rnnlmrescore.sh.svn-base 7.01 KB
#!/bin/bash


# Begin configuration section.
N=10
inv_acwt=12
cmd=run.pl
use_phi=false  # This is kind of an obscure option.  If true, we'll remove the old
  # LM weights (times 1-RNN_scale) using a phi (failure) matcher, which is
  # appropriate if the old LM weights were added in this way, e.g. by
  # lmrescore.sh.  Otherwise we'll use normal composition, which is appropriate
  # if the lattices came directly from decoding.  This won't actually make much
  # difference (if any) to WER, it's more so we know we are doing the right thing.
test=false # Activate a testing option.
stage=1 # Stage of this script, for partial reruns.
# End configuration section.

echo "$0 $@"  # Print the command line for logging

[ -f ./path.sh ] && . ./path.sh
. utils/parse_options.sh


if [ $# != 6 ]; then
   echo "Do language model rescoring of lattices (partially remove old LM, add new LM)"
   echo "This version applies an RNNLM and mixes it with the LM scores"
   echo "previously in the lattices., controlled by the first parameter (rnnlm-weight)"
   echo ""
   echo "Usage: utils/rnnlmrescore.sh <rnn-weight> <old-lang-dir> <rnn-dir> <data-dir> <input-decode-dir> <output-decode-dir>"
   echo "Main options:"
   echo "  --inv-acwt <inv-acwt>          # default 12.  e.g. --inv-acwt 17.  Equivalent to LM scale to use."
   echo "                                 # for N-best list generation... note, we'll score at different acwt's"
   echo "  --cmd <run.pl|queue.pl [opts]> # how to run jobs."
   echo "  --phi (true|false)             # Should be set to true if the source lattices were created"
   echo "                                 # by lmrescore.sh, false if they came from decoding."
   echo "  --N <N>                        # Value of N in N-best rescoring (default: 10)"
   exit 1;
fi



rnnweight=$1
oldlang=$2
rnndir=$3
data=$4
indir=$5
dir=$6


acwt=`perl -e "print (1.0/$inv_acwt);"` # Note: we'll actually produce lattices
 # that will be scored at a range of acoustic weights.  This acwt should be close
 # to the final one we'll pick, though, for best performance (it controls the
 # N-best list generation).

for f in $oldlang/G.fst $rnndir/rnnlm $data/feats.scp $indir/lat.1.gz; do
  [ ! -f $f ] && echo "$0: expected file $f to exist." && exit 1;
done

nj=`cat $indir/num_jobs` || exit 1;
oldlm=$oldlang/G.fst
adir=$dir/archives

mkdir -p $dir;
phi=`grep -w '#0' $oldlang/words.txt | awk '{print $2}'`

rm $dir/.error 2>/dev/null
mkdir -p $dir/log

# First convert lattice to N-best.  Be careful because this
# will be quite sensitive to the acoustic scale; this should be close
# to the one we'll finally get the best WERs with.
# Note: the lattice-rmali part here is just because we don't
# need the alignments for what we're doing.
if [ $stage -le 1 ]; then
  echo "$0: converting lattices to N-best."
  $cmd JOB=1:$nj $dir/log/lat2nbest.JOB.log \
    lattice-to-nbest --acoustic-scale=$acwt --n=$N \
    "ark:gunzip -c $indir/lat.JOB.gz|" ark:- \|  \
    lattice-rmali ark:- "ark:|gzip -c >$dir/nbest1.JOB.gz" || exit 1;
fi

# next remove part of the old LM probs.  
if $use_phi; then
  if [ $stage -le 2 ]; then
    echo "$0: removing old LM scores."
    # Use the phi-matcher style of composition.. this is appropriate
    # if the old LM scores were added e.g. by lmrescore.sh, using 
    # phi-matcher composition.
    $cmd JOB=1:$nj $dir/log/remove_old.JOB.log \
      lattice-compose --phi-label=$phi "ark:gunzip -c $dir/nbest1.JOB.gz|" $oldlm \
      "ark:|gzip -c >$dir/nbest2.JOB.gz"  || exit 1;
  fi    
else
  if [ $stage -le 2 ]; then
    echo "$0: removing old LM scores."
    # this approach chooses the best path through the old LM FST, while
    # subtracting the old scores.  If the lattices came straight from decoding,
    # this is what we want.
    $cmd JOB=1:$nj $dir/log/remove_old.JOB.log \
      lattice-scale --acoustic-scale=-1 --lm-scale=-1 "ark:gunzip -c $dir/nbest1.JOB.gz|" ark:- \| \
      lattice-compose ark:- "fstproject --project_output=true $oldlm |" ark:- \| \
      lattice-1best ark:- ark:- \| \
      lattice-scale --acoustic-scale=-1 --lm-scale=-1 ark:- "ark:|gzip -c >$dir/nbest2.JOB.gz" \
      || exit 1;
  fi
fi

if [ $stage -le 3 ]; then
# Decompose the n-best lists into 4 archives.
  echo "$0: creating separate-archive form of N-best lists."
  $cmd JOB=1:$nj $dir/log/make_new_archives.JOB.log \
    mkdir -p $adir.JOB '&&' \
    nbest-to-linear "ark:gunzip -c $dir/nbest2.JOB.gz|" \
    "ark,t:$adir.JOB/ali" "ark,t:$adir.JOB/words" \
    "ark,t:$adir.JOB/lmwt.nolm" "ark,t:$adir.JOB/acwt" || exit 1;
fi

if [ $stage -le 4 ]; then
  echo "$0: doing the same with old LM scores."
# Create an archive with the LM scores before we
# removed the LM probs (will help us do interpolation).
$cmd JOB=1:$nj $dir/log/make_old_archives.JOB.log \
  nbest-to-linear "ark:gunzip -c $dir/nbest1.JOB.gz|" "ark:/dev/null" \
  "ark:/dev/null" "ark,t:$adir.JOB/lmwt.withlm" "ark:/dev/null" || exit 1;
fi

if $test; then # This branch is a sanity check that at the acwt where we generated
  # the N-best list, we get the same WER.
  echo "$0 [testing branch]: generating lattices without changing scores."
  $cmd JOB=1:$nj $dir/log/test.JOB.log \
    linear-to-nbest "ark:$adir.JOB/ali" "ark:$adir.JOB/words" "ark:$adir.JOB/lmwt.withlm" \
     "ark:$adir.JOB/acwt" ark:- \| \
    nbest-to-lattice ark:- "ark:|gzip -c >$dir/lat.JOB.gz" || exit 1;
  exit 0;
fi

if [ $stage -le 5 ]; then
  echo "$0: Creating archives with text-form of words, and LM scores without graph scores."
    # Do some small tasks; for these we don't use the queue, it will only slow us down.
  for n in `seq $nj`; do
    utils/int2sym.pl -f 2- $oldlang/words.txt < $adir.$n/words > $adir.$n/words_text || exit 1;
    mkdir -p $adir.$n/temp
    paste $adir.$n/lmwt.nolm $adir.$n/lmwt.withlm | awk '{print $1, ($4-$2);}' > \
      $adir.$n/lmwt.lmonly || exit 1;
  done
fi
if [ $stage -le 6 ]; then
  echo "$0: invoking rnnlm_compute_scores.sh which calls rnnlm, to get RNN LM scores."
  $cmd JOB=1:$nj $dir/log/rnnlm_compute_scores.JOB.log \
    utils/rnnlm_compute_scores.sh $rnndir $adir.JOB/temp $adir.JOB/words_text $adir.JOB/lmwt.rnn \
    || exit 1;
fi
if [ $stage -le 7 ]; then
  echo "$0: reconstructing total LM+graph scores including interpolation of RNNLM and old LM scores."
  for n in `seq $nj`; do
    paste $adir.$n/lmwt.nolm $adir.$n/lmwt.lmonly $adir.$n/lmwt.rnn | awk -v rnnweight=$rnnweight \
      '{ key=$1; graphscore=$2; lmscore=$4; rnnscore=$6; 
     score = graphscore+(rnnweight*rnnscore)+((1-rnnweight)*lmscore);
     print $1,score; } ' > $adir.$n/lmwt.interp.$rnnweight || exit 1;
  done
fi

if [ $stage -le 8 ]; then
  echo "$0: reconstructing archives back into lattices."
  $cmd JOB=1:$nj $dir/log/reconstruct_lattice.JOB.log \
    linear-to-nbest "ark:$adir.JOB/ali" "ark:$adir.JOB/words" \
    "ark:$adir.JOB/lmwt.interp.$rnnweight" "ark:$adir.JOB/acwt" ark:- \| \
    nbest-to-lattice ark:- "ark:|gzip -c >$dir/lat.JOB.gz" || exit 1;
fi

[ ! -x local/score.sh ] && \
  echo "Not scoring because local/score.sh does not exist or not executable." && exit 1;
local/score.sh --cmd "$cmd" $data $oldlang $dir

exit 0;