#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey) # Korbinian Riedhammer # Decoding script that does fMLLR. This can be on top of delta+delta-delta, or # LDA+MLLT features. # There are 3 models involved potentially in this script, # and for a standard, speaker-independent system they will all be the same. # The "alignment model" is for the 1st-pass decoding and to get the # Gaussian-level alignments for the "adaptation model" the first time we # do fMLLR. The "adaptation model" is used to estimate fMLLR transforms # and to generate state-level lattices. The lattices are then rescored # with the "final model". # # The following table explains where we get these 3 models from. # Note: $srcdir is one level up from the decoding directory. # # Model Default source: # # "alignment model" $srcdir/final.alimdl --alignment-model # (or $srcdir/final.mdl if alimdl absent) # "adaptation model" $srcdir/final.mdl --adapt-model # "final model" $srcdir/final.mdl --final-model # Begin configuration section first_beam=10.0 # Beam used in initial, speaker-indep. pass first_max_active=2000 # max-active used in initial pass. alignment_model= adapt_model= final_model= stage=0 acwt=0.083333 # Acoustic weight used in getting fMLLR transforms, and also in # lattice generation. max_active=7000 beam=13.0 lattice_beam=6.0 nj=4 silence_weight=0.01 cmd=run.pl si_dir= fmllr_update_type=full # End configuration section echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# != 4 ]; then echo "Usage: steps/decode_fmllr.sh [options] " echo " e.g.: steps/decode_fmllr.sh exp/tri2b/graph {mfcc,bottleneck}/data/test_dev93 exp/tri2b/decode_dev93" echo "main options (for others, see top of script file)" echo " --config # config containing options" echo " --nj # number of parallel jobs" echo " --cmd # Command to run in parallel with" echo " --adapt-model # Model to compute transforms with" echo " --alignment-model # Model to get Gaussian-level alignments for" echo " # 1st pass of transform computation." echo " --final-model # Model to finally decode with" echo " --si-dir # use this to skip 1st pass of decoding" echo " # Caution-- must be with same tree" echo " --acwt # default 0.08333 ... used to get posteriors" exit 1; fi graphdir=$1 data1=$2 data2=$3 dir=`echo $4 | sed 's:/$::g'` # remove any trailing slash. srcdir=`dirname $dir`; # Assume model directory one level up from decoding directory. mkdir -p $dir/log sdata1=$data1/split$nj; sdata2=$data2/split$nj; [[ -d $sdata1 && $data1/feats.scp -ot $sdata1 ]] || split_data.sh $data1 $nj || exit 1; [[ -d $sdata2 && $data2/feats.scp -ot $sdata2 ]] || split_data.sh $data2 $nj || exit 1; echo $nj > $dir/num_jobs silphonelist=`cat $graphdir/phones/silence.csl` || exit 1; # Some checks. Note: we don't need $srcdir/tree but we expect # it should exist, given the current structure of the scripts. for f in $graphdir/HCLG.fst $data1/feats.scp $data2/feats.scp $srcdir/tree; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done ## Work out name of alignment model. ## if [ -z "$alignment_model" ]; then if [ -f "$srcdir/final.alimdl" ]; then alignment_model=$srcdir/final.alimdl; else alignment_model=$srcdir/final.mdl; fi fi [ ! -f "$alignment_model" ] && echo "$0: no alignment model $alignment_model " && exit 1; ## ## Do the speaker-independent decoding, if --si-dir option not present. ## if [ -z "$si_dir" ]; then # we need to do the speaker-independent decoding pass. si_dir=${dir}.si # Name it as our decoding dir, but with suffix ".si". if [ $stage -le 0 ]; then steps/tandem/decode_si.sh --acwt $acwt --nj $nj --cmd "$cmd" --beam $first_beam --model $alignment_model --max-active $first_max_active $graphdir $data1 $data2 $si_dir || exit 1; fi fi ## ## Some checks, and setting of defaults for variables. [ "$nj" -ne "`cat $si_dir/num_jobs`" ] && echo "Mismatch in #jobs with si-dir" && exit 1; [ ! -f "$si_dir/lat.1.gz" ] && echo "No such file $si_dir/lat.1.gz" && exit 1; [ -z "$adapt_model" ] && adapt_model=$srcdir/final.mdl [ -z "$final_model" ] && final_model=$srcdir/final.mdl for f in $adapt_model $final_model; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done ## # Set up features. splice_opts=`cat $srcdir/splice_opts 2>/dev/null` # frame-splicing options. normft2=`cat $srcdir/normft2 2>/dev/null` if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=delta; fi case $feat_type in delta) echo "$0: feature type is $feat_type" ;; lda) echo "$0: feature type is $feat_type" ;; *) echo "$0: invalid feature type $feat_type" && exit 1; esac # set up feature stream 1; this are usually spectral features, so we will add # deltas or splice them feats1="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata1/JOB/utt2spk scp:$sdata1/JOB/cmvn.scp scp:$sdata1/JOB/feats.scp ark:- |" if [ "$feat_type" == "delta" ]; then feats1="$feats1 add-deltas ark:- ark:- |" elif [ "$feat_type" == "lda" ]; then feats1="$feats1 splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/lda.mat ark:- ark:- |" fi # set up feature stream 2; this are usually bottleneck or posterior features, # which may be normalized if desired feats2="scp:$sdata2/JOB/feats.scp" if [ "$normft2" == "true" ]; then echo "Using cmvn for feats2" feats2="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata2/JOB/utt2spk scp:$sdata2/JOB/cmvn.scp $feats2 ark:- |" fi # assemble tandem features sifeats="ark,s,cs:paste-feats '$feats1' '$feats2' ark:- |" # add transformation, if applicable if [ "$feat_type" == "lda" ]; then sifeats="$sifeats transform-feats $srcdir/final.mat ark:- ark:- |" fi ## Now get the first-pass fMLLR transforms. if [ $stage -le 1 ]; then echo "$0: getting first-pass fMLLR transforms." $cmd JOB=1:$nj $dir/log/fmllr_pass1.JOB.log \ gunzip -c $si_dir/lat.JOB.gz \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post $silence_weight $silphonelist $alignment_model ark:- ark:- \| \ gmm-post-to-gpost $alignment_model "$sifeats" ark:- ark:- \| \ gmm-est-fmllr-gpost --fmllr-update-type=$fmllr_update_type \ --spk2utt=ark:$sdata1/JOB/spk2utt $adapt_model "$sifeats" ark,s,cs:- \ ark:$dir/pre_trans.JOB || exit 1; fi ## pass1feats="$sifeats transform-feats --utt2spk=ark:$sdata1/JOB/utt2spk ark:$dir/pre_trans.JOB ark:- ark:- |" ## Do the main lattice generation pass. Note: we don't determinize the lattices at ## this stage, as we're going to use them in acoustic rescoring with the larger ## model, and it's more correct to store the full state-level lattice for this purpose. if [ $stage -le 2 ]; then echo "$0: doing main lattice generation phase" $cmd JOB=1:$nj $dir/log/decode.JOB.log \ gmm-latgen-faster --max-active=$max_active --beam=$beam --lattice-beam=$lattice_beam \ --acoustic-scale=$acwt \ --determinize-lattice=false --allow-partial=true --word-symbol-table=$graphdir/words.txt \ $adapt_model $graphdir/HCLG.fst "$pass1feats" "ark:|gzip -c > $dir/lat.tmp.JOB.gz" \ || exit 1; fi ## ## Do a second pass of estimating the transform-- this time with the lattices ## generated from the alignment model. Compose the transforms to get ## $dir/trans.1, etc. if [ $stage -le 3 ]; then echo "$0: estimating fMLLR transforms a second time." $cmd JOB=1:$nj $dir/log/fmllr_pass2.JOB.log \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=4.0 \ "ark:gunzip -c $dir/lat.tmp.JOB.gz|" ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post $silence_weight $silphonelist $adapt_model ark:- ark:- \| \ gmm-est-fmllr --fmllr-update-type=$fmllr_update_type \ --spk2utt=ark:$sdata1/JOB/spk2utt $adapt_model "$pass1feats" \ ark,s,cs:- ark:$dir/trans_tmp.JOB '&&' \ compose-transforms --b-is-affine=true ark:$dir/trans_tmp.JOB ark:$dir/pre_trans.JOB \ ark:$dir/trans.JOB || exit 1; fi ## feats="$sifeats transform-feats --utt2spk=ark:$sdata1/JOB/utt2spk ark:$dir/trans.JOB ark:- ark:- |" # Rescore the state-level lattices with the final adapted features, and the final model # (which by default is $srcdir/final.mdl, but which may be specified on the command line, # useful in case of discriminatively trained systems). # At this point we prune and determinize the lattices and write them out, ready for # language model rescoring. if [ $stage -le 4 ]; then echo "$0: doing a final pass of acoustic rescoring." $cmd JOB=1:$nj $dir/log/acoustic_rescore.JOB.log \ gmm-rescore-lattice $final_model "ark:gunzip -c $dir/lat.tmp.JOB.gz|" "$feats" ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$lattice_beam ark:- \ "ark:|gzip -c > $dir/lat.JOB.gz" '&&' rm $dir/lat.tmp.JOB.gz || exit 1; fi [ ! -x local/score.sh ] && \ echo "$0: not scoring because local/score.sh does not exist or not executable." && exit 1; local/score.sh --cmd "$cmd" $data1 $graphdir $dir rm $dir/{trans_tmp,pre_trans}.* exit 0;