#!/bin/bash # Copyright 2012-2013 Johns Hopkins University (Author: Daniel Povey) # This decoding script is like decode_fmllr.sh, but it does the fMLLR on # the raw cepstra, using the model in the LDA+MLLT space # # Decoding script that does fMLLR. This can be on top of delta+delta-delta, or # LDA+MLLT features. # There are 3 models involved potentially in this script, # and for a standard, speaker-independent system they will all be the same. # The "alignment model" is for the 1st-pass decoding and to get the # Gaussian-level alignments for the "adaptation model" the first time we # do fMLLR. The "adaptation model" is used to estimate fMLLR transforms # and to generate state-level lattices. The lattices are then rescored # with the "final model". # # The following table explains where we get these 3 models from. # Note: $srcdir is one level up from the decoding directory. # # Model Default source: # # "alignment model" $srcdir/final.alimdl --alignment-model # (or $srcdir/final.mdl if alimdl absent) # "adaptation model" $srcdir/final.mdl --adapt-model # "final model" $srcdir/final.mdl --final-model # Begin configuration section first_beam=10.0 # Beam used in initial, speaker-indep. pass first_max_active=2000 # max-active used in initial pass. first_max_arcs=-1 alignment_model= adapt_model= final_model= stage=0 acwt=0.083333 # Acoustic weight used in getting fMLLR transforms, and also in # lattice generation. max_active=7000 use_normal_fmllr=false max_arcs=-1 beam=13.0 lattice_beam=6.0 nj=4 silence_weight=0.01 cmd=run.pl si_dir= num_threads=1 # if >1, will use gmm-latgen-faster-parallel parallel_opts= # If you supply num-threads, you should supply this too. skip_scoring=false scoring_opts= norm_vars=false # End configuration section echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# != 3 ]; then echo "Wrong #arguments ($#, expected 3)" echo "Usage: steps/decode_fmllr.sh [options] " echo " e.g.: steps/decode_fmllr.sh exp/tri2b/graph_tgpr data/test_dev93 exp/tri2b/decode_dev93_tgpr" echo "main options (for others, see top of script file)" echo " --config # config containing options" echo " --nj # number of parallel jobs" echo " --cmd # Command to run in parallel with" echo " --adapt-model # Model to compute transforms with" echo " --alignment-model # Model to get Gaussian-level alignments for" echo " # 1st pass of transform computation." echo " --final-model # Model to finally decode with" echo " --si-dir # use this to skip 1st pass of decoding" echo " # Caution-- must be with same tree" echo " --acwt # default 0.08333 ... used to get posteriors" echo " --num-threads # number of threads to use, default 1." echo " --parallel-opts # e.g. '-pe smp 4' if you supply --num-threads 4" echo " --scoring-opts # options to local/score.sh" exit 1; fi graphdir=$1 data=$2 dir=`echo $3 | sed 's:/$::g'` # remove any trailing slash. srcdir=`dirname $dir`; # Assume model directory one level up from decoding directory. sdata=$data/split$nj; thread_string= [ $num_threads -gt 1 ] && thread_string="-parallel --num-threads=$num_threads" mkdir -p $dir/log split_data.sh $data $nj || exit 1; echo $nj > $dir/num_jobs splice_opts=`cat $srcdir/splice_opts 2>/dev/null` # frame-splicing options. silphonelist=`cat $graphdir/phones/silence.csl` || exit 1; # Some checks. Note: we don't need $srcdir/tree but we expect # it should exist, given the current structure of the scripts. for f in $graphdir/HCLG.fst $data/feats.scp $srcdir/tree; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done ## Work out name of alignment model. ## if [ -z "$alignment_model" ]; then if [ -f "$srcdir/final.alimdl" ]; then alignment_model=$srcdir/final.alimdl; else alignment_model=$srcdir/final.mdl; fi fi [ ! -f "$alignment_model" ] && echo "$0: no alignment model $alignment_model " && exit 1; ## ## Do the speaker-independent decoding, if --si-dir option not present. ## if [ -z "$si_dir" ]; then # we need to do the speaker-independent decoding pass. si_dir=${dir}.si # Name it as our decoding dir, but with suffix ".si". if [ $stage -le 0 ]; then steps/decode.sh --parallel-opts "$parallel_opts" --scoring-opts "$scoring_opts" \ --num-threads $num_threads --skip-scoring $skip_scoring \ --acwt $acwt --nj $nj --cmd "$cmd" --beam $first_beam \ --model $alignment_model --max-arcs $max_arcs --max-active \ $first_max_active $graphdir $data $si_dir || exit 1; fi fi ## ## Some checks, and setting of defaults for variables. [ "$nj" -ne "`cat $si_dir/num_jobs`" ] && echo "Mismatch in #jobs with si-dir" && exit 1; [ ! -f "$si_dir/lat.1.gz" ] && echo "No such file $si_dir/lat.1.gz" && exit 1; [ -z "$adapt_model" ] && adapt_model=$srcdir/final.mdl [ -z "$final_model" ] && final_model=$srcdir/final.mdl for f in $adapt_model $final_model; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done ## if [[ ! -f $srcdir/final.mat || ! -f $srcdir/full.mat ]]; then echo "$0: we require final.mat and full.mat in the source directory $srcdir" fi splicedfeats="ark,s,cs:apply-cmvn --norm-vars=$norm_vars --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- |" sifeats="$splicedfeats transform-feats $srcdir/final.mat ark:- ark:- |" full_lda_mat="get-full-lda-mat --print-args=false $srcdir/final.mat $srcdir/full.mat -|" ## ## Now get the first-pass fMLLR transforms. if [ $stage -le 1 ]; then echo "$0: getting first-pass raw-fMLLR transforms." $cmd JOB=1:$nj $dir/log/fmllr_pass1.JOB.log \ gunzip -c $si_dir/lat.JOB.gz \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post $silence_weight $silphonelist $alignment_model ark:- ark:- \| \ gmm-post-to-gpost $alignment_model "$sifeats" ark:- ark:- \| \ gmm-est-fmllr-raw-gpost --spk2utt=ark:$sdata/JOB/spk2utt $adapt_model "$full_lda_mat" \ "$splicedfeats" ark,s,cs:- ark:$dir/pre_trans.JOB || exit 1; fi ## pass1splicedfeats="ark,s,cs:apply-cmvn --norm-vars=$norm_vars --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$dir/pre_trans.JOB ark:- ark:- | splice-feats $splice_opts ark:- ark:- |" pass1feats="$pass1splicedfeats transform-feats $srcdir/final.mat ark:- ark:- |" ## Do the main lattice generation pass. Note: we don't determinize the lattices at ## this stage, as we're going to use them in acoustic rescoring with the larger ## model, and it's more correct to store the full state-level lattice for this purpose. if [ $stage -le 2 ]; then echo "$0: doing main lattice generation phase" $cmd $parallel_opts JOB=1:$nj $dir/log/decode.JOB.log \ gmm-latgen-faster$thread_string --max-active=$max_active --beam=$beam --lattice-beam=$lattice_beam \ --acoustic-scale=$acwt --max-arcs=$max_arcs \ --determinize-lattice=false --allow-partial=true --word-symbol-table=$graphdir/words.txt \ $adapt_model $graphdir/HCLG.fst "$pass1feats" "ark:|gzip -c > $dir/lat.tmp.JOB.gz" \ || exit 1; fi ## ## Do a second pass of estimating the transform-- this time with the lattices ## generated from the alignment model. Compose the transforms to get ## $dir/trans.1, etc. if [ $stage -le 3 ]; then echo "$0: estimating raw-fMLLR transforms a second time." $cmd JOB=1:$nj $dir/log/fmllr_pass2.JOB.log \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=4.0 \ "ark:gunzip -c $dir/lat.tmp.JOB.gz|" ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post $silence_weight $silphonelist $adapt_model ark:- ark:- \| \ gmm-est-fmllr-raw --spk2utt=ark:$sdata/JOB/spk2utt \ $adapt_model "$full_lda_mat" "$pass1splicedfeats" ark,s,cs:- ark:$dir/trans_tmp.JOB '&&' \ compose-transforms --b-is-affine=true ark:$dir/trans_tmp.JOB ark:$dir/pre_trans.JOB \ ark:$dir/raw_trans.JOB || exit 1; fi ## feats="ark,s,cs:apply-cmvn --norm-vars=$norm_vars --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$dir/raw_trans.JOB ark:- ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/final.mat ark:- ark:- |" if [ $stage -le 4 ] && $use_normal_fmllr; then echo "$0: estimating normal fMLLR transforms" $cmd JOB=1:$nj $dir/log/fmllr_pass3.JOB.log \ gmm-rescore-lattice $final_model "ark:gunzip -c $dir/lat.tmp.JOB.gz|" "$feats" ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=4.0 ark:- ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post $silence_weight $silphonelist $adapt_model ark:- ark:- \| \ gmm-est-fmllr --spk2utt=ark:$sdata/JOB/spk2utt \ $adapt_model "$feats" ark,s,cs:- ark:$dir/trans.JOB || exit 1; fi if $use_normal_fmllr; then feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$dir/trans.JOB ark:- ark:- |" fi # Rescore the state-level lattices with the final adapted features, and the final model # (which by default is $srcdir/final.mdl, but which may be specified on the command line, # useful in case of discriminatively trained systems). # At this point we prune and determinize the lattices and write them out, ready for # language model rescoring. if [ $stage -le 5 ]; then echo "$0: doing a final pass of acoustic rescoring." $cmd $parallel_opts JOB=1:$nj $dir/log/acoustic_rescore.JOB.log \ gmm-rescore-lattice $final_model "ark:gunzip -c $dir/lat.tmp.JOB.gz|" "$feats" ark:- \| \ lattice-determinize-pruned$thread_string --acoustic-scale=$acwt --beam=$lattice_beam ark:- \ "ark:|gzip -c > $dir/lat.JOB.gz" '&&' rm $dir/lat.tmp.JOB.gz || exit 1; fi if ! $skip_scoring ; then [ ! -x local/score.sh ] && \ echo "$0: not scoring because local/score.sh does not exist or not executable." && exit 1; local/score.sh $scoring_opts --cmd "$cmd" $data $graphdir $dir fi #rm $dir/{trans_tmp,pre_trans}.* exit 0;