#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # This script does decoding with an SGMM system, with speaker vectors. # If the SGMM system was # built on top of fMLLR transforms from a conventional system, you should # provide the --transform-dir option. # Begin configuration section. stage=1 alignment_model= transform_dir= # dir to find fMLLR transforms. nj=4 # number of decoding jobs. acwt=0.1 # Just a default value, used for adaptation and beam-pruning.. cmd=run.pl beam=15.0 gselect=15 # Number of Gaussian-selection indices for SGMMs. [Note: # the first_pass_gselect variable is used for the 1st pass of # decoding and can be tighter. first_pass_gselect=3 # Use a smaller number of Gaussian-selection indices in # the 1st pass of decoding (lattice generation). max_active=7000 lat_beam=8.0 # Beam we use in lattice generation. vecs_beam=4.0 # Beam we use to prune lattices while getting posteriors for # speaker-vector computation. Can be quite tight (actually we could # probably just do best-path. use_fmllr=false fmllr_iters=10 fmllr_min_count=1000 # End configuration section. echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# -ne 3 ]; then echo "Usage: steps/decode_sgmm.sh [options] " echo " e.g.: steps/decode_sgmm.sh --transform-dir exp/tri3b/decode_dev93_tgpr \\" echo " exp/sgmm3a/graph_tgpr data/test_dev93 exp/sgmm3a/decode_dev93_tgpr" echo "main options (for others, see top of script file)" echo " --transform-dir # directory of previous decoding" echo " # where we can find transforms for SAT systems." echo " --alignment-model # Model for the first-pass decoding." echo " --config # config containing options" echo " --nj # number of parallel jobs" echo " --cmd # Command to run in parallel with" echo " --beam # Decoding beam; default 13.0" exit 1; fi graphdir=$1 data=$2 dir=$3 srcdir=`dirname $dir`; # Assume model directory one level up from decoding directory. for f in $graphdir/HCLG.fst $data/feats.scp $srcdir/final.mdl; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done sdata=$data/split$nj; silphonelist=`cat $graphdir/phones/silence.csl` || exit 1 splice_opts=`cat $srcdir/splice_opts 2>/dev/null` gselect_opt="--gselect=ark,s,cs:gunzip -c $dir/gselect.JOB.gz|" gselect_opt_1stpass="$gselect_opt copy-gselect --n=$first_pass_gselect ark:- ark:- |" mkdir -p $dir/log [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; echo $nj > $dir/num_jobs ## Set up features. if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=delta; fi echo "$0: feature type is $feat_type" case $feat_type in delta) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas ark:- ark:- |";; lda) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/final.mat ark:- ark:- |" ;; *) echo "$0: invalid feature type $feat_type" && exit 1; esac if [ ! -z "$transform_dir" ]; then echo "$0: using transforms from $transform_dir" [ ! -f $transform_dir/trans.1 ] && echo "$0: no such file $transform_dir/trans.1" && exit 1; [ "$nj" -ne "`cat $transform_dir/num_jobs`" ] \ && echo "$0: #jobs mismatch with transform-dir." && exit 1; feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$transform_dir/trans.JOB ark:- ark:- |" elif grep 'transform-feats --utt2spk' $srcdir/log/acc.0.1.log 2>/dev/null; then echo "$0: **WARNING**: you seem to be using an SGMM system trained with transforms," echo " but you are not providing the --transform-dir option in test time." fi ## ## Calculate FMLLR pre-transforms if needed. We are doing this here since this ## step is requried by models both with and without speaker vectors if $use_fmllr; then if [ ! -f $srcdir/final.fmllr_mdl ] || [ $srcdir/final.fmllr_mdl -ot $srcdir/final.mdl ]; then echo "$0: computing pre-transform for fMLLR computation." sgmm-comp-prexform $srcdir/final.mdl $srcdir/final.occs $srcdir/final.fmllr_mdl || exit 1; fi fi ## Save Gaussian-selection info to disk. # Note: we can use final.mdl regardless of whether there is an alignment model-- # they use the same UBM. if [ $stage -le 1 ]; then $cmd JOB=1:$nj $dir/log/gselect.JOB.log \ sgmm-gselect --full-gmm-nbest=$gselect $srcdir/final.mdl \ "$feats" "ark:|gzip -c >$dir/gselect.JOB.gz" || exit 1; fi ## Work out name of alignment model. ## if [ -z "$alignment_model" ]; then if [ -f "$srcdir/final.alimdl" ]; then alignment_model=$srcdir/final.alimdl; else alignment_model=$srcdir/final.mdl; fi fi [ ! -f "$alignment_model" ] && echo "$0: no alignment model $alignment_model " && exit 1; # Generate state-level lattice which we can rescore. This is done with the # alignment model and no speaker-vectors. if [ $stage -le 2 ]; then $cmd JOB=1:$nj $dir/log/decode_pass1.JOB.log \ sgmm-latgen-faster --max-active=$max_active --beam=$beam --lattice-beam=$lat_beam \ --acoustic-scale=$acwt --determinize-lattice=false --allow-partial=true \ --word-symbol-table=$graphdir/words.txt "$gselect_opt_1stpass" $alignment_model \ $graphdir/HCLG.fst "$feats" "ark:|gzip -c > $dir/pre_lat.JOB.gz" || exit 1; fi ## Check if the model has speaker vectors spkdim=`sgmm-info $srcdir/final.mdl | grep 'speaker vector' | awk '{print $NF}'` if [ $spkdim -gt 0 ]; then ### For models with speaker vectors: # Estimate speaker vectors (1st pass). Prune before determinizing # because determinization can take a while on un-pruned lattices. # Note: the sgmm-post-to-gpost stage is necessary because we have # a separate alignment-model and final model, otherwise we'd skip it # and use sgmm-est-spkvecs. if [ $stage -le 3 ]; then $cmd JOB=1:$nj $dir/log/vecs_pass1.JOB.log \ gunzip -c $dir/pre_lat.JOB.gz \| \ lattice-prune --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post 0.0 $silphonelist $alignment_model ark:- ark:- \| \ sgmm-post-to-gpost "$gselect_opt" $alignment_model "$feats" ark:- ark:- \| \ sgmm-est-spkvecs-gpost --spk2utt=ark:$sdata/JOB/spk2utt \ $srcdir/final.mdl "$feats" ark,s,cs:- "ark:$dir/pre_vecs.JOB" || exit 1; fi # Estimate speaker vectors (2nd pass). Since we already have spk vectors, # at this point we need to rescore the lattice to get the correct posteriors. if [ $stage -le 4 ]; then $cmd JOB=1:$nj $dir/log/vecs_pass2.JOB.log \ gunzip -c $dir/pre_lat.JOB.gz \| \ sgmm-rescore-lattice --spk-vecs=ark:$dir/pre_vecs.JOB --utt2spk=ark:$sdata/JOB/utt2spk \ "$gselect_opt" $srcdir/final.mdl ark:- "$feats" ark:- \| \ lattice-prune --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post 0.0 $silphonelist $srcdir/final.mdl ark:- ark:- \| \ sgmm-est-spkvecs --spk2utt=ark:$sdata/JOB/spk2utt "$gselect_opt" --spk-vecs=ark:$dir/pre_vecs.JOB \ $srcdir/final.mdl "$feats" ark,s,cs:- "ark:$dir/vecs.JOB" || exit 1; fi rm $dir/pre_vecs.* if $use_fmllr; then # Estimate fMLLR transforms (note: these may be on top of any # fMLLR transforms estimated with the baseline GMM system. if [ $stage -le 5 ]; then # compute fMLLR transforms. echo "$0: computing fMLLR transforms." $cmd JOB=1:$nj $dir/log/fmllr.JOB.log \ gunzip -c $dir/pre_lat.JOB.gz \| \ sgmm-rescore-lattice --spk-vecs=ark:$dir/vecs.JOB --utt2spk=ark:$sdata/JOB/utt2spk \ "$gselect_opt" $srcdir/final.mdl ark:- "$feats" ark:- \| \ lattice-prune --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post 0.0 $silphonelist $srcdir/final.mdl ark:- ark:- \| \ sgmm-est-fmllr --spk2utt=ark:$sdata/JOB/spk2utt "$gselect_opt" --spk-vecs=ark:$dir/vecs.JOB \ --fmllr-iters=$fmllr_iters --fmllr-min-count=$fmllr_min_count \ $srcdir/final.fmllr_mdl "$feats" ark,s,cs:- "ark:$dir/trans.JOB" || exit 1; fi feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$dir/trans.JOB ark:- ark:- |" fi # Now rescore the state-level lattices with the adapted features and the # corresponding model. Prune and determinize the lattices to limit # their size. if [ $stage -le 6 ]; then $cmd JOB=1:$nj $dir/log/rescore.JOB.log \ sgmm-rescore-lattice "$gselect_opt" --utt2spk=ark:$sdata/JOB/utt2spk --spk-vecs=ark:$dir/vecs.JOB \ $srcdir/final.mdl "ark:gunzip -c $dir/pre_lat.JOB.gz|" "$feats" ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$lat_beam ark:- \ "ark:|gzip -c > $dir/lat.JOB.gz" || exit 1; fi rm $dir/pre_lat.*.gz else ### For models without speaker vectors: if $use_fmllr; then # Estimate fMLLR transforms (note: these may be on top of any # fMLLR transforms estimated with the baseline GMM system. if [ $stage -le 5 ]; then # compute fMLLR transforms. echo "$0: computing fMLLR transforms." $cmd JOB=1:$nj $dir/log/fmllr.JOB.log \ gunzip -c $dir/pre_lat.JOB.gz \| \ sgmm-rescore-lattice --utt2spk=ark:$sdata/JOB/utt2spk \ "$gselect_opt" $srcdir/final.mdl ark:- "$feats" ark:- \| \ lattice-prune --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post 0.0 $silphonelist $srcdir/final.mdl ark:- ark:- \| \ sgmm-est-fmllr --spk2utt=ark:$sdata/JOB/spk2utt "$gselect_opt" \ --fmllr-iters=$fmllr_iters --fmllr-min-count=$fmllr_min_count \ $srcdir/final.fmllr_mdl "$feats" ark,s,cs:- "ark:$dir/trans.JOB" || exit 1; fi feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$dir/trans.JOB ark:- ark:- |" fi # Now rescore the state-level lattices with the adapted features and the # corresponding model. Prune and determinize the lattices to limit # their size. if [ $stage -le 6 ] && $use_fmllr; then $cmd JOB=1:$nj $dir/log/rescore.JOB.log \ sgmm-rescore-lattice "$gselect_opt" --utt2spk=ark:$sdata/JOB/utt2spk \ $srcdir/final.mdl "ark:gunzip -c $dir/pre_lat.JOB.gz|" "$feats" ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$lat_beam ark:- \ "ark:|gzip -c > $dir/lat.JOB.gz" || exit 1; rm $dir/pre_lat.*.gz else # Already done with decoding if no adaptation needed. for n in `seq 1 $nj`; do mv $dir/pre_lat.${n}.gz $dir/lat.${n}.gz done fi fi # The output of this script is the files "lat.*.gz"-- we'll rescore this at # different acoustic scales to get the final output. if [ $stage -le 7 ]; then [ ! -x local/score.sh ] && \ echo "Not scoring because local/score.sh does not exist or not executable." && exit 1; echo "score best paths" local/score.sh --cmd "$cmd" $data $graphdir $dir echo "score confidence and timing with sclite" #local/score_sclite_conf.sh --cmd "$cmd" --language turkish $data $graphdir $dir fi echo "Decoding done." exit 0;