train_raw_sat.sh.svn-base
12.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#!/bin/bash
# Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0.
# This does Speaker Adapted Training (SAT). We train on fMLLR-adapted features,
# but in this "raw" script, these transforms are at the level of the raw
# cepstra. The model must be built on top of LDA+MLLT features, and the
# transforms are estimated using the model, in a rather clever way. If there
# are no raw transforms supplied in the alignment directory, it will estimate
# transforms itself before building the tree (and in any case, it estimates
# transforms a number of times during training).
# You need to decode the models it builds with decode_raw_fmllr.sh
# Begin configuration section.
stage=-6
cmd=run.pl
scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1"
beam=10
retry_beam=40
boost_silence=1.0 # Factor by which to boost silence likelihoods in alignment
context_opts= # e.g. set this to "--context-width 5 --central-position 2" for quinphone.
realign_iters="10 20 30";
fmllr_iters="2 4 6 12";
mllt_iters="3 5 7 10"
dim=40
randprune=4.0 # This is approximately the ratio by which we will speed up the
# LDA and MLLT calculations via randomized pruning.
silence_weight=0.0 # Weight on silence in fMLLR estimation.
num_iters=35 # Number of iterations of training
max_iter_inc=25 # Last iter to increase #Gauss on.
power=0.2 # Exponent for number of gaussians according to occurrence counts
cluster_thresh=-1 # for build-tree control final bottom-up clustering of leaves
phone_map=
train_tree=true
# End configuration section.
echo "$0 $@" # Print the command line for logging
[ -f path.sh ] && . ./path.sh
. parse_options.sh || exit 1;
if [ $# != 6 ]; then
echo "Usage: steps/train_sat.sh <#leaves> <#gauss> <data> <lang> <ali-dir> <exp-dir>"
echo " e.g.: steps/train_sat.sh 2500 15000 data/train_si84 data/lang exp/tri2b_ali_si84 exp/tri3b"
echo "Main options (for others, see top of script file)"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --config <config-file> # config containing options"
echo " --stage <stage> # stage to do partial re-run from."
exit 1;
fi
numleaves=$1
totgauss=$2
data=$3
lang=$4
alidir=$5
dir=$6
for f in $data/feats.scp $lang/phones.txt $alidir/final.mdl $alidir/ali.1.gz; do
[ ! -f $f ] && echo "train_sat.sh: no such file $f" && exit 1;
done
numgauss=$numleaves
incgauss=$[($totgauss-$numgauss)/$max_iter_inc] # per-iter #gauss increment
oov=`cat $lang/oov.int`
nj=`cat $alidir/num_jobs` || exit 1;
silphonelist=`cat $lang/phones/silence.csl`
ciphonelist=`cat $lang/phones/context_indep.csl` || exit 1;
sdata=$data/split$nj;
splice_opts=`cat $alidir/splice_opts 2>/dev/null` # frame-splicing options.
phone_map_opt=
[ ! -z "$phone_map" ] && phone_map_opt="--phone-map='$phone_map'"
mkdir -p $dir/log
cp $alidir/splice_opts $dir 2>/dev/null # frame-splicing options.
echo $nj >$dir/num_jobs
[[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1;
# Set up features.
if [[ ! -f $alidir/final.mat || ! -f $alidir/full.mat ]]; then
echo "$0: expected to find $alidir/final.mat and $alidir/full.mat"
exit 1
fi
sisplicedfeats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- |"
sifeats="$sisplicedfeats transform-feats $alidir/final.mat ark:- ark:- |"
## Get initial fMLLR transforms (possibly from alignment dir)
if [ -f $alidir/raw_trans.1 ]; then
echo "$0: Using transforms from $alidir"
cur_trans_dir=$alidir
else
if [ $stage -le -6 ]; then
echo "$0: obtaining initial fMLLR transforms since not present in $alidir"
# The next line is necessary because of $silphonelist otherwise being incorrect; would require
# old $lang dir which would require another option. Not needed anyway.
[ ! -z "$phone_map" ] && \
echo "$0: error: you must provide transforms if you use the --phone-map option." && exit 1;
full_lda_mat="get-full-lda-mat --print-args=false $alidir/final.mat $alidir/full.mat -|"
$cmd JOB=1:$nj $dir/log/fmllr.0.JOB.log \
ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz|" ark:- \| \
weight-silence-post $silence_weight $silphonelist $alidir/final.mdl ark:- ark:- \| \
gmm-est-fmllr-raw --spk2utt=ark:$sdata/JOB/spk2utt $alidir/final.mdl \
"$full_lda_mat" "$sisplicedfeats" ark:- ark:$dir/raw_trans.JOB || exit 1;
fi
cur_trans_dir=$dir
fi
splicedfeats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$cur_trans_dir/raw_trans.JOB ark:- ark:- | splice-feats $splice_opts ark:- ark:- |"
if [ $stage -le -5 ]; then
echo "Accumulating LDA statistics."
$cmd JOB=1:$nj $dir/log/lda_acc.JOB.log \
ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz|" ark:- \| \
weight-silence-post 0.0 $silphonelist $alidir/final.mdl ark:- ark:- \| \
acc-lda --rand-prune=$randprune $alidir/final.mdl "$splicedfeats" ark,s,cs:- \
$dir/lda.JOB.acc || exit 1;
est-lda --write-full-matrix=$dir/full.mat --dim=$dim $dir/0.mat $dir/lda.*.acc \
2>$dir/log/lda_est.log || exit 1;
rm $dir/lda.*.acc
fi
cur_lda_iter=0
feats="$splicedfeats transform-feats $dir/$cur_lda_iter.mat ark:- ark:- |"
# To build the tree, we use the previous directory's LDA transform, which
# is better as it has MLLT also. It leads to higher auxiliary function
# improvements in tree building, which is generally a good thing.
tree_feats="$splicedfeats transform-feats $alidir/final.mat ark:- ark:- |"
if [ $stage -le -4 ] && $train_tree; then
# Get tree stats.
echo "$0: Accumulating tree stats"
$cmd JOB=1:$nj $dir/log/acc_tree.JOB.log \
acc-tree-stats $context_opts --ci-phones=$ciphonelist $alidir/final.mdl "$tree_feats" \
"ark:gunzip -c $alidir/ali.JOB.gz|" $dir/JOB.treeacc || exit 1;
[ "`ls $dir/*.treeacc | wc -w`" -ne "$nj" ] && echo "$0: Wrong #tree-accs" && exit 1;
$cmd $dir/log/sum_tree_acc.log \
sum-tree-stats $dir/treeacc $dir/*.treeacc || exit 1;
rm $dir/*.treeacc
fi
if [ $stage -le -3 ] && $train_tree; then
echo "$0: Getting questions for tree clustering."
# preparing questions, roots file...
cluster-phones $context_opts $dir/treeacc $lang/phones/sets.int $dir/questions.int 2> $dir/log/questions.log || exit 1;
cat $lang/phones/extra_questions.int >> $dir/questions.int
compile-questions $context_opts $lang/topo $dir/questions.int $dir/questions.qst 2>$dir/log/compile_questions.log || exit 1;
echo "$0: Building the tree"
$cmd $dir/log/build_tree.log \
build-tree $context_opts --verbose=1 --max-leaves=$numleaves \
--cluster-thresh=$cluster_thresh $dir/treeacc $lang/phones/roots.int \
$dir/questions.qst $lang/topo $dir/tree || exit 1;
fi
if [ $stage -le -2 ]; then
echo "$0: Initializing the model"
# Since we trained the tree on different feats, we don't use gmm-init-model, which
# would initialize the tree with invalid features. This doesn't really matter anyway,
# the first iteration of training will set suitable initial parameters.
cp $alidir/tree $dir/ || exit 1;
$cmd JOB=1 $dir/log/init_model.log \
gmm-init-model-flat $dir/tree $lang/topo $dir/1.mdl \
"$tree_feats subset-feats ark:- ark:-|" || exit 1;
fi
if [ $stage -le -1 ]; then
# Convert the alignments.
echo "$0: Converting alignments from $alidir to use current tree"
$cmd JOB=1:$nj $dir/log/convert.JOB.log \
convert-ali $phone_map_opt $alidir/final.mdl $dir/1.mdl $dir/tree \
"ark:gunzip -c $alidir/ali.JOB.gz|" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1;
fi
if [ $stage -le 0 ] && [ "$realign_iters" != "" ]; then
echo "$0: Compiling graphs of transcripts"
$cmd JOB=1:$nj $dir/log/compile_graphs.JOB.log \
compile-train-graphs $dir/tree $dir/1.mdl $lang/L.fst \
"ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt < $sdata/JOB/text |" \
"ark:|gzip -c >$dir/fsts.JOB.gz" || exit 1;
fi
x=1
while [ $x -lt $num_iters ]; do
echo Pass $x
if echo $realign_iters | grep -w $x >/dev/null && [ $stage -le $x ]; then
echo Aligning data
mdl="gmm-boost-silence --boost=$boost_silence `cat $lang/phones/optional_silence.csl` $dir/$x.mdl - |"
$cmd JOB=1:$nj $dir/log/align.$x.JOB.log \
gmm-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam "$mdl" \
"ark:gunzip -c $dir/fsts.JOB.gz|" "$feats" \
"ark:|gzip -c >$dir/ali.JOB.gz" || exit 1;
fi
if echo $fmllr_iters | grep -w $x >/dev/null; then
if [ $stage -le $x ]; then
echo Estimating fMLLR transforms
# We estimate a transform that's additional to the previous transform;
# we'll compose them.
full_lda_mat="get-full-lda-mat --print-args=false $dir/$cur_lda_iter.mat $dir/full.mat - |"
$cmd JOB=1:$nj $dir/log/fmllr.$x.JOB.log \
ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \
weight-silence-post $silence_weight $silphonelist $dir/$x.mdl ark:- ark:- \| \
gmm-est-fmllr-raw --spk2utt=ark:$sdata/JOB/spk2utt $dir/$x.mdl "$full_lda_mat" \
"$splicedfeats" ark:- ark:$dir/tmp_trans.JOB || exit 1;
for n in `seq $nj`; do
! ( compose-transforms --b-is-affine=true \
ark:$dir/tmp_trans.$n ark:$cur_trans_dir/raw_trans.$n ark:$dir/composed_trans.$n \
&& mv $dir/composed_trans.$n $dir/raw_trans.$n && \
rm $dir/tmp_trans.$n ) 2>$dir/log/compose_transforms.$x.log \
&& echo "$0: Error composing transforms" && exit 1;
done
fi
cur_trans_dir=$dir
splicedfeats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$cur_trans_dir/raw_trans.JOB ark:- ark:- | splice-feats $splice_opts ark:- ark:- |"
feats="$splicedfeats transform-feats $dir/$cur_lda_iter.mat ark:- ark:- |"
fi
if echo $mllt_iters | grep -w $x >/dev/null; then
if [ $stage -le $x ]; then
echo "Estimating MLLT"
$cmd JOB=1:$nj $dir/log/macc.$x.JOB.log \
ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \
weight-silence-post 0.0 $silphonelist $dir/$x.mdl ark:- ark:- \| \
gmm-acc-mllt --rand-prune=$randprune $dir/$x.mdl "$feats" ark:- $dir/$x.JOB.macc \
|| exit 1;
est-mllt $dir/$x.mat.new $dir/$x.*.macc 2> $dir/log/mupdate.$x.log || exit 1;
gmm-transform-means $dir/$x.mat.new $dir/$x.mdl $dir/$x.mdl \
2> $dir/log/transform_means.$x.log || exit 1;
compose-transforms --print-args=false $dir/$x.mat.new $dir/$cur_lda_iter.mat $dir/$x.mat || exit 1;
rm $dir/$x.*.macc
fi
cur_lda_iter=$x
feats="$splicedfeats transform-feats $dir/$cur_lda_iter.mat ark:- ark:- |"
fi
if [ $stage -le $x ]; then
$cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \
gmm-acc-stats-ali $dir/$x.mdl "$feats" \
"ark,s,cs:gunzip -c $dir/ali.JOB.gz|" $dir/$x.JOB.acc || exit 1;
[ `ls $dir/$x.*.acc | wc -w` -ne "$nj" ] && echo "$0: Wrong #accs" && exit 1;
$cmd $dir/log/update.$x.log \
gmm-est --power=$power --write-occs=$dir/$[$x+1].occs --mix-up=$numgauss $dir/$x.mdl \
"gmm-sum-accs - $dir/$x.*.acc |" $dir/$[$x+1].mdl || exit 1;
rm $dir/$x.mdl $dir/$x.*.acc
rm $dir/$x.occs 2>/dev/null
fi
[ $x -le $max_iter_inc ] && numgauss=$[$numgauss+$incgauss];
x=$[$x+1];
done
if [ $stage -le $x ]; then
# Accumulate stats for "alignment model"-- this model is
# computed with the speaker-independent features, but matches Gaussian-for-Gaussian
# with the final speaker-adapted model.
sifeats="$sisplicedfeats transform-feats $dir/$cur_lda_iter.mat ark:- ark:- |"
$cmd JOB=1:$nj $dir/log/acc_alimdl.JOB.log \
ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \
gmm-acc-stats-twofeats $dir/$x.mdl "$feats" "$sifeats" \
ark,s,cs:- $dir/$x.JOB.acc || exit 1;
[ `ls $dir/$x.*.acc | wc -w` -ne "$nj" ] && echo "$0: Wrong #accs" && exit 1;
# Update model.
$cmd $dir/log/est_alimdl.log \
gmm-est --power=$power --remove-low-count-gaussians=false $dir/$x.mdl \
"gmm-sum-accs - $dir/$x.*.acc|" $dir/$x.alimdl || exit 1;
rm $dir/$x.*.acc
fi
rm $dir/final.{mdl,alimdl,mat,occs} 2>/dev/null
ln -s $x.mdl $dir/final.mdl
ln -s $x.occs $dir/final.occs
ln -s $x.alimdl $dir/final.alimdl
ln -s $cur_lda_iter.mat $dir/final.mat
utils/summarize_warnings.pl $dir/log
(
echo "$0: Likelihood evolution (not sure if this is totally correct):"
for x in `seq $[$num_iters-1]`; do
tail -n 30 $dir/log/acc.$x.*.log | awk '/Overall avg like/{l += $(NF-3)*$(NF-1); t += $(NF-1); }
/Overall average logdet/{d += $(NF-3)*$(NF-1); t2 += $(NF-1);}
END{ d /= t2; l /= t; printf("%s ", d+l); } '
done
echo
) | tee $dir/log/summary.log
echo Done