Blame view
Scripts/steps/tandem/align_sgmm.sh
8.57 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey) # Korbinian Riedhammer # Apache 2.0 # Computes training alignments and (if needed) speaker-vectors, given an # SGMM system. If the system is built on top of SAT, you should supply # transforms with the --transform-dir option. # If you supply the --use-graphs option, it will use the training # graphs from the source directory. # Begin configuration section. stage=0 nj=4 cmd=run.pl use_graphs=false # use graphs from srcdir use_gselect=false # use gselect info from srcdir [regardless, we use # Gaussian-selection info, we might have to compute it though.] gselect=15 # Number of Gaussian-selection indices for SGMMs. # Begin configuration. scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1" beam=10 retry_beam=40 transform_dir= # directory to find fMLLR transforms in. # End configuration options. echo "$0 $@" # Print the command line for logging [ -f path.sh ] && . ./path.sh # source the path. . parse_options.sh || exit 1; if [ $# != 5 ]; then echo "usage: steps/tandem/align_sgmm.sh <data1-dir> <data2-dir> <lang-dir> <src-dir> <align-dir>" echo "e.g.: steps/tandem/align_sgmm.sh --transform-dir exp/tri3b data1/train data1/lang \\" echo " exp/sgmm4a exp/sgmm5a_ali" echo "main options (for others, see top of script file)" echo " --config <config-file> # config containing options" echo " --nj <nj> # number of parallel jobs" echo " --use-graphs true # use graphs in src-dir" echo " --transform-dir <transform-dir> # directory to find fMLLR transforms" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." exit 1; fi data1=$1 data2=$2 lang=$3 srcdir=$4 dir=$5 oov=`cat $lang/oov.int` || exit 1; silphonelist=`cat $lang/phones/silence.csl` || exit 1; mkdir -p $dir/log echo $nj > $dir/num_jobs ## Set up features. sdata1=$data1/split$nj sdata2=$data2/split$nj [[ -d $sdata1 && $data1/feats.scp -ot $sdata1 ]] || split_data.sh $data1 $nj || exit 1; [[ -d $sdata2 && $data2/feats.scp -ot $sdata2 ]] || split_data.sh $data2 $nj || exit 1; cp $srcdir/{tree,final.mdl} $dir || exit 1; [ -f $srcdir/final.alimdl ] && cp $srcdir/final.alimdl $dir cp $srcdir/final.occs $dir; ## Set up features. splice_opts=`cat $srcdir/splice_opts 2>/dev/null` # frame-splicing options. normft2=`cat $srcdir/normft2 2>/dev/null` if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=delta; fi case $feat_type in delta) echo "$0: feature type is $feat_type" ;; lda) echo "$0: feature type is $feat_type" cp $srcdir/{lda,final}.mat $dir/ || exit 1; ;; *) echo "$0: invalid feature type $feat_type" && exit 1; esac # set up feature stream 1; this are usually spectral features, so we will add # deltas or splice them feats1="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata1/JOB/utt2spk scp:$sdata1/JOB/cmvn.scp scp:$sdata1/JOB/feats.scp ark:- |" if [ "$feat_type" == "delta" ]; then feats1="$feats1 add-deltas ark:- ark:- |" elif [ "$feat_type" == "lda" ]; then feats1="$feats1 splice-feats $splice_opts ark:- ark:- | transform-feats $dir/lda.mat ark:- ark:- |" fi # set up feature stream 2; this are usually bottleneck or posterior features, # which may be normalized if desired feats2="scp:$sdata2/JOB/feats.scp" if [ "$normft2" == "true" ]; then feats2="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata2/JOB/utt2spk scp:$sdata2/JOB/cmvn.scp $feats2 ark:- |" fi # assemble tandem features feats="ark,s,cs:paste-feats '$feats1' '$feats2' ark:- |" # add transformation, if applicable if [ "$feat_type" == "lda" ]; then feats="$feats transform-feats $dir/final.mat ark:- ark:- |" fi # splicing/normalization options cp $srcdir/{splice_opts,normft2,tandem} $dir 2>/dev/null if [ ! -z "$transform_dir" ]; then echo "$0: using transforms from $transform_dir" [ ! -f $transform_dir/trans.1 ] && echo "$0: no such file $transform_dir/trans.1" && exit 1; [ "$nj" -ne "`cat $transform_dir/num_jobs`" ] \ && echo "$0: #jobs mismatch with transform-dir." && exit 1; feats="$feats transform-feats --utt2spk=ark:$sdata1/JOB/utt2spk ark,s,cs:$transform_dir/trans.JOB ark:- ark:- |" elif grep 'transform-feats --utt2spk' $srcdir/log/acc.0.1.log 2>/dev/null; then echo "$0: **WARNING**: you seem to be using an SGMM system trained with transforms," echo " but you are not providing the --transform-dir option during alignment." fi ## ## Set up model and alignment model. mdl=$srcdir/final.mdl if [ -f $srcdir/final.alimdl ]; then alimdl=$srcdir/final.alimdl else alimdl=$srcdir/final.mdl fi [ ! -f $mdl ] && echo "$0: no such model $mdl" && exit 1; ## Work out where we're getting the graphs from. if $use_graphs; then [ "$nj" != "`cat $srcdir/num_jobs`" ] && \ echo "$0: you specified --use-graphs true, but #jobs mismatch." && exit 1; [ ! -f $srcdir/fsts.1.gz ] && echo "No graphs in $srcdir" && exit 1; graphdir=$srcdir ln.pl $srcdir/fsts.*.gz $dir else graphdir=$dir if [ $stage -le 0 ]; then echo "$0: compiling training graphs" tra="ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt $sdata1/JOB/text|"; $cmd JOB=1:$nj $dir/log/compile_graphs.JOB.log \ compile-train-graphs $dir/tree $dir/final.mdl $lang/L.fst "$tra" \ "ark:|gzip -c >$dir/fsts.JOB.gz" || exit 1; fi fi ## Work out where we're getting the Gaussian-selection info from if $use_gselect; then [ "$nj" != "`cat $srcdir/num_jobs`" ] && \ echo "$0: you specified --use-gselect true, but #jobs mismatch." && exit 1; [ ! -f $srcdir/gselect.1.gz ] && echo "No gselect info in $srcdir" && exit 1; graphdir=$srcdir gselect_opt="--gselect=ark:gunzip -c $srcdir/gselect.JOB.gz|" ln.pl $srcdir/gselect.*.gz $dir else graphdir=$dir if [ $stage -le 1 ]; then echo "$0: computing Gaussian-selection info" # Note: doesn't matter whether we use $alimdl or $mdl, they will # have the same gselect info. $cmd JOB=1:$nj $dir/log/gselect.JOB.log \ sgmm-gselect --full-gmm-nbest=$gselect $alimdl \ "$feats" "ark:|gzip -c >$dir/gselect.JOB.gz" || exit 1; fi gselect_opt="--gselect=ark:gunzip -c $dir/gselect.JOB.gz|" fi if [ $alimdl == $mdl ]; then # Speaker-independent decoding-- just one pass. Not normal. T=`sgmm-info $mdl | grep 'speaker vector space' | awk '{print $NF}'` || exit 1; [ "$T" -ne 0 ] && echo "No alignment model, yet speaker vector space nonempty" && exit 1; if [ $stage -le 2 ]; then echo "$0: aligning data in $data using model $mdl (no speaker-vectors)" $cmd JOB=1:$nj $dir/log/align_pass1.JOB.log \ sgmm-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam $alimdl \ "ark:gunzip -c $graphdir/fsts.JOB.gz|" "$feats" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1; fi echo "$0: done aligning data." exit 0; fi # Continue with system with speaker vectors. if [ $stage -le 2 ]; then echo "$0: aligning data in $data using model $alimdl" $cmd JOB=1:$nj $dir/log/align_pass1.JOB.log \ sgmm-align-compiled $scale_opts "$gselect_opt" --beam=$beam --retry-beam=$retry_beam $alimdl \ "ark:gunzip -c $graphdir/fsts.JOB.gz|" "$feats" "ark:|gzip -c >$dir/pre_ali.JOB.gz" || exit 1; fi if [ $stage -le 3 ]; then echo "$0: computing speaker vectors (1st pass)" $cmd JOB=1:$nj $dir/log/spk_vecs1.JOB.log \ ali-to-post "ark:gunzip -c $dir/pre_ali.JOB.gz|" ark:- \| \ weight-silence-post 0.0 $silphonelist $alimdl ark:- ark:- \| \ sgmm-post-to-gpost "$gselect_opt" $alimdl "$feats" ark:- ark:- \| \ sgmm-est-spkvecs-gpost --spk2utt=ark:$sdata1/JOB/spk2utt \ $mdl "$feats" ark,s,cs:- ark:$dir/pre_vecs.JOB || exit 1; fi if [ $stage -le 4 ]; then echo "$0: computing speaker vectors (2nd pass)" $cmd JOB=1:$nj $dir/log/spk_vecs2.JOB.log \ ali-to-post "ark:gunzip -c $dir/pre_ali.JOB.gz|" ark:- \| \ weight-silence-post 0.0 $silphonelist $alimdl ark:- ark:- \| \ sgmm-est-spkvecs --spk2utt=ark:$sdata1/JOB/spk2utt "$gselect_opt" \ --spk-vecs=ark:$dir/pre_vecs.JOB $mdl "$feats" ark,s,cs:- ark:$dir/vecs.JOB || exit 1; rm $dir/pre_vecs.* fi if [ $stage -le 5 ]; then echo "$0: doing final alignment." $cmd JOB=1:$nj $dir/log/align_pass2.JOB.log \ sgmm-align-compiled $scale_opts "$gselect_opt" --beam=$beam --retry-beam=$retry_beam \ --utt2spk=ark:$sdata1/JOB/utt2spk --spk-vecs=ark:$dir/vecs.JOB \ $mdl "ark:gunzip -c $graphdir/fsts.JOB.gz|" "$feats" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1; fi rm $dir/pre_ali.*.gz echo "$0: done aligning data." utils/summarize_warnings.pl $dir/log exit 0; |