Commit 3e2abe83e33bc90ce6e11f0ab38fd27a80b63284

Authored by quillotm
1 parent e828890879
Exists in master

Multiple output for measure action. These multiple output are written in json.

Showing 1 changed file with 29 additions and 14 deletions Inline Diff

1 import argparse 1 import argparse
2 from os import path, mkdir 2 from os import path, mkdir
3 from utils import SubCommandRunner 3 from utils import SubCommandRunner
4 from core.data import read_features, read_lst, read_labels 4 from core.data import read_features, read_lst, read_labels
5 import numpy as np 5 import numpy as np
6 from sklearn.cluster import KMeans 6 from sklearn.cluster import KMeans
7 import pickle 7 import pickle
8 from clustering_modules.kmeans import kmeans 8 from clustering_modules.kmeans import kmeans
9 9
10 from sklearn.preprocessing import LabelEncoder 10 from sklearn.preprocessing import LabelEncoder
11 from sklearn.metrics import v_measure_score 11 from sklearn.metrics import v_measure_score
12 12
13 import core.measures 13 import core.measures
14 import json
14 15
15 16
16 CLUSTERING_METHODS = { 17 CLUSTERING_METHODS = {
17 "k-means": kmeans() 18 "k-means": kmeans()
18 } 19 }
19 20
20 EVALUATION_METHODS = { 21 EVALUATION_METHODS = {
21 "entropy": core.measures.entropy_score, 22 "entropy": core.measures.entropy_score,
22 "v-measure": v_measure_score 23 "v-measure": v_measure_score
23 } 24 }
24 25
25 26
26 def disequilibrium_run(): 27 def disequilibrium_run():
27 pass 28 pass
28 29
29 30
30 def measure_run(measure: str, features: str, lst: str, truelabels: str, model: str, modeltype: str): 31 def measure_run(measure: str, features: str, lst: str, truelabels: str, model: str, modeltype: str):
32 """
33
34 @param measure:
35 @param features:
36 @param lst:
37 @param truelabels:
38 @param model:
39 @param modeltype:
40 @return:
41 """
31 module = CLUSTERING_METHODS[modeltype] 42 module = CLUSTERING_METHODS[modeltype]
32 module.load(model) 43 module.load(model)
33 evaluation = EVALUATION_METHODS[measure]
34 feats_dict = read_features(features)
35 labels_dict = read_labels(truelabels)
36 lst_dict = read_lst(lst)
37 lst_keys = [key for key in lst_dict]
38 feats = np.asarray([feats_dict[key] for key in lst_keys])
39 Y_pred = module.predict(feats)
40 Y_truth = [labels_dict[key][0] for key in lst_keys]
41 44
42 le = LabelEncoder() 45 eval = {}
43 le.fit(Y_truth) 46 for ms in measure:
44 Y_truth = le.transform(Y_truth) 47 evaluation = EVALUATION_METHODS[ms]
48 feats_dict = read_features(features)
49 labels_dict = read_labels(truelabels)
50 lst_dict = read_lst(lst)
51 lst_keys = [key for key in lst_dict]
52 feats = np.asarray([feats_dict[key] for key in lst_keys])
53 Y_pred = module.predict(feats)
54 Y_truth = [labels_dict[key][0] for key in lst_keys]
45 55
46 eval = evaluation(Y_truth, Y_pred) 56 le = LabelEncoder()
47 print(eval) 57 le.fit(Y_truth)
58 Y_truth = le.transform(Y_truth)
48 59
60 eval[ms] = evaluation(Y_truth, Y_pred)
49 61
62 print(json.dumps(eval))
50 63
64
65
51 def kmeans_run(features: str, lst: str, k:int, kmax: int, klist, output: str): 66 def kmeans_run(features: str, lst: str, k:int, kmax: int, klist, output: str):
52 """ 67 """
53 68
54 @param features: output features 69 @param features: output features
55 @param lst: list file 70 @param lst: list file
56 @param k: k (kmin if kmax specified) 71 @param k: k (kmin if kmax specified)
57 @param kmax: maximum k to compute 72 @param kmax: maximum k to compute
58 @param klist: list of k values to compute, ignore k value 73 @param klist: list of k values to compute, ignore k value
59 @param output: output file if kmax not specified, else, output directory 74 @param output: output file if kmax not specified, else, output directory
60 """ 75 """
61 # -- READ FILES -- 76 # -- READ FILES --
62 features_dict = read_features(features) 77 features_dict = read_features(features)
63 lst_dict = read_lst(lst) 78 lst_dict = read_lst(lst)
64 X = np.asarray([features_dict[x] for x in lst_dict]) 79 X = np.asarray([features_dict[x] for x in lst_dict])
65 80
66 # Exception cases 81 # Exception cases
67 if kmax is None and klist is None and path.isdir(output): 82 if kmax is None and klist is None and path.isdir(output):
68 raise Exception("The \"output\" is an existing directory while the system is waiting the path of a file.") 83 raise Exception("The \"output\" is an existing directory while the system is waiting the path of a file.")
69 84
70 if (kmax is not None or klist is not None) and path.isfile(output): 85 if (kmax is not None or klist is not None) and path.isfile(output):
71 raise Exception("The \"output\" is an existing file while the system is waiting the path of a directory.") 86 raise Exception("The \"output\" is an existing file while the system is waiting the path of a directory.")
72 87
73 # Mono value case 88 # Mono value case
74 if kmax is None and klist is None: 89 if kmax is None and klist is None:
75 print(f"Computing clustering with k={k}") 90 print(f"Computing clustering with k={k}")
76 kmeans = KMeans(n_clusters=k, n_init=10, random_state=0).fit(X) 91 kmeans = KMeans(n_clusters=k, n_init=10, random_state=0).fit(X)
77 preds = kmeans.predict(X) 92 preds = kmeans.predict(X)
78 pickle.dump(kmeans, open(output, "wb")) 93 pickle.dump(kmeans, open(output, "wb"))
79 94
80 # Multi values case with kmax 95 # Multi values case with kmax
81 if kmax is not None: 96 if kmax is not None:
82 if not path.isdir(output): 97 if not path.isdir(output):
83 mkdir(output) 98 mkdir(output)
84 Ks = range(k, kmax + 1) 99 Ks = range(k, kmax + 1)
85 for i in Ks: 100 for i in Ks:
86 print(f"Computing clustering with k={i}") 101 print(f"Computing clustering with k={i}")
87 kmeans = KMeans(n_clusters=i, n_init=10, random_state=0).fit(X) 102 kmeans = KMeans(n_clusters=i, n_init=10, random_state=0).fit(X)
88 preds = kmeans.predict(X) 103 preds = kmeans.predict(X)
89 pickle.dump(kmeans, open(path.join(output, "clustering_" + str(i) + ".pkl"), "wb")) 104 pickle.dump(kmeans, open(path.join(output, "clustering_" + str(i) + ".pkl"), "wb"))
90 105
91 # Second multi values case with klist 106 # Second multi values case with klist
92 if klist is not None: 107 if klist is not None:
93 if not path.isdir(output): 108 if not path.isdir(output):
94 mkdir(output) 109 mkdir(output)
95 for k in klist: 110 for k in klist:
96 k = int(k) 111 k = int(k)
97 print(f"Computing clustering with k={k}") 112 print(f"Computing clustering with k={k}")
98 kmeans = KMeans(n_clusters=k, n_init=10, random_state=0).fit(X) 113 kmeans = KMeans(n_clusters=k, n_init=10, random_state=0).fit(X)
99 preds = kmeans.predict(X) 114 preds = kmeans.predict(X)
100 pickle.dump(kmeans, open(path.join(output, "clustering_" + str(k) + ".pkl"), "wb")) 115 pickle.dump(kmeans, open(path.join(output, "clustering_" + str(k) + ".pkl"), "wb"))
101 116
102 117
103 if __name__ == "__main__": 118 if __name__ == "__main__":
104 # Main parser 119 # Main parser
105 parser = argparse.ArgumentParser(description="Clustering methods to apply") 120 parser = argparse.ArgumentParser(description="Clustering methods to apply")
106 subparsers = parser.add_subparsers(title="action") 121 subparsers = parser.add_subparsers(title="action")
107 122
108 # kmeans 123 # kmeans
109 parser_kmeans = subparsers.add_parser( 124 parser_kmeans = subparsers.add_parser(
110 "kmeans", help="Compute clustering using k-means algorithm") 125 "kmeans", help="Compute clustering using k-means algorithm")
111 126
112 parser_kmeans.add_argument("--features", required=True, type=str, help="Features file (works with list)") 127 parser_kmeans.add_argument("--features", required=True, type=str, help="Features file (works with list)")
113 parser_kmeans.add_argument("--lst", required=True, type=str, help="List file (.lst)") 128 parser_kmeans.add_argument("--lst", required=True, type=str, help="List file (.lst)")
114 parser_kmeans.add_argument("-k", default=2, type=int, 129 parser_kmeans.add_argument("-k", default=2, type=int,
115 help="number of clusters to compute. It is kmin if kmax is specified.") 130 help="number of clusters to compute. It is kmin if kmax is specified.")
116 parser_kmeans.add_argument("--kmax", default=None, type=int, help="if specified, k is kmin.") 131 parser_kmeans.add_argument("--kmax", default=None, type=int, help="if specified, k is kmin.")
117 parser_kmeans.add_argument("--klist", nargs="+", 132 parser_kmeans.add_argument("--klist", nargs="+",
118 help="List of k values to test. As kmax, activate the multi values mod.") 133 help="List of k values to test. As kmax, activate the multi values mod.")
119 parser_kmeans.add_argument("--output", default=".kmeans", help="output file if only k. Output directory if multiple kmax specified.") 134 parser_kmeans.add_argument("--output", default=".kmeans", help="output file if only k. Output directory if multiple kmax specified.")
120 parser_kmeans.set_defaults(which="kmeans") 135 parser_kmeans.set_defaults(which="kmeans")
121 136
122 # measure 137 # measure
123 parser_measure = subparsers.add_parser( 138 parser_measure = subparsers.add_parser(
124 "measure", help="compute the entropy") 139 "measure", help="compute the entropy")
125 140
126 parser_measure.add_argument("--measure", 141 parser_measure.add_argument("--measure",
127 required=True, 142 required=True,
128 type=str, 143 nargs="+",
129 choices=[key for key in EVALUATION_METHODS], 144 choices=[key for key in EVALUATION_METHODS],
130 help="...") 145 help="...")
131 parser_measure.add_argument("--features", required=True, type=str, help="...") 146 parser_measure.add_argument("--features", required=True, type=str, help="...")
132 parser_measure.add_argument("--lst", required=True, type=str, help="...") 147 parser_measure.add_argument("--lst", required=True, type=str, help="...")
133 parser_measure.add_argument("--truelabels", required=True, type=str, help="...") 148 parser_measure.add_argument("--truelabels", required=True, type=str, help="...")
134 parser_measure.add_argument("--model", required=True, type=str, help="...") 149 parser_measure.add_argument("--model", required=True, type=str, help="...")
135 parser_measure.add_argument("--modeltype", 150 parser_measure.add_argument("--modeltype",
136 required=True, 151 required=True,
137 choices=[key for key in CLUSTERING_METHODS], 152 choices=[key for key in CLUSTERING_METHODS],
138 help="type of model for learning") 153 help="type of model for learning")
139 parser_measure.set_defaults(which="measure") 154 parser_measure.set_defaults(which="measure")
140 155
141 # disequilibrium 156 # disequilibrium
142 parser_disequilibrium = subparsers.add_parser( 157 parser_disequilibrium = subparsers.add_parser(
143 "disequilibrium", help="...") 158 "disequilibrium", help="...")
144 159
145 parser_disequilibrium.add_argument("--features", required=True, type=str, help="...") 160 parser_disequilibrium.add_argument("--features", required=True, type=str, help="...")
146 parser_disequilibrium.add_argument("--lstrain", required=True, type=str, help="...") 161 parser_disequilibrium.add_argument("--lstrain", required=True, type=str, help="...")
147 parser_disequilibrium.add_argument("--lstest", required=True, type=str, help="...") 162 parser_disequilibrium.add_argument("--lstest", required=True, type=str, help="...")
148 parser_disequilibrium.add_argument("--model", required=True, type=str, help="...") 163 parser_disequilibrium.add_argument("--model", required=True, type=str, help="...")
149 parser_disequilibrium.add_argument("--model-type", 164 parser_disequilibrium.add_argument("--model-type",
150 required=True, 165 required=True,
151 choices=["kmeans", "2", "3"], 166 choices=["kmeans", "2", "3"],
152 help="...") 167 help="...")
153 parser_disequilibrium.set_defaults(which="disequilibrium") 168 parser_disequilibrium.set_defaults(which="disequilibrium")
154 169
155 # Parse 170 # Parse
156 args = parser.parse_args() 171 args = parser.parse_args()
157 172
158 # Run commands 173 # Run commands