#!/bin/bash # Copyright 2012-2013 Johns Hopkins University (Author: Daniel Povey). # Apache 2.0. # This script does decoding with a neural-net. If the neural net was built on # top of fMLLR transforms from a conventional system, you should provide the # --transform-dir option. # Begin configuration section. stage=1 transform_dir= # dir to find fMLLR transforms. nj=4 # number of decoding jobs. If --transform-dir set, must match that number! acwt=0.1 # Just a default value, used for adaptation and beam-pruning.. cmd=run.pl beam=15.0 max_active=7000 lat_beam=8.0 # Beam we use in lattice generation. iter=final num_threads=1 # if >1, will use gmm-latgen-faster-parallel parallel_opts= # If you supply num-threads, you should supply this too. scoring_opts= skip_scoring=false feat_type= spk_vecs_dir= # End configuration section. echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# -ne 3 ]; then echo "Usage: $0 [options] " echo " e.g.: $0 --transform-dir exp/tri3b/decode_dev93_tgpr \\" echo " exp/tri3b/graph_tgpr data/test_dev93 exp/tri4a_nnet/decode_dev93_tgpr" echo "main options (for others, see top of script file)" echo " --transform-dir # directory of previous decoding" echo " # where we can find transforms for SAT systems." echo " --config # config containing options" echo " --nj # number of parallel jobs" echo " --cmd # Command to run in parallel with" echo " --beam # Decoding beam; default 15.0" echo " --iter # Iteration of model to decode; default is final." echo " --scoring-opts # options to local/score.sh" echo " --num-threads # number of threads to use, default 1." echo " --parallel-opts # e.g. '-pe smp 4' if you supply --num-threads 4" exit 1; fi graphdir=$1 data=$2 dir=$3 srcdir=`dirname $dir`; # Assume model directory one level up from decoding directory. model=$srcdir/$iter.mdl for f in $graphdir/HCLG.fst $data/feats.scp $model; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done sdata=$data/split$nj; splice_opts=`cat $srcdir/splice_opts 2>/dev/null` thread_string= [ $num_threads -gt 1 ] && thread_string="-parallel --num-threads=$num_threads" mkdir -p $dir/log [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; echo $nj > $dir/num_jobs ## Set up features. if [ -z "$feat_type" ]; then if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=raw; fi echo "$0: feature type is $feat_type" fi case $feat_type in raw) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- |";; lda) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/final.mat ark:- ark:- |" ;; *) echo "$0: invalid feature type $feat_type" && exit 1; esac if [ ! -z "$transform_dir" ]; then echo "$0: using transforms from $transform_dir" if [ "$feat_type" == "lda" ]; then [ ! -f $transform_dir/trans.1 ] && echo "$0: no such file $transform_dir/trans.1" && exit 1; [ "$nj" -ne "`cat $transform_dir/num_jobs`" ] \ && echo "$0: #jobs mismatch with transform-dir." && exit 1; feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$transform_dir/trans.JOB ark:- ark:- |" else [ ! -f $transform_dir/raw_trans.1 ] && echo "$0: no such file $transform_dir/raw_trans.1" && exit 1; [ "$nj" -ne "`cat $transform_dir/num_jobs`" ] \ && echo "$0: #jobs mismatch with transform-dir." && exit 1; feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$transform_dir/raw_trans.JOB ark:- ark:- |" fi elif grep 'transform-feats --utt2spk' $srcdir/log/train.1.log >&/dev/null; then echo "$0: **WARNING**: you seem to be using a neural net system trained with transforms," echo " but you are not providing the --transform-dir option in test time." fi ## if [ ! -z $spk_vecs_dir ]; then [ ! -f $spk_vecs_dir/vecs.1 ] && echo "No such file $spk_vecs_dir/vecs.1" && exit 1; spk_vecs_opt=("--spk-vecs=ark:cat $spk_vecs_dir/vecs.*|" "--utt2spk=ark:$data/utt2spk") else spk_vecs_opt=() fi if [ $stage -le 1 ]; then $cmd $parallel_opts JOB=1:$nj $dir/log/decode.JOB.log \ nnet-latgen-faster$thread_string "${spk_vecs_opt[@]}" --max-active=$max_active --beam=$beam \ --lattice-beam=$lat_beam --acoustic-scale=$acwt --allow-partial=true \ --word-symbol-table=$graphdir/words.txt "$model" \ $graphdir/HCLG.fst "$feats" "ark:|gzip -c > $dir/lat.JOB.gz" || exit 1; fi # The output of this script is the files "lat.*.gz"-- we'll rescore this at # different acoustic scales to get the final output. if [ $stage -le 2 ]; then if ! $skip_scoring ; then [ ! -x local/score.sh ] && \ echo "Not scoring because local/score.sh does not exist or not executable." && exit 1; echo "score best paths" local/score.sh $scoring_opts --cmd "$cmd" $data $graphdir $dir echo "score confidence and timing with sclite" fi fi echo "Decoding done." exit 0;