#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # MMI training (or optionally boosted MMI, if you give the --boost option). # 4 iterations (by default) of Extended Baum-Welch update. # # For the numerator we have a fixed alignment rather than a lattice-- # this actually follows from the way lattices are defined in Kaldi, which # is to have a single path for each word (output-symbol) sequence. # Begin configuration section. cmd=run.pl num_iters=4 boost=0.0 cancel=true # if true, cancel num and den counts on each frame. tau=400 weight_tau=10 acwt=0.1 stage=0 smooth_to_mode=true # End configuration section echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# -ne 5 ]; then echo "Usage: steps/train_mmi.sh " echo " e.g.: steps/train_mmi.sh data/train_si84 data/lang exp/tri2b_ali_si84 exp/tri2b_denlats_si84 exp/tri2b_mmi" echo "Main options (for others, see top of script file)" echo " --boost # (e.g. 0.1), for boosted MMI. (default 0)" echo " --cancel (true|false) # cancel stats (true by default)" echo " --cmd (utils/run.pl|utils/queue.pl ) # how to run jobs." echo " --config # config containing options" echo " --stage # stage to do partial re-run from." echo " --tau # tau for i-smooth to last iter (default 200)" exit 1; fi data=$1 lang=$2 alidir=$3 denlatdir=$4 dir=$5 mkdir -p $dir/log for f in $data/feats.scp $alidir/{tree,final.mdl,ali.1.gz} $denlatdir/lat.1.gz; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done nj=`cat $alidir/num_jobs` || exit 1; [ "$nj" -ne "`cat $denlatdir/num_jobs`" ] && \ echo "$alidir and $denlatdir have different num-jobs" && exit 1; sdata=$data/split$nj splice_opts=`cat $alidir/splice_opts 2>/dev/null` mkdir -p $dir/log cp $alidir/splice_opts $dir 2>/dev/null [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; echo $nj > $dir/num_jobs cp $alidir/{final.mdl,tree} $dir silphonelist=`cat $lang/phones/silence.csl` || exit 1; # Set up features if [ -f $alidir/final.mat ]; then feat_type=lda; else feat_type=delta; fi echo "$0: feature type is $feat_type" case $feat_type in delta) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas ark:- ark:- |";; lda) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $alidir/final.mat ark:- ark:- |" cp $alidir/final.mat $dir ;; *) echo "Invalid feature type $feat_type" && exit 1; esac [ -f $alidir/trans.1 ] && echo Using transforms from $alidir && \ feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$alidir/trans.JOB ark:- ark:- |" lats="ark:gunzip -c $denlatdir/lat.JOB.gz|" if [[ "$boost" != "0.0" && "$boost" != 0 ]]; then lats="$lats lattice-boost-ali --b=$boost --silence-phones=$silphonelist $alidir/final.mdl ark:- 'ark,s,cs:gunzip -c $alidir/ali.JOB.gz|' ark:- |" fi cur_mdl=$alidir/final.mdl x=0 while [ $x -lt $num_iters ]; do echo "Iteration $x of MPE training" # Note: the num and den states are accumulated at the same time, so we # can cancel them per frame. if [ $stage -le $x ]; then $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \ gmm-rescore-lattice $cur_mdl "$lats" "$feats" ark:- \| \ lattice-to-mpe-post --acoustic-scale=$acwt $cur_mdl \ "ark,s,cs:gunzip -c $alidir/ali.JOB.gz | ali-to-post ark:- ark:- |" ark:- ark:- \| \ gmm-acc-stats2 $cur_mdl "$feats" ark,s,cs:- \ $dir/num_acc.$x.JOB.acc $dir/den_acc.$x.JOB.acc || exit 1; n=`echo $dir/{num,den}_acc.$x.*.acc | wc -w`; [ "$n" -ne $[$nj*2] ] && \ echo "Wrong number of MMI accumulators $n versus 2*$nj" && exit 1; $cmd $dir/log/den_acc_sum.$x.log \ gmm-sum-accs $dir/den_acc.$x.acc $dir/den_acc.$x.*.acc || exit 1; rm $dir/den_acc.$x.*.acc $cmd $dir/log/num_acc_sum.$x.log \ gmm-sum-accs $dir/num_acc.$x.acc $dir/num_acc.$x.*.acc || exit 1; rm $dir/num_acc.$x.*.acc # note: this tau value is for smoothing towards model parameters, not # as in the Boosted MMI paper, not towards the ML stats as in the earlier # work on discriminative training (e.g. my thesis). # You could use gmm-ismooth-stats to smooth to the ML stats, if you had # them available [here they're not available if cancel=true]. if ! $smooth_to_model; then echo "Iteration $x of MPE: computing ml (smoothing) stats" $cmd JOB=1:$nj $dir/log/acc_ml.$x.JOB.log \ gmm-acc-stats $cur_mdl "$feats" \ "ark,s,cs:gunzip -c $alidir/ali.JOB.gz | ali-to-post ark:- ark:- |" \ $dir/ml.$x.JOB.acc || exit 1; $cmd $dir/log/acc_ml_sum.$x.log \ gmm-sum-accs $dir/ml.$x.acc $dir/ml.$x.*.acc || exit 1; rm $dir/ml.$x.*.acc num_stats="gmm-ismooth-stats --tau=$tau $dir/ml.$x.acc $dir/num_acc.$x.acc -|" else num_stats="gmm-ismooth-stats --smooth-from-model=true --tau=$tau $cur_mdl $dir/num_acc.$x.acc -|" fi $cmd $dir/log/update.$x.log \ gmm-est-gaussians-ebw $cur_mdl "$num_stats" $dir/den_acc.$x.acc - \| \ gmm-est-weights-ebw - $dir/num_acc.$x.acc $dir/den_acc.$x.acc $dir/$[$x+1].mdl || exit 1; rm $dir/{den,num}_acc.$x.acc fi cur_mdl=$dir/$[$x+1].mdl # Some diagnostics: the objective function progress and auxiliary-function # improvement. tail -n 50 $dir/log/acc.$x.*.log | perl -e 'while() { if(m/lattice-to-mpe-post.+Overall average frame-accuracy is (\S+) over (\S+) frames/) { $tot_objf += $1*$2; $tot_frames += $2; }} $tot_objf /= $tot_frames; print "$tot_objf $tot_frames\n"; ' > $dir/tmpf objf=`cat $dir/tmpf | awk '{print $1}'`; nf=`cat $dir/tmpf | awk '{print $2}'`; rm $dir/tmpf impr=`grep -w Overall $dir/log/update.$x.log | awk '{x += $10*$12;} END{print x;}'` impr=`perl -e "print ($impr*$acwt/$nf);"` # We multiply by acwt, and divide by $nf which is the "real" number of frames. # This gives us a projected objective function improvement. echo "Iteration $x: objf was $objf, MPE auxf change was $impr" | tee $dir/objf.$x.log x=$[$x+1] done echo "MPE training finished" rm $dir/final.mdl 2>/dev/null ln -s $x.mdl $dir/final.mdl exit 0;