Blame view
Scripts/steps/tandem/decode_sgmm2.sh
10.2 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # Korbinian Riedhammer # This script does decoding with an SGMM system, with speaker vectors. # If the SGMM system was # built on top of fMLLR transforms from a conventional system, you should # provide the --transform-dir option. # Begin configuration section. stage=1 transform_dir= # dir to find fMLLR transforms. nj=4 # number of decoding jobs. acwt=0.1 # Just a default value, used for adaptation and beam-pruning.. cmd=run.pl beam=13.0 gselect=15 # Number of Gaussian-selection indices for SGMMs. [Note: # the first_pass_gselect variable is used for the 1st pass of # decoding and can be tighter. first_pass_gselect=3 # Use a smaller number of Gaussian-selection indices in # the 1st pass of decoding (lattice generation). max_active=7000 #WARNING: This option is renamed lat_beam (it was renamed to follow the naming # in the other scripts lattice_beam=6.0 # Beam we use in lattice generation. vecs_beam=4.0 # Beam we use to prune lattices while getting posteriors for # speaker-vector computation. Can be quite tight (actually we could # probably just do best-path. use_fmllr=false fmllr_iters=10 fmllr_min_count=1000 # End configuration section. echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# -ne 4 ]; then echo "Usage: steps/tandem/decode_sgmm2.sh [options] <graph-dir> <data-dir1> <data-dir2> <decode-dir>" echo " e.g.: steps/tandem/decode_sgmm2.sh --transform-dir exp/tri3b/decode_dev93_tgpr \\" echo " exp/sgmm3a/graph_tgpr {mfcc,bottleneck}/data/test_dev93 exp/sgmm3a/decode_dev93_tgpr" echo "main options (for others, see top of script file)" echo " --transform-dir <decoding-dir> # directory of previous decoding" echo " # where we can find transforms for SAT systems." echo " --config <config-file> # config containing options" echo " --nj <nj> # number of parallel jobs" echo " --cmd <cmd> # Command to run in parallel with" echo " --beam <beam> # Decoding beam; default 13.0" exit 1; fi graphdir=$1 data1=$2 data2=$3 dir=$4 srcdir=`dirname $dir`; # Assume model directory one level up from decoding directory. for f in $graphdir/HCLG.fst $data1/feats.scp $data2/feats.scp $srcdir/final.mdl; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done silphonelist=`cat $graphdir/phones/silence.csl` || exit 1 gselect_opt="--gselect=ark:gunzip -c $dir/gselect.JOB.gz|" gselect_opt_1stpass="$gselect_opt copy-gselect --n=$first_pass_gselect ark:- ark:- |" mkdir -p $dir/log echo $nj > $dir/num_jobs sdata1=$data1/split$nj; sdata2=$data2/split$nj; [[ -d $sdata1 && $data1/feats.scp -ot $sdata1 ]] || split_data.sh $data1 $nj || exit 1; [[ -d $sdata2 && $data2/feats.scp -ot $sdata2 ]] || split_data.sh $data2 $nj || exit 1; ## Set up features. splice_opts=`cat $srcdir/splice_opts 2>/dev/null` # frame-splicing options. normft2=`cat $srcdir/normft2 2>/dev/null` if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=delta; fi case $feat_type in delta) echo "$0: feature type is $feat_type" ;; lda) echo "$0: feature type is $feat_type" cp $srcdir/{lda,final}.mat $dir/ ;; *) echo "$0: invalid feature type $feat_type" && exit 1; esac # set up feature stream 1; this are usually spectral features, so we will add # deltas or splice them feats1="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata1/JOB/utt2spk scp:$sdata1/JOB/cmvn.scp scp:$sdata1/JOB/feats.scp ark:- |" if [ "$feat_type" == "delta" ]; then feats1="$feats1 add-deltas ark:- ark:- |" elif [ "$feat_type" == "lda" ]; then feats1="$feats1 splice-feats $splice_opts ark:- ark:- | transform-feats $dir/lda.mat ark:- ark:- |" fi # set up feature stream 2; this are usually bottleneck or posterior features, # which may be normalized if desired feats2="scp:$sdata2/JOB/feats.scp" if [ "$normft2" == "true" ]; then echo "Using cmvn for feats2" feats2="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata2/JOB/utt2spk scp:$sdata2/JOB/cmvn.scp $feats2 ark:- |" fi # assemble tandem features feats="ark,s,cs:paste-feats '$feats1' '$feats2' ark:- |" # add transformation, if applicable if [ "$feat_type" == "lda" ]; then feats="$feats transform-feats $dir/final.mat ark:- ark:- |" fi # splicing/normalization options cp $srcdir/{splice_opts,normft2,tandem} $dir 2>/dev/null if [ ! -z "$transform_dir" ]; then echo "$0: using transforms from $transform_dir" [ ! -f $transform_dir/trans.1 ] && echo "$0: no such file $transform_dir/trans.1" && exit 1; [ "$nj" -ne "`cat $transform_dir/num_jobs`" ] \ && echo "$0: #jobs mismatch with transform-dir." && exit 1; feats="$feats transform-feats --utt2spk=ark:$sdata1/JOB/utt2spk ark,s,cs:$transform_dir/trans.JOB ark:- ark:- |" elif grep 'transform-feats --utt2spk' $srcdir/log/acc.0.1.log 2>/dev/null; then echo "$0: **WARNING**: you seem to be using an SGMM system trained with transforms," echo " but you are not providing the --transform-dir option in test time." fi ## ## Save Gaussian-selection info to disk. # Note: we can use final.mdl regardless of whether there is an alignment model-- # they use the same UBM. if [ $stage -le 1 ]; then $cmd JOB=1:$nj $dir/log/gselect.JOB.log \ sgmm2-gselect --full-gmm-nbest=$gselect $srcdir/final.mdl \ "$feats" "ark:|gzip -c >$dir/gselect.JOB.gz" || exit 1; fi # Generate state-level lattice which we can rescore. This is done with the alignment # model and no speaker-vectors. if [ $stage -le 2 ]; then $cmd JOB=1:$nj $dir/log/decode_pass1.JOB.log \ sgmm2-latgen-faster --max-active=$max_active --beam=$beam --lattice-beam=$lattice_beam \ --acoustic-scale=$acwt --determinize-lattice=false --allow-partial=true \ --word-symbol-table=$graphdir/words.txt "$gselect_opt_1stpass" $srcdir/final.alimdl \ $graphdir/HCLG.fst "$feats" "ark:|gzip -c > $dir/pre_lat.JOB.gz" || exit 1; fi # Estimate speaker vectors (1st pass). Prune before determinizing # because determinization can take a while on un-pruned lattices. # Note: the sgmm2-post-to-gpost stage is necessary because we have # a separate alignment-model and final model, otherwise we'd skip it # and use sgmm2-est-spkvecs. if [ $stage -le 3 ]; then $cmd JOB=1:$nj $dir/log/vecs_pass1.JOB.log \ gunzip -c $dir/pre_lat.JOB.gz \| \ lattice-prune --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post 0.0 $silphonelist $srcdir/final.alimdl ark:- ark:- \| \ sgmm2-post-to-gpost "$gselect_opt" $srcdir/final.alimdl "$feats" ark:- ark:- \| \ sgmm2-est-spkvecs-gpost --spk2utt=ark:$sdata1/JOB/spk2utt \ $srcdir/final.mdl "$feats" ark,s,cs:- "ark:$dir/pre_vecs.JOB" || exit 1; fi # Estimate speaker vectors (2nd pass). Since we already have spk vectors, # at this point we need to rescore the lattice to get the correct posteriors. if [ $stage -le 4 ]; then $cmd JOB=1:$nj $dir/log/vecs_pass2.JOB.log \ gunzip -c $dir/pre_lat.JOB.gz \| \ sgmm2-rescore-lattice --spk-vecs=ark:$dir/pre_vecs.JOB --utt2spk=ark:$sdata1/JOB/utt2spk \ "$gselect_opt" $srcdir/final.mdl ark:- "$feats" ark:- \| \ lattice-prune --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post 0.0 $silphonelist $srcdir/final.mdl ark:- ark:- \| \ sgmm2-est-spkvecs --spk2utt=ark:$sdata1/JOB/spk2utt "$gselect_opt" --spk-vecs=ark:$dir/pre_vecs.JOB \ $srcdir/final.mdl "$feats" ark,s,cs:- "ark:$dir/vecs.JOB" || exit 1; fi rm $dir/pre_vecs.* if $use_fmllr; then # Estimate fMLLR transforms (note: these may be on top of any # fMLLR transforms estimated with the baseline GMM system. if [ $stage -le 5 ]; then # compute fMLLR transforms. echo "$0: computing fMLLR transforms." if [ ! -f $srcdir/final.fmllr_mdl ] || [ $srcdir/final.fmllr_mdl -ot $srcdir/final.mdl ]; then echo "$0: computing pre-transform for fMLLR computation." sgmm2-comp-prexform $srcdir/final.mdl $srcdir/final.occs $srcdir/final.fmllr_mdl || exit 1; fi $cmd JOB=1:$nj $dir/log/fmllr.JOB.log \ gunzip -c $dir/pre_lat.JOB.gz \| \ sgmm2-rescore-lattice --spk-vecs=ark:$dir/vecs.JOB --utt2spk=ark:$sdata1/JOB/utt2spk \ "$gselect_opt" $srcdir/final.mdl ark:- "$feats" ark:- \| \ lattice-prune --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post 0.0 $silphonelist $srcdir/final.mdl ark:- ark:- \| \ sgmm2-est-fmllr --spk2utt=ark:$sdata1/JOB/spk2utt "$gselect_opt" --spk-vecs=ark:$dir/vecs.JOB \ --fmllr-iters=$fmllr_iters --fmllr-min-count=$fmllr_min_count \ $srcdir/final.fmllr_mdl "$feats" ark,s,cs:- "ark:$dir/trans.JOB" || exit 1; fi feats="$feats transform-feats --utt2spk=ark:$sdata1/JOB/utt2spk ark,s,cs:$dir/trans.JOB ark:- ark:- |" fi # Now rescore the state-level lattices with the adapted features and the # corresponding model. Prune and determinize the lattices to limit # their size. if [ $stage -le 6 ]; then $cmd JOB=1:$nj $dir/log/rescore.JOB.log \ sgmm2-rescore-lattice "$gselect_opt" --utt2spk=ark:$sdata1/JOB/utt2spk --spk-vecs=ark:$dir/vecs.JOB \ $srcdir/final.mdl "ark:gunzip -c $dir/pre_lat.JOB.gz|" "$feats" ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$lattice_beam ark:- \ "ark:|gzip -c > $dir/lat.JOB.gz" || exit 1; fi rm $dir/pre_lat.*.gz # The output of this script is the files "lat.*.gz"-- we'll rescore this at different # acoustic scales to get the final output. if [ $stage -le 7 ]; then [ ! -x local/score.sh ] && \ echo "Not scoring because local/score.sh does not exist or not executable." && exit 1; local/score.sh --cmd "$cmd" $data1 $graphdir $dir fi exit 0; |