#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey) # Apache 2.0. # Begin configuration. cmd=run.pl config= stage=-5 scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1" realign_iters="10 20 30"; mllt_iters="2 4 6 12"; num_iters=35 # Number of iterations of training max_iter_inc=25 # Last iter to increase #Gauss on. dim=40 beam=10 retry_beam=40 boost_silence=1.0 # Factor by which to boost silence likelihoods in alignment power=0.25 # Exponent for number of gaussians according to occurrence counts randprune=4.0 # This is approximately the ratio by which we will speed up the # LDA and MLLT calculations via randomized pruning. splice_opts= cluster_thresh=-1 # for build-tree control final bottom-up clustering of leaves # End configuration. train_tree=true # if false, don't actually train the tree. echo "$0 $@" # Print the command line for logging [ -f path.sh ] && . ./path.sh . parse_options.sh || exit 1; if [ $# != 6 ]; then echo "Usage: steps/train_lda_mllt.sh [options] <#leaves> <#gauss> " echo " e.g.: steps/train_lda_mllt.sh 2500 15000 data/train_si84 data/lang exp/tri1_ali_si84 exp/tri2b" echo "Main options (for others, see top of script file)" echo " --cmd (utils/run.pl|utils/queue.pl ) # how to run jobs." echo " --config # config containing options" echo " --stage # stage to do partial re-run from." exit 1; fi numleaves=$1 totgauss=$2 data=$3 lang=$4 alidir=$5 dir=$6 for f in $alidir/final.mdl $alidir/ali.1.gz $data/feats.scp $lang/phones.txt; do [ ! -f $f ] && echo "train_lda_mllt.sh: no such file $f" && exit 1; done numgauss=$numleaves incgauss=$[($totgauss-$numgauss)/$max_iter_inc] # per-iter #gauss increment oov=`cat $lang/oov.int` || exit 1; nj=`cat $alidir/num_jobs` || exit 1; silphonelist=`cat $lang/phones/silence.csl` || exit 1; ciphonelist=`cat $lang/phones/context_indep.csl` || exit 1; mkdir -p $dir/log echo $nj >$dir/num_jobs echo "$splice_opts" >$dir/splice_opts # keep track of frame-splicing options # so that later stages of system building can know what they were. sdata=$data/split$nj; split_data.sh $data $nj || exit 1; splicedfeats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- |" # Note: $feats gets overwritten later in the script. feats="$splicedfeats transform-feats $dir/0.mat ark:- ark:- |" if [ $stage -le -5 ]; then echo "Accumulating LDA statistics." $cmd JOB=1:$nj $dir/log/lda_acc.JOB.log \ ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz|" ark:- \| \ weight-silence-post 0.0 $silphonelist $alidir/final.mdl ark:- ark:- \| \ acc-lda --rand-prune=$randprune $alidir/final.mdl "$splicedfeats" ark,s,cs:- \ $dir/lda.JOB.acc || exit 1; est-lda --write-full-matrix=$dir/full.mat --dim=$dim $dir/0.mat $dir/lda.*.acc \ 2>$dir/log/lda_est.log || exit 1; rm $dir/lda.*.acc fi cur_lda_iter=0 if [ $stage -le -4 ] && $train_tree; then echo "Accumulating tree stats" $cmd JOB=1:$nj $dir/log/acc_tree.JOB.log \ acc-tree-stats --ci-phones=$ciphonelist $alidir/final.mdl "$feats" \ "ark:gunzip -c $alidir/ali.JOB.gz|" $dir/JOB.treeacc || exit 1; [ `ls $dir/*.treeacc | wc -w` -ne "$nj" ] && echo "Wrong #tree-accs" && exit 1; $cmd $dir/log/sum_tree_acc.log \ sum-tree-stats $dir/treeacc $dir/*.treeacc || exit 1; rm $dir/*.treeacc fi if [ $stage -le -3 ] && $train_tree; then echo "Getting questions for tree clustering." # preparing questions, roots file... cluster-phones $dir/treeacc $lang/phones/sets.int $dir/questions.int 2> $dir/log/questions.log || exit 1; cat $lang/phones/extra_questions.int >> $dir/questions.int compile-questions $lang/topo $dir/questions.int $dir/questions.qst 2>$dir/log/compile_questions.log || exit 1; echo "Building the tree" $cmd $dir/log/build_tree.log \ build-tree --verbose=1 --max-leaves=$numleaves \ --cluster-thresh=$cluster_thresh $dir/treeacc $lang/phones/roots.int \ $dir/questions.qst $lang/topo $dir/tree || exit 1; fi if [ $stage -le -2 ]; then echo "$0: Initializing the model" if $train_tree; then gmm-init-model --write-occs=$dir/1.occs \ $dir/tree $dir/treeacc $lang/topo $dir/1.mdl 2> $dir/log/init_model.log || exit 1; grep 'no stats' $dir/log/init_model.log && echo "This is a bad warning."; rm $dir/treeacc else cp $alidir/tree $dir/ || exit 1; $cmd JOB=1 $dir/log/init_model.log \ gmm-init-model-flat $dir/tree $lang/topo $dir/1.mdl \ "$feats subset-feats ark:- ark:-|" || exit 1; fi fi if [ $stage -le -1 ]; then # Convert the alignments. echo "Converting alignments from $alidir to use current tree" $cmd JOB=1:$nj $dir/log/convert.JOB.log \ convert-ali $alidir/final.mdl $dir/1.mdl $dir/tree \ "ark:gunzip -c $alidir/ali.JOB.gz|" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1; fi if [ $stage -le 0 ] && [ "$realign_iters" != "" ]; then echo "Compiling graphs of transcripts" $cmd JOB=1:$nj $dir/log/compile_graphs.JOB.log \ compile-train-graphs $dir/tree $dir/1.mdl $lang/L.fst \ "ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt < $data/split$nj/JOB/text |" \ "ark:|gzip -c >$dir/fsts.JOB.gz" || exit 1; fi x=1 while [ $x -lt $num_iters ]; do echo Training pass $x if echo $realign_iters | grep -w $x >/dev/null && [ $stage -le $x ]; then echo Aligning data mdl="gmm-boost-silence --boost=$boost_silence `cat $lang/phones/optional_silence.csl` $dir/$x.mdl - |" $cmd JOB=1:$nj $dir/log/align.$x.JOB.log \ gmm-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam "$mdl" \ "ark:gunzip -c $dir/fsts.JOB.gz|" "$feats" \ "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1; fi if echo $mllt_iters | grep -w $x >/dev/null; then if [ $stage -le $x ]; then echo "Estimating MLLT" $cmd JOB=1:$nj $dir/log/macc.$x.JOB.log \ ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \ weight-silence-post 0.0 $silphonelist $dir/$x.mdl ark:- ark:- \| \ gmm-acc-mllt --rand-prune=$randprune $dir/$x.mdl "$feats" ark:- $dir/$x.JOB.macc \ || exit 1; est-mllt $dir/$x.mat.new $dir/$x.*.macc 2> $dir/log/mupdate.$x.log || exit 1; gmm-transform-means $dir/$x.mat.new $dir/$x.mdl $dir/$x.mdl \ 2> $dir/log/transform_means.$x.log || exit 1; compose-transforms --print-args=false $dir/$x.mat.new $dir/$cur_lda_iter.mat $dir/$x.mat || exit 1; rm $dir/$x.*.macc fi feats="$splicedfeats transform-feats $dir/$x.mat ark:- ark:- |" cur_lda_iter=$x fi if [ $stage -le $x ]; then $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \ gmm-acc-stats-ali $dir/$x.mdl "$feats" \ "ark,s,cs:gunzip -c $dir/ali.JOB.gz|" $dir/$x.JOB.acc || exit 1; $cmd $dir/log/update.$x.log \ gmm-est --write-occs=$dir/$[$x+1].occs --mix-up=$numgauss --power=$power \ $dir/$x.mdl "gmm-sum-accs - $dir/$x.*.acc |" $dir/$[$x+1].mdl || exit 1; rm $dir/$x.mdl $dir/$x.*.acc $dir/$x.occs fi [ $x -le $max_iter_inc ] && numgauss=$[$numgauss+$incgauss]; x=$[$x+1]; done rm $dir/final.{mdl,mat,occs} 2>/dev/null ln -s $x.mdl $dir/final.mdl ln -s $x.occs $dir/final.occs ln -s $cur_lda_iter.mat $dir/final.mat # Summarize warning messages... utils/summarize_warnings.pl $dir/log echo Done training system with LDA+MLLT features in $dir