Blame view
bin/regroup-measures.py
4.35 KB
ee5cc2a7e Regroup all measu... |
1 2 |
''' Regroup results into one file and a plot. |
ce4a6b1b9 Plot 4 figures in... |
3 4 |
TODO: Mettre en valeur les valeurs maximales TODO: Sauvegarder les valeurs quelques part pour qu'on puisse facilement les retrouver. |
ee5cc2a7e Regroup all measu... |
5 6 7 8 9 10 11 |
''' import numpy as np import matplotlib.pyplot as plt import argparse import os import json |
ce4a6b1b9 Plot 4 figures in... |
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
def plot_values_clusters(values, title, xlabel, ylabel): values = np.asarray(values) x = np.arange(len(values)) + 2 x_ticks = np.arange(len(values), step=10) + 2 y = values plt.scatter(x, y, s=1) plt.xticks(x_ticks) plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) def save_plot(filepath): plt.savefig(filepath) plt.close() def save_results(outfile, measures, titles): with open(outfile, "w") as f: f.write(",".join(titles) + " ") n = len(measures[0]) for i in range(n): f.write(",".join([str(ms[i]) for ms in measures]) + " ") |
ee5cc2a7e Regroup all measu... |
37 38 39 40 |
# -- PARSER parser = argparse.ArgumentParser(description="") parser.add_argument("expdir", type=str, help="Directory of experiment") |
ce4a6b1b9 Plot 4 figures in... |
41 42 43 44 |
parser.add_argument("--measurefile", type=str, default="measures.json", help="Measure file it searchs in folders") parser.add_argument("--suffix", type=str, default="", help="suffix of saved files") |
ee5cc2a7e Regroup all measu... |
45 46 47 |
args = parser.parse_args() EXP_DIR = args.expdir |
ce4a6b1b9 Plot 4 figures in... |
48 |
MEASURE_FILE = args.measurefile |
ee5cc2a7e Regroup all measu... |
49 |
SUFFIX = args.suffix |
ce4a6b1b9 Plot 4 figures in... |
50 51 |
# EXP_DIR="exp/kmeans_teacher_1/pvector-1" RESULTS_DIR = os.path.join(EXP_DIR, "res") |
ee5cc2a7e Regroup all measu... |
52 53 54 55 56 57 58 59 |
# -- CONFIG kmin = 2 kmax = 100 # -- CREATE FOLDER if not os.path.exists(RESULTS_DIR): |
ce4a6b1b9 Plot 4 figures in... |
60 |
os.makedirs(RESULTS_DIR) |
ee5cc2a7e Regroup all measu... |
61 62 63 64 65 66 |
# -- BEGIN REGROUPMENT subsets = ["train", "val"] disequilibriums = [] |
ce4a6b1b9 Plot 4 figures in... |
67 |
|
ee5cc2a7e Regroup all measu... |
68 |
def init_measures(): |
ce4a6b1b9 Plot 4 figures in... |
69 70 71 72 73 74 75 76 77 |
measures = {} for subset in subsets: measures[subset] = {} measures[subset]["entropy"] = [] measures[subset]["vscore"] = [] measures[subset]["homogeneity"] = [] measures[subset]["completeness"] = [] return measures |
ee5cc2a7e Regroup all measu... |
78 |
|
ee5cc2a7e Regroup all measu... |
79 80 81 82 |
measures = init_measures() for kfold in range(1, 5): |
ce4a6b1b9 Plot 4 figures in... |
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
print("Regrouping on kfold: " + str(kfold)) # -- REGROUP MEASURES INTO LISTS for k in range(kmin, kmax+1): measures_file = os.path.join(EXP_DIR, str(kfold), str(k), MEASURE_FILE) with open(measures_file, 'r') as f: meas_data = json.load(f) disequilibriums.append(meas_data["disequilibrium"]) for subset in subsets: measures[subset]["entropy"].append( meas_data[subset]["entropy"]) measures[subset]["vscore"].append( meas_data[subset]["vscore"]) measures[subset]["homogeneity"].append( meas_data[subset]["homogeneity"]) measures[subset]["completeness"].append( meas_data[subset]["completeness"]) # -- PLOT AND SAVE MEASURES FOR A SPECIFIC SUBSET for subset in subsets: # Plot all measures outf = "measures_" + str(subset) + "_" + str(kfold) + str(SUFFIX) + ".pdf" fig = plt.figure(1) for i, measure in enumerate(measures[subset]): plt.subplot(220 + i + 1) plot_values_clusters( measures[subset][measure], measure.capitalize() + " " + str(subset) + " set " + str(kfold), "N clusters", measure.capitalize()) plt.subplots_adjust(hspace=0.5, wspace=0.3) save_plot(os.path.join(RESULTS_DIR, outf)) # Save all measures on a csv file save_results( os.path.join(RESULTS_DIR, "measures_" + str(subset) + "_" + str(kfold) + str(SUFFIX) + ".csv"), [ measures[subset]["entropy"], measures[subset]["homogeneity"], measures[subset]["completeness"], measures[subset]["vscore"] ], [ "entropy", "homogeneity", "completeness", "vscore" ] ) # PLOT AND SAVE FOR DISEQUILIBRIUM plot_values_clusters( disequilibriums, "Disequilibrium set " + str(kfold), "N clusters", "Disequilibrium") save_plot(os.path.join(RESULTS_DIR, "disequilibrium_" + str(kfold) + str(SUFFIX) + ".pdf")) save_results( os.path.join(RESULTS_DIR, "disequilibrium_" + str(kfold) + str(SUFFIX) + ".csv"), [disequilibriums], ["disequilibrium"]) measures = init_measures() disequilibriums = [] |