train_nnet_mmi.sh.svn-base
6.11 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/bin/bash
# Copyright 2013 Brno University of Technology (Author: Karel Vesely)
# Apache 2.0.
# Sequence-discriminative MMI/BMMI training of DNN.
# 4 iterations (by default) of Stochastic Gradient Descent with per-utterance updates.
# Boosting of paths with more errors (BMMI) gets activated by '--boost <float>' option.
# For the numerator we have a fixed alignment rather than a lattice--
# this actually follows from the way lattices are defined in Kaldi, which
# is to have a single path for each word (output-symbol) sequence.
# Begin configuration section.
cmd=run.pl
num_iters=4
boost=0.0 #ie. disable boosting
acwt=0.1
lmwt=1.0
learn_rate=0.00001
halving_factor=1.0 #ie. disable halving
drop_frames=true
verbose=1
use_gpu_id=
seed=777 # seed value used for training data shuffling
# End configuration section
echo "$0 $@" # Print the command line for logging
[ -f ./path.sh ] && . ./path.sh; # source the path.
. parse_options.sh || exit 1;
if [ $# -ne 6 ]; then
echo "Usage: steps/$0 <data> <lang> <srcdir> <ali> <denlats> <exp>"
echo " e.g.: steps/$0 data/train_all data/lang exp/tri3b_dnn exp/tri3b_dnn_ali exp/tri3b_dnn_denlats exp/tri3b_dnn_mmi"
echo "Main options (for others, see top of script file)"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --config <config-file> # config containing options"
echo " --num-iters <N> # number of iterations to run"
echo " --acwt <float> # acoustic score scaling"
echo " --lmwt <float> # linguistic score scaling"
echo " --learn-rate <float> # learning rate for NN training"
echo " --drop-frames <bool> # drop frames num/den completely disagree"
echo " --boost <boost-weight> # (e.g. 0.1), for boosted MMI. (default 0)"
exit 1;
fi
data=$1
lang=$2
srcdir=$3
alidir=$4
denlatdir=$5
dir=$6
mkdir -p $dir/log
for f in $data/feats.scp $alidir/{tree,final.mdl,ali.1.gz} $denlatdir/lat.scp $srcdir/{final.nnet,final.feature_transform}; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
mkdir -p $dir/log
cp $alidir/{final.mdl,tree} $dir
silphonelist=`cat $lang/phones/silence.csl` || exit 1;
#Get the files we will need
nnet=$srcdir/$(readlink $srcdir/final.nnet || echo final.nnet);
[ -z "$nnet" ] && echo "Error nnet '$nnet' does not exist!" && exit 1;
cp $nnet $dir/0.nnet; nnet=$dir/0.nnet
class_frame_counts=$srcdir/ali_train_pdf.counts
[ -z "$class_frame_counts" ] && echo "Error class_frame_counts '$class_frame_counts' does not exist!" && exit 1;
cp $srcdir/ali_train_pdf.counts $dir
feature_transform=$srcdir/final.feature_transform
if [ ! -f $feature_transform ]; then
echo "Missing feature_transform '$feature_transform'"
exit 1
fi
cp $feature_transform $dir/final.feature_transform
model=$dir/final.mdl
[ -z "$model" ] && echo "Error transition model '$model' does not exist!" && exit 1;
# Shuffle the feature list to make the GD stochastic!
# By shuffling features, we have to use lattices with random access (indexed by .scp file).
cat $data/feats.scp | utils/shuffle_list.pl --srand $seed > $dir/train.scp
###
### Prepare feature pipeline
###
# Create the feature stream:
feats="ark,s,cs:copy-feats scp:$dir/train.scp ark:- |"
# Optionally add cmvn
if [ -f $srcdir/norm_vars ]; then
norm_vars=$(cat $srcdir/norm_vars 2>/dev/null)
[ ! -f $data/cmvn.scp ] && echo "$0: cannot find cmvn stats $data/cmvn.scp" && exit 1
feats="$feats apply-cmvn --norm-vars=$norm_vars --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp ark:- ark:- |"
cp $srcdir/norm_vars $dir
fi
# Optionally add deltas
if [ -f $srcdir/delta_order ]; then
delta_order=$(cat $srcdir/delta_order)
feats="$feats add-deltas --delta-order=$delta_order ark:- ark:- |"
cp $srcdir/delta_order $dir
fi
###
###
###
###
### Prepare the alignments
###
# Assuming all alignments will fit into memory
ali="ark:gunzip -c $alidir/ali.*.gz |"
###
### Prepare the lattices
###
# The lattices are indexed by SCP (they are not gziped because of the random access in SGD)
lats="scp:$denlatdir/lat.scp"
# Optionally apply boosting
if [[ "$boost" != "0.0" && "$boost" != 0 ]]; then
#make lattice scp with same order as the shuffled feature scp
awk '{ if(r==0) { latH[$1]=$2; }
if(r==1) { if(latH[$1] != "") { print $1" "latH[$1] } }
}' $denlatdir/lat.scp r=1 $dir/train.scp > $dir/lat.scp
#get the list of alignments
ali-to-phones $alidir/final.mdl "$ali" ark,t:- | awk '{print $1;}' > $dir/ali.lst
#remove feature files which have no lattice or no alignment,
#(so that the mmi training tool does not blow-up due to lattice caching)
mv $dir/train.scp $dir/train.scp_unfilt
awk '{ if(r==0) { latH[$1]="1"; }
if(r==1) { aliH[$1]="1"; }
if(r==2) { if((latH[$1] != "") && (aliH[$1] != "")) { print $0; } }
}' $dir/lat.scp r=1 $dir/ali.lst r=2 $dir/train.scp_unfilt > $dir/train.scp
#create the lat pipeline
lats="ark,o:lattice-boost-ali --b=$boost --silence-phones=$silphonelist $alidir/final.mdl scp:$dir/lat.scp '$ali' ark:- |"
fi
###
###
###
# Run several iterations of the MMI/BMMI training
cur_mdl=$nnet
x=1
while [ $x -le $num_iters ]; do
echo "Pass $x (learnrate $learn_rate)"
if [ -f $dir/$x.nnet ]; then
echo "Skipped, file $dir/$x.nnet exists"
else
$cmd $dir/log/mmi.$x.log \
nnet-train-mmi-sequential \
--feature-transform=$feature_transform \
--class-frame-counts=$class_frame_counts \
--acoustic-scale=$acwt \
--lm-scale=$lmwt \
--learn-rate=$learn_rate \
--drop-frames=$drop_frames \
--verbose=$verbose \
${use_gpu_id:+ --use-gpu-id=$use_gpu_id} \
$cur_mdl $alidir/final.mdl "$feats" "$lats" "$ali" $dir/$x.nnet || exit 1
fi
cur_mdl=$dir/$x.nnet
#report the progress
grep -B 2 MMI-objective $dir/log/mmi.$x.log | sed -e 's|^[^)]*)[^)]*)||'
x=$((x+1))
learn_rate=$(awk "BEGIN{print($learn_rate*$halving_factor)}")
done
(cd $dir; [ -e final.nnet ] && unlink final.nnet; ln -s $((x-1)).nnet final.nnet)
echo "MMI/BMMI training finished"
exit 0