Blame view

Scripts/steps/tandem/train_sat.sh 10.4 KB
ec85f8892   bigot benjamin   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
  #!/bin/bash
  # Copyright 2012  Johns Hopkins University (Author: Daniel Povey).  Apache 2.0.
  #                 Korbinian Riedhammer
  
  # This does Speaker Adapted Training (SAT), i.e. train on
  # fMLLR-adapted features.  It can be done on top of either LDA+MLLT, or
  # delta and delta-delta features.  If there are no transforms supplied
  # in the alignment directory, it will estimate transforms itself before
  # building the tree (and in any case, it estimates transforms a number
  # of times during training).
  
  
  # Begin configuration section.
  stage=-5
  fmllr_update_type=full
  cmd=run.pl
  scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1"
  beam=10
  retry_beam=40
  boost_silence=1.0 # Factor by which to boost silence likelihoods in alignment
  realign_iters="10 20 30";
  fmllr_iters="2 4 6 12";
  silence_weight=0.0 # Weight on silence in fMLLR estimation.
  num_iters=35   # Number of iterations of training
  max_iter_inc=25 # Last iter to increase #Gauss on.
  power=0.2 # Exponent for number of gaussians according to occurrence counts
  cluster_thresh=-1  # for build-tree control final bottom-up clustering of leaves
  normft2=true
  # End configuration section.
  
  echo "$0 $@"  # Print the command line for logging
  
  [ -f path.sh ] && . ./path.sh
  . parse_options.sh || exit 1;
  
  if [ $# != 7 ]; then
    echo "Usage: steps/tandem/train_sat.sh <#leaves> <#gauss> <data1> <data2> <lang> <ali-dir> <exp-dir>"
    echo " e.g.: steps/tandem/train_sat.sh 2500 15000 {mfcc,bottleneck}/data/train_si84 data/lang exp/tri2b_ali_si84 exp/tri3b"
    echo "Main options (for others, see top of script file)"
    echo "  --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
    echo "  --config <config-file>                           # config containing options"
    echo "  --stage <stage>                                  # stage to do partial re-run from."
    exit 1;
  fi
  
  numleaves=$1
  totgauss=$2
  data1=$3
  data2=$4
  lang=$5
  alidir=$6
  dir=$7
  
  for f in $data1/feats.scp $data2/feats.scp $lang/phones.txt $alidir/final.mdl $alidir/ali.1.gz; do
    [ ! -f $f ] && echo "train_tandem_sat.sh: no such file $f" && exit 1;
  done
  
  numgauss=$numleaves
  incgauss=$[($totgauss-$numgauss)/$max_iter_inc]  # per-iter #gauss increment
  oov=`cat $lang/oov.int`
  nj=`cat $alidir/num_jobs` || exit 1;
  silphonelist=`cat $lang/phones/silence.csl`
  ciphonelist=`cat $lang/phones/context_indep.csl` || exit 1;
  
  
  mkdir -p $dir/log
  
  echo $nj >$dir/num_jobs
  
  sdata1=$data1/split$nj;
  sdata2=$data2/split$nj;
  [[ -d $sdata1 && $data1/feats.scp -ot $sdata1 ]] || split_data.sh $data1 $nj || exit 1;
  [[ -d $sdata2 && $data2/feats.scp -ot $sdata2 ]] || split_data.sh $data2 $nj || exit 1;
  
  # Set up features.
  
  # We will use the same settings as with the alidir
  splice_opts=`cat $alidir/splice_opts 2>/dev/null` # frame-splicing options.
  normft2=`cat $alidir/normft2 2>/dev/null`
  
  if [ -f $alidir/final.mat ]; then feat_type=lda; else feat_type=delta; fi
  
  case $feat_type in
    delta) 
  	  echo "$0: feature type is $feat_type"
    	;;
    lda) 
  	  echo "$0: feature type is $feat_type"
      cp $alidir/{lda,final}.mat $dir/ || exit 1;
      ;;
    *) echo "$0: invalid feature type $feat_type" && exit 1;
  esac
  
  # set up feature stream 1;  this are usually spectral features, so we will add
  # deltas or splice them
  feats1="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata1/JOB/utt2spk scp:$sdata1/JOB/cmvn.scp scp:$sdata1/JOB/feats.scp ark:- |"
  
  if [ "$feat_type" == "delta" ]; then
    feats1="$feats1 add-deltas ark:- ark:- |"
  elif [ "$feat_type" == "lda" ]; then
    feats1="$feats1 splice-feats $splice_opts ark:- ark:- | transform-feats $dir/lda.mat ark:- ark:- |"
  fi
  
  # set up feature stream 2;  this are usually bottleneck or posterior features, 
  # which may be normalized if desired
  feats2="scp:$sdata2/JOB/feats.scp"
  
  if [ "$normft2" == "true" ]; then
    feats2="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata2/JOB/utt2spk scp:$sdata2/JOB/cmvn.scp $feats2 ark:- |"
  fi
  
  # assemble tandem features
  sifeats="ark,s,cs:paste-feats '$feats1' '$feats2' ark:- |"
  
  # add transformation, if applicable
  if [ "$feat_type" == "lda" ]; then
    sifeats="$sifeats transform-feats $dir/final.mat ark:- ark:- |"
  fi
  
  # splicing/normalization options
  cp $alidir/{splice_opts,tandem,normft2} $dir 2>/dev/null
  
  
  
  ## Get initial fMLLR transforms (possibly from alignment dir)
  if [ -f $alidir/trans.1 ]; then
    echo "$0: Using transforms from $alidir"
    feats="$sifeats transform-feats --utt2spk=ark:$sdata1/JOB/utt2spk ark,s,cs:$alidir/trans.JOB ark:- ark:- |"
    cur_trans_dir=$alidir
  else 
    if [ $stage -le -4 ]; then
      echo "$0: obtaining initial fMLLR transforms since not present in $alidir"
      $cmd JOB=1:$nj $dir/log/fmllr.0.JOB.log \
        ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz|" ark:- \| \
        weight-silence-post $silence_weight $silphonelist $alidir/final.mdl ark:- ark:- \| \
        gmm-est-fmllr --fmllr-update-type=$fmllr_update_type \
        --spk2utt=ark:$sdata1/JOB/spk2utt $alidir/final.mdl "$sifeats" \
        ark:- ark:$dir/trans.JOB || exit 1;
    fi
    feats="$sifeats transform-feats --utt2spk=ark:$sdata1/JOB/utt2spk ark,s,cs:$dir/trans.JOB ark:- ark:- |"
    cur_trans_dir=$dir
  fi
  
  if [ $stage -le -3 ]; then
    # Get tree stats.
    echo "$0: Accumulating tree stats"
    $cmd JOB=1:$nj $dir/log/acc_tree.JOB.log \
      acc-tree-stats  --ci-phones=$ciphonelist $alidir/final.mdl "$feats" \
      "ark:gunzip -c $alidir/ali.JOB.gz|" $dir/JOB.treeacc || exit 1;
    [ "`ls $dir/*.treeacc | wc -w`" -ne "$nj" ] && echo "$0: Wrong #tree-accs" && exit 1;
    $cmd $dir/log/sum_tree_acc.log \
      sum-tree-stats $dir/treeacc $dir/*.treeacc || exit 1;
    rm $dir/*.treeacc
  fi
  
  if [ $stage -le -2 ]; then
    echo "$0: Getting questions for tree clustering."
    # preparing questions, roots file...
    cluster-phones $dir/treeacc $lang/phones/sets.int $dir/questions.int 2> $dir/log/questions.log || exit 1;
    cat $lang/phones/extra_questions.int >> $dir/questions.int
    compile-questions $lang/topo $dir/questions.int $dir/questions.qst 2>$dir/log/compile_questions.log || exit 1;
  
    echo "$0: Building the tree"
    $cmd $dir/log/build_tree.log \
      build-tree --verbose=1 --max-leaves=$numleaves \
      --cluster-thresh=$cluster_thresh $dir/treeacc $lang/phones/roots.int \
      $dir/questions.qst $lang/topo $dir/tree || exit 1;
  
    gmm-init-model  --write-occs=$dir/1.occs  \
      $dir/tree $dir/treeacc $lang/topo $dir/1.mdl 2> $dir/log/init_model.log || exit 1;
    grep 'no stats' $dir/log/init_model.log && echo "$0: This is a bad warning.";
  
    rm $dir/treeacc
  fi
  
  
  if [ $stage -le -1 ]; then
    # Convert the alignments.
    echo "$0: Converting alignments from $alidir to use current tree"
    $cmd JOB=1:$nj $dir/log/convert.JOB.log \
      convert-ali $alidir/final.mdl $dir/1.mdl $dir/tree \
       "ark:gunzip -c $alidir/ali.JOB.gz|" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1;
  fi
  
  if [ $stage -le 0 ]; then
    echo "$0: Compiling graphs of transcripts"
    $cmd JOB=1:$nj $dir/log/compile_graphs.JOB.log \
      compile-train-graphs $dir/tree $dir/1.mdl  $lang/L.fst  \
       "ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt < $sdata1/JOB/text |" \
        "ark:|gzip -c >$dir/fsts.JOB.gz" || exit 1;
  fi
  
  x=1
  while [ $x -lt $num_iters ]; do
     echo Pass $x
    if echo $realign_iters | grep -w $x >/dev/null && [ $stage -le $x ]; then
      echo Aligning data
      mdl="gmm-boost-silence --boost=$boost_silence `cat $lang/phones/optional_silence.csl` $dir/$x.mdl - |"
      $cmd JOB=1:$nj $dir/log/align.$x.JOB.log \
        gmm-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam "$mdl" \
        "ark:gunzip -c $dir/fsts.JOB.gz|" "$feats" \
        "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1;
    fi
  
    if echo $fmllr_iters | grep -w $x >/dev/null; then
      if [ $stage -le $x ]; then
        echo Estimating fMLLR transforms
        # We estimate a transform that's additional to the previous transform;
        # we'll compose them.
        $cmd JOB=1:$nj $dir/log/fmllr.$x.JOB.log \
          ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:-  \| \
          weight-silence-post $silence_weight $silphonelist $dir/$x.mdl ark:- ark:- \| \
          gmm-est-fmllr --fmllr-update-type=$fmllr_update_type \
          --spk2utt=ark:$sdata1/JOB/spk2utt $dir/$x.mdl \
          "$feats" ark:- ark:$dir/tmp_trans.JOB || exit 1;
        for n in `seq $nj`; do
          ! ( compose-transforms --b-is-affine=true \
            ark:$dir/tmp_trans.$n ark:$cur_trans_dir/trans.$n ark:$dir/composed_trans.$n \
            && mv $dir/composed_trans.$n $dir/trans.$n && \
            rm $dir/tmp_trans.$n ) 2>$dir/log/compose_transforms.$x.log \
            && echo "$0: Error composing transforms" && exit 1;
        done
      fi
      feats="$sifeats transform-feats --utt2spk=ark:$sdata1/JOB/utt2spk ark:$dir/trans.JOB ark:- ark:- |"
      cur_trans_dir=$dir
    fi
    
    if [ $stage -le $x ]; then
      $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \
        gmm-acc-stats-ali $dir/$x.mdl "$feats" \
        "ark,s,cs:gunzip -c $dir/ali.JOB.gz|" $dir/$x.JOB.acc || exit 1;
      [ `ls $dir/$x.*.acc | wc -w` -ne "$nj" ] && echo "$0: Wrong #accs" && exit 1;
      $cmd $dir/log/update.$x.log \
        gmm-est --power=$power --write-occs=$dir/$[$x+1].occs --mix-up=$numgauss $dir/$x.mdl \
        "gmm-sum-accs - $dir/$x.*.acc |" $dir/$[$x+1].mdl || exit 1;
      rm $dir/$x.mdl $dir/$x.*.acc
      rm $dir/$x.occs 
    fi
    [ $x -le $max_iter_inc ] && numgauss=$[$numgauss+$incgauss];
    x=$[$x+1];
  done
  
  
  if [ $stage -le $x ]; then
    # Accumulate stats for "alignment model"-- this model is
    # computed with the speaker-independent features, but matches Gaussian-for-Gaussian
    # with the final speaker-adapted model.
    $cmd JOB=1:$nj $dir/log/acc_alimdl.JOB.log \
      ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:-  \| \
      gmm-acc-stats-twofeats $dir/$x.mdl "$feats" "$sifeats" \
      ark,s,cs:- $dir/$x.JOB.acc || exit 1;
    [ `ls $dir/$x.*.acc | wc -w` -ne "$nj" ] && echo "$0: Wrong #accs" && exit 1;
    # Update model.
    $cmd $dir/log/est_alimdl.log \
      gmm-est --power=$power --remove-low-count-gaussians=false $dir/$x.mdl \
      "gmm-sum-accs - $dir/$x.*.acc|" $dir/$x.alimdl  || exit 1;
    rm $dir/$x.*.acc
  fi
  
  rm $dir/final.{mdl,alimdl,occs} 2>/dev/null
  ln -s $x.mdl $dir/final.mdl
  ln -s $x.occs $dir/final.occs
  ln -s $x.alimdl $dir/final.alimdl
  
  
  
  utils/summarize_warnings.pl $dir/log
  (
    echo "$0: Likelihood evolution:"
    for x in `seq $[$num_iters-1]`; do
      tail -n 30 $dir/log/acc.$x.*.log | awk '/Overall avg like/{l += $(NF-3)*$(NF-1); t += $(NF-1); }
          /Overall average logdet/{d += $(NF-3)*$(NF-1); t2 += $(NF-1);} 
          END{ d /= t2; l /= t; printf("%s ", d+l); } '
    done
    echo
  ) | tee $dir/log/summary.log
  
  echo Done