | awk '{print $2}'`; rm $dir/tmpf impr=`grep -w Overall $dir/log/update.$x.log | awk '{x += $10*$12;} END{print x;}'` impr=`perl -e "print ($impr*$acwt/$nf);"` # We multiply by acwt, and divide by $nf which is the "real" number of frames. echo "Iteration $x: objf was $objf, MMI auxf change was $impr" | tee $dir/objf.$x.log x=$[$x+1] done echo "MMI training finished" rm $dir/final.mdl 2>/dev/null ln -s $x.mdl $dir/final.mdl exit 0; |