Blame view
Scripts/steps/tandem/train_mllt.sh
8.9 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey) # Korbinian Riedhammer # Apache 2.0. # This is a vanilla tandem system where the first stream is just extended with # delta+deltadeltas, in contrast to the train_lda_mllt.sh script, where the # temoporal context of the first stream is modeled via HLDA # Begin configuration. cmd=run.pl config= stage=-5 scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1" realign_iters="10 20 30"; mllt_iters="2 4 6 12"; num_iters=35 # Number of iterations of training max_iter_inc=25 # Last iter to increase #Gauss on. beam=10 retry_beam=40 boost_silence=1.0 # Factor by which to boost silence likelihoods in alignment power=0.2 # Exponent for number of gaussians according to occurrence counts randprune=4.0 # This is approximately the ratio by which we will speed up the # LDA and MLLT calculations via randomized pruning. cluster_thresh=-1 # for build-tree control final bottom-up clustering of leaves # apply CMVN to the second feature stream? normft2=true # Do additional LDA after pasting the features dim2=40 extra_lda=false # End configuration. echo "$0 $@" # Print the command line for logging [ -f path.sh ] && . ./path.sh . parse_options.sh || exit 1; if [ $# != 7 ]; then echo "Usage: steps/tandem/train_mllt.sh [options] <#leaves> <#gauss> <data1> <data2> <lang> <alignments> <dir>" echo " e.g.: steps/tandem/train_mllt.sh 2500 15000 {mfcc,bottleneck}/data/train_si84 data/lang exp/tri1_ali_si84 exp/tri2b" echo "Main options (for others, see top of script file)" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --config <config-file> # config containing options" echo " --stage <stage> # stage to do partial re-run from." echo " --normft2 (true|false) # apply CMVN to second data set (true)" echo " --extra-lda (true|false) # apply extra LDA after feature paste (false)" echo " --dim2 <n> # dimension of the pasted features after 2nd HLDA" exit 1; fi numleaves=$1 totgauss=$2 data1=$3 data2=$4 lang=$5 alidir=$6 dir=$7 for f in $alidir/final.mdl $alidir/ali.1.gz $data1/feats.scp $data2/feats.scp $lang/phones.txt; do [ ! -f $f ] && echo "train_tandem_lda_mllt.sh: no such file $f" && exit 1; done numgauss=$numleaves incgauss=$[($totgauss-$numgauss)/$max_iter_inc] # per-iter #gauss increment oov=`cat $lang/oov.int` || exit 1; nj=`cat $alidir/num_jobs` || exit 1; silphonelist=`cat $lang/phones/silence.csl` || exit 1; ciphonelist=`cat $lang/phones/context_indep.csl` || exit 1; mkdir -p $dir/log echo $nj >$dir/num_jobs # Set up features. sdata1=$data1/split$nj; sdata2=$data2/split$nj; [[ -d $sdata1 && $data1/feats.scp -ot $sdata1 ]] || split_data.sh $data1 $nj || exit 1; [[ -d $sdata2 && $data2/feats.scp -ot $sdata2 ]] || split_data.sh $data2 $nj || exit 1; # set up feature stream 1; here we assume spectral features which we will # splice instead of deltas feats1="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata1/JOB/utt2spk scp:$sdata1/JOB/cmvn.scp scp:$sdata1/JOB/feats.scp ark:- | add-deltas ark:- ark:- |" # set up feature stream 2; this are usually bottleneck or posterior features, # which may be normalized if desired feats2="scp:$sdata2/JOB/feats.scp" if [ "$normft2" == "true" ]; then feats2="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata2/JOB/utt2spk scp:$sdata2/JOB/cmvn.scp $feats2 ark:- |" fi # assemble tandem features; note: $feats gets overwritten later in the script # once we have MLLT matrices tandemfeats="ark,s,cs:paste-feats '$feats1' '$feats2' ark:- |" feats="$tandemfeats" # keep track of splicing/normalization options echo $feats > $dir/tandem echo $normft2 > $dir/normft2 # Begin training; initially, we have no MLLT matrix cur_mllt_iter=0 if [ $stage -le -4 -a $extra_lda == true ]; then echo "Accumulating LDA statistics (for tandem features this time)." $cmd JOB=1:$nj $dir/log/lda_acc.JOB.log \ ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz|" ark:- \| \ weight-silence-post 0.0 $silphonelist $alidir/final.mdl ark:- ark:- \| \ acc-lda --rand-prune=$randprune $alidir/final.mdl "$tandemfeats" ark,s,cs:- \ $dir/lda.JOB.acc || exit 1; est-lda --write-full-matrix=$dir/full.mat --dim=$dim2 $dir/0.mat $dir/lda.*.acc \ 2>$dir/log/lda_est.log || exit 1; rm $dir/lda.*.acc feats="$tandemfeats transform-feats $dir/0.mat ark:- ark:- |" fi if [ $stage -le -3 ]; then echo "Accumulating tree stats" $cmd JOB=1:$nj $dir/log/acc_tree.JOB.log \ acc-tree-stats --ci-phones=$ciphonelist $alidir/final.mdl "$feats" \ "ark:gunzip -c $alidir/ali.JOB.gz|" $dir/JOB.treeacc || exit 1; [ `ls $dir/*.treeacc | wc -w` -ne "$nj" ] && echo "Wrong #tree-accs" && exit 1; $cmd $dir/log/sum_tree_acc.log \ sum-tree-stats $dir/treeacc $dir/*.treeacc || exit 1; rm $dir/*.treeacc fi if [ $stage -le -2 ]; then echo "Getting questions for tree clustering." # preparing questions, roots file... cluster-phones $dir/treeacc $lang/phones/sets.int $dir/questions.int 2> $dir/log/questions.log || exit 1; cat $lang/phones/extra_questions.int >> $dir/questions.int compile-questions $lang/topo $dir/questions.int $dir/questions.qst 2>$dir/log/compile_questions.log || exit 1; echo "Building the tree" $cmd $dir/log/build_tree.log \ build-tree --verbose=1 --max-leaves=$numleaves \ --cluster-thresh=$cluster_thresh $dir/treeacc $lang/phones/roots.int \ $dir/questions.qst $lang/topo $dir/tree || exit 1; gmm-init-model --write-occs=$dir/1.occs \ $dir/tree $dir/treeacc $lang/topo $dir/1.mdl 2> $dir/log/init_model.log || exit 1; grep 'no stats' $dir/log/init_model.log && echo "This is a bad warning."; # could mix up if we wanted: # gmm-mixup --mix-up=$numgauss $dir/1.mdl $dir/1.occs $dir/1.mdl 2>$dir/log/mixup.log || exit 1; rm $dir/treeacc fi if [ $stage -le -1 ]; then # Convert the alignments. echo "Converting alignments from $alidir to use current tree" $cmd JOB=1:$nj $dir/log/convert.JOB.log \ convert-ali $alidir/final.mdl $dir/1.mdl $dir/tree \ "ark:gunzip -c $alidir/ali.JOB.gz|" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1; fi if [ $stage -le 0 ]; then echo "Compiling graphs of transcripts" $cmd JOB=1:$nj $dir/log/compile_graphs.JOB.log \ compile-train-graphs $dir/tree $dir/1.mdl $lang/L.fst \ "ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt < $data1/split$nj/JOB/text |" \ "ark:|gzip -c >$dir/fsts.JOB.gz" || exit 1; fi x=1 while [ $x -lt $num_iters ]; do echo Training pass $x if echo $realign_iters | grep -w $x >/dev/null && [ $stage -le $x ]; then echo Aligning data mdl="gmm-boost-silence --boost=$boost_silence `cat $lang/phones/optional_silence.csl` $dir/$x.mdl - |" $cmd JOB=1:$nj $dir/log/align.$x.JOB.log \ gmm-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam "$mdl" \ "ark:gunzip -c $dir/fsts.JOB.gz|" "$feats" \ "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1; fi if echo $mllt_iters | grep -w $x >/dev/null; then if [ $stage -le $x ]; then echo "Estimating MLLT" $cmd JOB=1:$nj $dir/log/macc.$x.JOB.log \ ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \ weight-silence-post 0.0 $silphonelist $dir/$x.mdl ark:- ark:- \| \ gmm-acc-mllt --rand-prune=$randprune $dir/$x.mdl "$feats" ark:- $dir/$x.JOB.macc \ || exit 1; est-mllt $dir/$x.mat.new $dir/$x.*.macc 2> $dir/log/mupdate.$x.log || exit 1; gmm-transform-means $dir/$x.mat.new $dir/$x.mdl $dir/$x.mdl \ 2> $dir/log/transform_means.$x.log || exit 1; # see if this is the first MLLT iteration and there is no lda; otherwise compose transforms if [ $cur_mllt_iter == 0 -a $extra_lda == false ]; then mv $dir/$x.mat.new $dir/$x.mat || exit 1; else compose-transforms --print-args=false $dir/$x.mat.new $dir/$cur_mllt_iter.mat $dir/$x.mat || exit 1; fi rm $dir/$x.*.macc fi # update features feats="$tandemfeats transform-feats $dir/$x.mat ark:- ark:- |" cur_mllt_iter=$x fi if [ $stage -le $x ]; then $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \ gmm-acc-stats-ali $dir/$x.mdl "$feats" \ "ark,s,cs:gunzip -c $dir/ali.JOB.gz|" $dir/$x.JOB.acc || exit 1; $cmd $dir/log/update.$x.log \ gmm-est --write-occs=$dir/$[$x+1].occs --mix-up=$numgauss --power=$power \ $dir/$x.mdl "gmm-sum-accs - $dir/$x.*.acc |" $dir/$[$x+1].mdl || exit 1; rm $dir/$x.mdl $dir/$x.*.acc $dir/$x.occs fi [ $x -le $max_iter_inc ] && numgauss=$[$numgauss+$incgauss]; x=$[$x+1]; done rm $dir/final.{mdl,mat,occs} 2>/dev/null ln -s $x.mdl $dir/final.mdl ln -s $x.occs $dir/final.occs ln -s $cur_mllt_iter.mat $dir/final.mat # Summarize warning messages... utils/summarize_warnings.pl $dir/log echo Done training system with LDA+MLLT tandem features in $dir |