#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # This does Speaker Adapted Training (SAT). We train on fMLLR-adapted features, # but in this "raw" script, these transforms are at the level of the raw # cepstra. The model must be built on top of LDA+MLLT features, and the # transforms are estimated using the model, in a rather clever way. If there # are no raw transforms supplied in the alignment directory, it will estimate # transforms itself before building the tree (and in any case, it estimates # transforms a number of times during training). # You need to decode the models it builds with decode_raw_fmllr.sh # Begin configuration section. stage=-6 cmd=run.pl scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1" beam=10 retry_beam=40 boost_silence=1.0 # Factor by which to boost silence likelihoods in alignment context_opts= # e.g. set this to "--context-width 5 --central-position 2" for quinphone. realign_iters="10 20 30"; fmllr_iters="2 4 6 12"; mllt_iters="3 5 7 10" dim=40 randprune=4.0 # This is approximately the ratio by which we will speed up the # LDA and MLLT calculations via randomized pruning. silence_weight=0.0 # Weight on silence in fMLLR estimation. num_iters=35 # Number of iterations of training max_iter_inc=25 # Last iter to increase #Gauss on. power=0.2 # Exponent for number of gaussians according to occurrence counts cluster_thresh=-1 # for build-tree control final bottom-up clustering of leaves phone_map= train_tree=true # End configuration section. echo "$0 $@" # Print the command line for logging [ -f path.sh ] && . ./path.sh . parse_options.sh || exit 1; if [ $# != 6 ]; then echo "Usage: steps/train_sat.sh <#leaves> <#gauss> " echo " e.g.: steps/train_sat.sh 2500 15000 data/train_si84 data/lang exp/tri2b_ali_si84 exp/tri3b" echo "Main options (for others, see top of script file)" echo " --cmd (utils/run.pl|utils/queue.pl ) # how to run jobs." echo " --config # config containing options" echo " --stage # stage to do partial re-run from." exit 1; fi numleaves=$1 totgauss=$2 data=$3 lang=$4 alidir=$5 dir=$6 for f in $data/feats.scp $lang/phones.txt $alidir/final.mdl $alidir/ali.1.gz; do [ ! -f $f ] && echo "train_sat.sh: no such file $f" && exit 1; done numgauss=$numleaves incgauss=$[($totgauss-$numgauss)/$max_iter_inc] # per-iter #gauss increment oov=`cat $lang/oov.int` nj=`cat $alidir/num_jobs` || exit 1; silphonelist=`cat $lang/phones/silence.csl` ciphonelist=`cat $lang/phones/context_indep.csl` || exit 1; sdata=$data/split$nj; splice_opts=`cat $alidir/splice_opts 2>/dev/null` # frame-splicing options. phone_map_opt= [ ! -z "$phone_map" ] && phone_map_opt="--phone-map='$phone_map'" mkdir -p $dir/log cp $alidir/splice_opts $dir 2>/dev/null # frame-splicing options. echo $nj >$dir/num_jobs [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; # Set up features. if [[ ! -f $alidir/final.mat || ! -f $alidir/full.mat ]]; then echo "$0: expected to find $alidir/final.mat and $alidir/full.mat" exit 1 fi sisplicedfeats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- |" sifeats="$sisplicedfeats transform-feats $alidir/final.mat ark:- ark:- |" ## Get initial fMLLR transforms (possibly from alignment dir) if [ -f $alidir/raw_trans.1 ]; then echo "$0: Using transforms from $alidir" cur_trans_dir=$alidir else if [ $stage -le -6 ]; then echo "$0: obtaining initial fMLLR transforms since not present in $alidir" # The next line is necessary because of $silphonelist otherwise being incorrect; would require # old $lang dir which would require another option. Not needed anyway. [ ! -z "$phone_map" ] && \ echo "$0: error: you must provide transforms if you use the --phone-map option." && exit 1; full_lda_mat="get-full-lda-mat --print-args=false $alidir/final.mat $alidir/full.mat -|" $cmd JOB=1:$nj $dir/log/fmllr.0.JOB.log \ ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz|" ark:- \| \ weight-silence-post $silence_weight $silphonelist $alidir/final.mdl ark:- ark:- \| \ gmm-est-fmllr-raw --spk2utt=ark:$sdata/JOB/spk2utt $alidir/final.mdl \ "$full_lda_mat" "$sisplicedfeats" ark:- ark:$dir/raw_trans.JOB || exit 1; fi cur_trans_dir=$dir fi splicedfeats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$cur_trans_dir/raw_trans.JOB ark:- ark:- | splice-feats $splice_opts ark:- ark:- |" if [ $stage -le -5 ]; then echo "Accumulating LDA statistics." $cmd JOB=1:$nj $dir/log/lda_acc.JOB.log \ ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz|" ark:- \| \ weight-silence-post 0.0 $silphonelist $alidir/final.mdl ark:- ark:- \| \ acc-lda --rand-prune=$randprune $alidir/final.mdl "$splicedfeats" ark,s,cs:- \ $dir/lda.JOB.acc || exit 1; est-lda --write-full-matrix=$dir/full.mat --dim=$dim $dir/0.mat $dir/lda.*.acc \ 2>$dir/log/lda_est.log || exit 1; rm $dir/lda.*.acc fi cur_lda_iter=0 feats="$splicedfeats transform-feats $dir/$cur_lda_iter.mat ark:- ark:- |" # To build the tree, we use the previous directory's LDA transform, which # is better as it has MLLT also. It leads to higher auxiliary function # improvements in tree building, which is generally a good thing. tree_feats="$splicedfeats transform-feats $alidir/final.mat ark:- ark:- |" if [ $stage -le -4 ] && $train_tree; then # Get tree stats. echo "$0: Accumulating tree stats" $cmd JOB=1:$nj $dir/log/acc_tree.JOB.log \ acc-tree-stats $context_opts --ci-phones=$ciphonelist $alidir/final.mdl "$tree_feats" \ "ark:gunzip -c $alidir/ali.JOB.gz|" $dir/JOB.treeacc || exit 1; [ "`ls $dir/*.treeacc | wc -w`" -ne "$nj" ] && echo "$0: Wrong #tree-accs" && exit 1; $cmd $dir/log/sum_tree_acc.log \ sum-tree-stats $dir/treeacc $dir/*.treeacc || exit 1; rm $dir/*.treeacc fi if [ $stage -le -3 ] && $train_tree; then echo "$0: Getting questions for tree clustering." # preparing questions, roots file... cluster-phones $context_opts $dir/treeacc $lang/phones/sets.int $dir/questions.int 2> $dir/log/questions.log || exit 1; cat $lang/phones/extra_questions.int >> $dir/questions.int compile-questions $context_opts $lang/topo $dir/questions.int $dir/questions.qst 2>$dir/log/compile_questions.log || exit 1; echo "$0: Building the tree" $cmd $dir/log/build_tree.log \ build-tree $context_opts --verbose=1 --max-leaves=$numleaves \ --cluster-thresh=$cluster_thresh $dir/treeacc $lang/phones/roots.int \ $dir/questions.qst $lang/topo $dir/tree || exit 1; fi if [ $stage -le -2 ]; then echo "$0: Initializing the model" # Since we trained the tree on different feats, we don't use gmm-init-model, which # would initialize the tree with invalid features. This doesn't really matter anyway, # the first iteration of training will set suitable initial parameters. cp $alidir/tree $dir/ || exit 1; $cmd JOB=1 $dir/log/init_model.log \ gmm-init-model-flat $dir/tree $lang/topo $dir/1.mdl \ "$tree_feats subset-feats ark:- ark:-|" || exit 1; fi if [ $stage -le -1 ]; then # Convert the alignments. echo "$0: Converting alignments from $alidir to use current tree" $cmd JOB=1:$nj $dir/log/convert.JOB.log \ convert-ali $phone_map_opt $alidir/final.mdl $dir/1.mdl $dir/tree \ "ark:gunzip -c $alidir/ali.JOB.gz|" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1; fi if [ $stage -le 0 ] && [ "$realign_iters" != "" ]; then echo "$0: Compiling graphs of transcripts" $cmd JOB=1:$nj $dir/log/compile_graphs.JOB.log \ compile-train-graphs $dir/tree $dir/1.mdl $lang/L.fst \ "ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt < $sdata/JOB/text |" \ "ark:|gzip -c >$dir/fsts.JOB.gz" || exit 1; fi x=1 while [ $x -lt $num_iters ]; do echo Pass $x if echo $realign_iters | grep -w $x >/dev/null && [ $stage -le $x ]; then echo Aligning data mdl="gmm-boost-silence --boost=$boost_silence `cat $lang/phones/optional_silence.csl` $dir/$x.mdl - |" $cmd JOB=1:$nj $dir/log/align.$x.JOB.log \ gmm-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam "$mdl" \ "ark:gunzip -c $dir/fsts.JOB.gz|" "$feats" \ "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1; fi if echo $fmllr_iters | grep -w $x >/dev/null; then if [ $stage -le $x ]; then echo Estimating fMLLR transforms # We estimate a transform that's additional to the previous transform; # we'll compose them. full_lda_mat="get-full-lda-mat --print-args=false $dir/$cur_lda_iter.mat $dir/full.mat - |" $cmd JOB=1:$nj $dir/log/fmllr.$x.JOB.log \ ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \ weight-silence-post $silence_weight $silphonelist $dir/$x.mdl ark:- ark:- \| \ gmm-est-fmllr-raw --spk2utt=ark:$sdata/JOB/spk2utt $dir/$x.mdl "$full_lda_mat" \ "$splicedfeats" ark:- ark:$dir/tmp_trans.JOB || exit 1; for n in `seq $nj`; do ! ( compose-transforms --b-is-affine=true \ ark:$dir/tmp_trans.$n ark:$cur_trans_dir/raw_trans.$n ark:$dir/composed_trans.$n \ && mv $dir/composed_trans.$n $dir/raw_trans.$n && \ rm $dir/tmp_trans.$n ) 2>$dir/log/compose_transforms.$x.log \ && echo "$0: Error composing transforms" && exit 1; done fi cur_trans_dir=$dir splicedfeats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$cur_trans_dir/raw_trans.JOB ark:- ark:- | splice-feats $splice_opts ark:- ark:- |" feats="$splicedfeats transform-feats $dir/$cur_lda_iter.mat ark:- ark:- |" fi if echo $mllt_iters | grep -w $x >/dev/null; then if [ $stage -le $x ]; then echo "Estimating MLLT" $cmd JOB=1:$nj $dir/log/macc.$x.JOB.log \ ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \ weight-silence-post 0.0 $silphonelist $dir/$x.mdl ark:- ark:- \| \ gmm-acc-mllt --rand-prune=$randprune $dir/$x.mdl "$feats" ark:- $dir/$x.JOB.macc \ || exit 1; est-mllt $dir/$x.mat.new $dir/$x.*.macc 2> $dir/log/mupdate.$x.log || exit 1; gmm-transform-means $dir/$x.mat.new $dir/$x.mdl $dir/$x.mdl \ 2> $dir/log/transform_means.$x.log || exit 1; compose-transforms --print-args=false $dir/$x.mat.new $dir/$cur_lda_iter.mat $dir/$x.mat || exit 1; rm $dir/$x.*.macc fi cur_lda_iter=$x feats="$splicedfeats transform-feats $dir/$cur_lda_iter.mat ark:- ark:- |" fi if [ $stage -le $x ]; then $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \ gmm-acc-stats-ali $dir/$x.mdl "$feats" \ "ark,s,cs:gunzip -c $dir/ali.JOB.gz|" $dir/$x.JOB.acc || exit 1; [ `ls $dir/$x.*.acc | wc -w` -ne "$nj" ] && echo "$0: Wrong #accs" && exit 1; $cmd $dir/log/update.$x.log \ gmm-est --power=$power --write-occs=$dir/$[$x+1].occs --mix-up=$numgauss $dir/$x.mdl \ "gmm-sum-accs - $dir/$x.*.acc |" $dir/$[$x+1].mdl || exit 1; rm $dir/$x.mdl $dir/$x.*.acc rm $dir/$x.occs 2>/dev/null fi [ $x -le $max_iter_inc ] && numgauss=$[$numgauss+$incgauss]; x=$[$x+1]; done if [ $stage -le $x ]; then # Accumulate stats for "alignment model"-- this model is # computed with the speaker-independent features, but matches Gaussian-for-Gaussian # with the final speaker-adapted model. sifeats="$sisplicedfeats transform-feats $dir/$cur_lda_iter.mat ark:- ark:- |" $cmd JOB=1:$nj $dir/log/acc_alimdl.JOB.log \ ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \ gmm-acc-stats-twofeats $dir/$x.mdl "$feats" "$sifeats" \ ark,s,cs:- $dir/$x.JOB.acc || exit 1; [ `ls $dir/$x.*.acc | wc -w` -ne "$nj" ] && echo "$0: Wrong #accs" && exit 1; # Update model. $cmd $dir/log/est_alimdl.log \ gmm-est --power=$power --remove-low-count-gaussians=false $dir/$x.mdl \ "gmm-sum-accs - $dir/$x.*.acc|" $dir/$x.alimdl || exit 1; rm $dir/$x.*.acc fi rm $dir/final.{mdl,alimdl,mat,occs} 2>/dev/null ln -s $x.mdl $dir/final.mdl ln -s $x.occs $dir/final.occs ln -s $x.alimdl $dir/final.alimdl ln -s $cur_lda_iter.mat $dir/final.mat utils/summarize_warnings.pl $dir/log ( echo "$0: Likelihood evolution (not sure if this is totally correct):" for x in `seq $[$num_iters-1]`; do tail -n 30 $dir/log/acc.$x.*.log | awk '/Overall avg like/{l += $(NF-3)*$(NF-1); t += $(NF-1); } /Overall average logdet/{d += $(NF-3)*$(NF-1); t2 += $(NF-1);} END{ d /= t2; l /= t; printf("%s ", d+l); } ' done echo ) | tee $dir/log/summary.log echo Done