Blame view

volia/clustering_modules/kmeans_mahalanobis.py 4.68 KB
4152e83df   quillotm   Addind kmeans mah...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
  
  
  from sklearn.cluster import KMeans
  import pickle
  import numpy as np
  import matplotlib.pyplot as plt
  from sklearn.manifold import TSNE
  from abstract_clustering import AbstractClustering
  
  class kmeansMahalanobis():
      def __init__(self):
          """
  
          """
          self.C = None
          self.L = None
          self.K = None
  
      def predict(self, features):
          """
  
          @param features:
          @return:
          """
          N = features.shape[0]
          distances = np.zeros((N, self.K))
          for n in range(N):
              for k in range(self.K):
                  distances[n][k] = self._dist(features[n], self.C[k], self.L[k])
4152e83df   quillotm   Addind kmeans mah...
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
          closest_cluster = np.argmin(distances, axis=1)
          return closest_cluster
  
      def load(self, model_path):
          """
  
          @param model_path:
          @return:
          """
          data = None
          with open(model_path):
              data = pickle.load()
          if data is None:
              raise Exception("Le modèle n'a pas pu être chargé")
          else:
              self.C = data["C"]
              self.L = data["L"]
              self.K = data["K"]
  
      def save(self, modelpath: str):
          """
  
          @param modelpath:
          @return:
          """
          data = {
              "C": self.C,
              "L": self.L,
              "K": self.K
          }
          with open(modelpath, "wb") as f:
              pickle.dump(data, f)
  
      def fit(self, features, K: int):
          self._train(features, K)
  
      def _initialize_model(self, X, number_clusters):
          d = X.shape[1]
          C = X[np.random.choice(X.shape[0], number_clusters)]
          L = np.zeros((number_clusters, d, d))
          for k in range(number_clusters):
              L[k] = np.identity(d)
          return C, L
  
      def _dist(self, a, b, l):
          '''
          Distance euclidienne
          '''
          a = np.reshape(a, (-1, 1))
          b = np.reshape(b, (-1, 1))
          result = np.transpose(a - b).dot(l).dot(a-b)[0][0]
          return result
  
      def _plot_iteration(self, iteration, points, clusters, centers):
          fig = plt.figure()
          ax = fig.add_subplot(111)
          scatter = ax.scatter(points[:, 0], points[:, 1], c=clusters, s=50)
  
          #for center in centers:
          #    ax.scatter(center[0], center[1], s=50, c='red', marker='+')
          ax.scatter(centers[:, 0], centers[:, 1], s=50, c='red', marker='+')
  
          ax.set_xlabel('x')
          ax.set_ylabel('y')
          plt.colorbar(scatter)
          #plt.ylim(0, 1)
          #plt.xlim(0, 1)
          plt.savefig("test_" + str(iteration) + ".pdf")
  
      def _train(self, features, K: int):
          X = features
          N = X.shape[0]
          d = X.shape[1]
  
          C, L = self._initialize_model(X, K)
          self.C = C
          self.L = L
          self.K = K
  
          end_algo = False
          i = 0
          while not end_algo:
              if i == 10:
                  exit(1)
              print("Iteration: ", i)
              # Calcul matrix distance
              distances = np.zeros((N, K))
  
              for n in range(N):
                  for k in range(self.K):
                      distances[n][k] = self._dist(X[n], self.C[k], self.L[k])
4152e83df   quillotm   Addind kmeans mah...
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
              closest_cluster = np.argmin(distances, axis=1)
              if i % 1 == 0:
                  # -- Debug tool ----------------------
                  # TSNE
                  #X_embedded = np.concatenate((X, self.C), axis=0)
                  X_embedded = TSNE(n_components=2).fit_transform(np.concatenate((X, C), axis=0))
                  # Then plot
                  self._plot_iteration(
                      i,
                      X_embedded[:X.shape[0]],
                      closest_cluster,
                      X_embedded[X.shape[0]:]
                  )
                  # ------------------------------------
  
              end_algo = True
              for k in range(K):
                  # Find subset of X with values closed to the centroid c_k.
                  X_sub = np.where(closest_cluster == k)
                  X_sub = np.take(X, X_sub[0], axis=0)
d4507c268   quillotm   We do not update ...
141
142
                  if X_sub.shape[0] == 0:
                      continue
4152e83df   quillotm   Addind kmeans mah...
143
144
145
146
147
148
149
150
151
152
                  np.mean(X_sub, axis=0)
                  C_new = np.mean(X_sub, axis=0)
  
                  # -- COMPUTE NEW LAMBDA (here named K) --
                  K_new = np.zeros((L.shape[1], L.shape[2]))
                  for x in X_sub:
                      x = np.reshape(x, (-1, 1))
                      c_tmp = np.reshape(C_new, (-1, 1))
                      K_new = K_new + (x - c_tmp).dot((x - c_tmp).transpose())
                  K_new = K_new / X_sub.shape[0]
d4507c268   quillotm   We do not update ...
153
                  K_new = np.linalg.pinv(K_new)
4152e83df   quillotm   Addind kmeans mah...
154
155
156
157
158
159
  
                  if end_algo and (not (self.C[k] == C_new).all()):  # If the same stop
                      end_algo = False
                  self.C[k] = C_new
                  self.L[k] = K_new
              i = i + 1