Blame view
bin/regroup-measures.py
4.35 KB
ee5cc2a7e
|
1 2 |
''' Regroup results into one file and a plot. |
ce4a6b1b9
|
3 4 |
TODO: Mettre en valeur les valeurs maximales TODO: Sauvegarder les valeurs quelques part pour qu'on puisse facilement les retrouver. |
ee5cc2a7e
|
5 6 7 8 9 10 11 |
''' import numpy as np import matplotlib.pyplot as plt import argparse import os import json |
ce4a6b1b9
|
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
def plot_values_clusters(values, title, xlabel, ylabel): values = np.asarray(values) x = np.arange(len(values)) + 2 x_ticks = np.arange(len(values), step=10) + 2 y = values plt.scatter(x, y, s=1) plt.xticks(x_ticks) plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) def save_plot(filepath): plt.savefig(filepath) plt.close() def save_results(outfile, measures, titles): with open(outfile, "w") as f: f.write(",".join(titles) + " ") n = len(measures[0]) for i in range(n): f.write(",".join([str(ms[i]) for ms in measures]) + " ") |
ee5cc2a7e
|
37 38 39 40 |
# -- PARSER parser = argparse.ArgumentParser(description="") parser.add_argument("expdir", type=str, help="Directory of experiment") |
ce4a6b1b9
|
41 42 43 44 |
parser.add_argument("--measurefile", type=str, default="measures.json", help="Measure file it searchs in folders") parser.add_argument("--suffix", type=str, default="", help="suffix of saved files") |
ee5cc2a7e
|
45 46 47 |
args = parser.parse_args() EXP_DIR = args.expdir |
ce4a6b1b9
|
48 |
MEASURE_FILE = args.measurefile |
ee5cc2a7e
|
49 |
SUFFIX = args.suffix |
ce4a6b1b9
|
50 51 |
# EXP_DIR="exp/kmeans_teacher_1/pvector-1" RESULTS_DIR = os.path.join(EXP_DIR, "res") |
ee5cc2a7e
|
52 53 54 55 56 57 58 59 |
# -- CONFIG kmin = 2 kmax = 100 # -- CREATE FOLDER if not os.path.exists(RESULTS_DIR): |
ce4a6b1b9
|
60 |
os.makedirs(RESULTS_DIR) |
ee5cc2a7e
|
61 62 63 64 65 66 |
# -- BEGIN REGROUPMENT subsets = ["train", "val"] disequilibriums = [] |
ce4a6b1b9
|
67 |
|
ee5cc2a7e
|
68 |
def init_measures(): |
ce4a6b1b9
|
69 70 71 72 73 74 75 76 77 |
measures = {} for subset in subsets: measures[subset] = {} measures[subset]["entropy"] = [] measures[subset]["vscore"] = [] measures[subset]["homogeneity"] = [] measures[subset]["completeness"] = [] return measures |
ee5cc2a7e
|
78 |
|
ee5cc2a7e
|
79 80 81 82 |
measures = init_measures() for kfold in range(1, 5): |
ce4a6b1b9
|
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
print("Regrouping on kfold: " + str(kfold)) # -- REGROUP MEASURES INTO LISTS for k in range(kmin, kmax+1): measures_file = os.path.join(EXP_DIR, str(kfold), str(k), MEASURE_FILE) with open(measures_file, 'r') as f: meas_data = json.load(f) disequilibriums.append(meas_data["disequilibrium"]) for subset in subsets: measures[subset]["entropy"].append( meas_data[subset]["entropy"]) measures[subset]["vscore"].append( meas_data[subset]["vscore"]) measures[subset]["homogeneity"].append( meas_data[subset]["homogeneity"]) measures[subset]["completeness"].append( meas_data[subset]["completeness"]) # -- PLOT AND SAVE MEASURES FOR A SPECIFIC SUBSET for subset in subsets: # Plot all measures outf = "measures_" + str(subset) + "_" + str(kfold) + str(SUFFIX) + ".pdf" fig = plt.figure(1) for i, measure in enumerate(measures[subset]): plt.subplot(220 + i + 1) plot_values_clusters( measures[subset][measure], measure.capitalize() + " " + str(subset) + " set " + str(kfold), "N clusters", measure.capitalize()) plt.subplots_adjust(hspace=0.5, wspace=0.3) save_plot(os.path.join(RESULTS_DIR, outf)) # Save all measures on a csv file save_results( os.path.join(RESULTS_DIR, "measures_" + str(subset) + "_" + str(kfold) + str(SUFFIX) + ".csv"), [ measures[subset]["entropy"], measures[subset]["homogeneity"], measures[subset]["completeness"], measures[subset]["vscore"] ], [ "entropy", "homogeneity", "completeness", "vscore" ] ) # PLOT AND SAVE FOR DISEQUILIBRIUM plot_values_clusters( disequilibriums, "Disequilibrium set " + str(kfold), "N clusters", "Disequilibrium") save_plot(os.path.join(RESULTS_DIR, "disequilibrium_" + str(kfold) + str(SUFFIX) + ".pdf")) save_results( os.path.join(RESULTS_DIR, "disequilibrium_" + str(kfold) + str(SUFFIX) + ".csv"), [disequilibriums], ["disequilibrium"]) measures = init_measures() disequilibriums = [] |