Blame view
Classif_with_raw_train.ipynb
168 KB
b6d0165d1 Initial commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 |
{ "cells": [ { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import itertools ", " ", "import shelve ", " ", "import pickle ", " ", "import pandas ", " ", "import numpy as np ", " ", "import nltk ", " ", "import codecs ", " ", "import gensim ", " ", "import scipy ", " ", "from scipy import sparse ", " ", "import scipy.sparse ", " ", "import scipy.io ", " ", "import sklearn ", " ", "from sklearn.feature_extraction.text import CountVectorizer ", " ", "import sklearn.metrics ", " ", "from sklearn.neighbors import NearestNeighbors ", " ", "from sklearn.metrics import confusion_matrix ", " ", "from sklearn import preprocessing ", "from keras.models import Sequential ", "from keras.layers.core import Dense, Dropout, Activation,AutoEncoder ", "from keras.optimizers import SGD,Adam ", "from keras.layers import containers ", "from mlp import * ", "import mlp ", "import sys ", "import utils ", "from sklearn.preprocessing import LabelBinarizer" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "corps=shelve.open(\"models/DECODA_AE_TANH_1060_TFIDF.shelve\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "lb=LabelBinarizer() ", "y_train=lb.fit_transform([utils.select(ligneid) for ligneid in corps[\"LABEL\"][\"TRAIN\"]]) ", "y_dev=lb.transform([utils.select(ligneid) for ligneid in corps[\"LABEL\"][\"DEV\"]]) ", "y_test=lb.transform([utils.select(ligneid) for ligneid in corps[\"LABEL\"][\"TEST\"]]) ", "keys = corps.keys() ", "if \"LABEL\" in keys: ", " keys.remove(\"LABEL\")" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "keys=[\"TRS_SPARSE\",\"ASR_SPARSE\",\"ASR_H2_TRANFORMED_OUT\",\"ASR_H1_TRANFORMED_OUT\",\"TRS_AE_OUT\"]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "out_db=shelve.open(\"scores/RAW_TRS_TRAIN.shelve\",writeback=True)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "TRS_SPARSE ", "Save 0 ", "Save 3 ", "Save 4 ", "Save 5 ", "Save 6 ", "Save 8 ", "Save 10 ", "Save 11 ", "Save 13 ", "Save 14 ", "Save 15 ", "Save 16 ", "Save 19 ", "Save 22 ", "Save 23 ", "Save 24 ", "Save 25 ", "Save 26 ", "Save 29 ", "Save 32 ", "Save 36 ", "Save 37 ", "Save 41 ", "Save 42 ", "Save 45 ", "Save 48 ", "Save 50 ", "Save 51 ", "Save 54 ", "Save 57 ", "Save 59 ", "Save 62 ", "Save 68 ", "Save 73 ", "Save 74 ", "Save 78 ", "Save 83 ", "Save 85 ", "Save 88 ", "Save 91 ", "Save 93 ", "Save 94 ", "Save 97 ", "Save 104 ", "Save 107 ", "Save 111 ", "Save 112 ", "Save 120 ", "Save 124 ", "Save 129 ", "Save 132 ", "Save 134 ", "Save 138 ", "Save 140 ", "Save 141 ", "Save 144 ", "Save 147 ", "Save 151 ", "Save 152 ", "Save 153 ", "Save 154 ", "Save 156 ", "Save 158 ", "Save 161 ", "Save 174 ", "Save 175 ", "Save 179 ", "Save 183 ", "Save 185 ", "Save 187 ", "Save 194 ", "Save 199 ", "Save 200 ", "Save 205 ", "Save 208 ", "Save 212 ", "Save 217 ", "Save 223 ", "Save 231 ", "Save 233 ", "Save 236 ", "Save 238 ", "Save 246 ", "Save 249 ", "Save 254 ", "Save 258 ", "Save 264 ", "Save 267 ", "Save 271 ", "Save 274 ", "Save 278 ", "Save 281 ", "Save 285 ", "Save 286 ", "Save 292 ", "Save 299 ", "Save 302 ", "Save 304 ", "Save 311 ", "Save 312 ", "Save 315 ", "Save 318 ", "Save 328 ", "Save 330 ", "Save 333 ", "Save 336 ", "Save 337 ", "Save 338 ", "Save 339 ", "Save 344 ", "Save 346 ", "Save 350 ", "Save 352 ", "Save 354 ", "Save 356 ", "Save 358 ", "Save 361 ", "Save 367 ", "Save 371 ", "Save 373 ", "Save 374 ", "Save 385 ", "Save 390 ", "Save 394 ", "Save 396 ", "Save 398 ", "Save 399 ", "Save 403 ", "Save 409 ", "Save 413 ", "Save 415 ", "Save 418 ", "Save 419 ", "Save 444 ", "Save 445 ", "Save 465 ", "Save 468 ", "Save 470 ", "Save 477 ", "Save 484 ", "Save 487 ", "Save 490 ", "Save 493 ", "ASR_SPARSE ", "Save 0 ", "Save 3 ", "Save 4 ", "Save 5 ", "Save 6 ", "Save 8 ", "Save 11 ", "Save 14 ", "Save 16 ", "Save 17 ", "Save 21 ", "Save 23 ", "Save 24 ", "Save 27 ", "Save 29 ", "Save 30 ", "Save 32 ", "Save 33 ", "Save 34 ", "Save 35 ", "Save 38 ", "Save 40 ", "Save 42 ", "Save 44 ", "Save 46 ", "Save 52 ", "Save 54 ", "Save 56 ", "Save 61 ", "Save 62 ", "Save 63 ", "Save 66 ", "Save 68 ", "Save 75 ", "Save 78 ", "Save 83 ", "Save 86 ", "Save 88 ", "Save 89 ", "Save 92 ", "Save 95 ", "Save 99 ", "Save 103 ", "Save 106 ", "Save 107 ", "Save 108 ", "Save 111 ", "Save 118 ", "Save 120 ", "Save 125 ", "Save 128 ", "Save 130 ", "Save 136 ", "Save 142 ", "Save 143 ", "Save 146 ", "Save 147 ", "Save 153 ", "Save 154 ", "Save 156 ", "Save 157 ", "Save 161 ", "Save 162 ", "Save 164 ", "Save 166 ", "Save 167 ", "Save 170 ", "Save 174 ", "Save 177 ", "Save 178 ", "Save 184 ", "Save 185 ", "Save 188 ", "Save 189 ", "Save 193 ", "Save 196 ", "Save 197 ", "Save 199 ", "Save 203 ", "Save 207 ", "Save 211 ", "Save 215 ", "Save 218 ", "Save 219 ", "Save 221 ", "Save 228 ", "Save 234 ", "Save 236 ", "Save 242 ", "Save 244 ", "Save 246 ", "Save 249 ", "Save 252 ", "Save 255 ", "Save 259 ", "Save 266 ", "Save 273 ", "Save 278 ", "Save 283 ", "Save 285 ", "Save 293 ", "Save 298 ", "Save 302 ", "Save 307 ", "Save 309 ", "Save 321 ", "Save 325 ", "Save 327 ", "Save 331 ", "Save 332 ", "Save 336 ", "Save 338 ", "Save 349 ", "Save 351 ", "Save 359 ", "Save 364 ", "Save 365 ", "Save 370 ", "Save 412 ", "Save 413 ", "Save 415 ", "Save 424 ", "Save 425 ", "Save 426 ", "Save 428 ", "Save 435 ", "Save 440 ", "Save 442 ", "Save 457 ", "Save 466 ", "Save 470 ", "Save 475 ", "Save 485 ", "Save 487 ", "Save 491 ", "Save 494 ", "Save 496 ", "ASR_H2_TRANFORMED_OUT ", "Save 0 ", "Save 4 ", "Save 5 ", "Save 6 ", "Save 10 ", "Save 13 ", "Save 14 ", "Save 16 ", "Save 19 ", "Save 20 ", "Save 23 ", "Save 27 ", "Save 29 ", "Save 31 ", "Save 34 ", "Save 35 ", "Save 39 ", "Save 44 ", "Save 47 ", "Save 48 ", "Save 51 ", "Save 52 ", "Save 54 ", "Save 56 ", "Save 57 ", "Save 59 ", "Save 60 ", "Save 63 ", "Save 64 ", "Save 67 ", "Save 68 ", "Save 70 ", "Save 71 ", "Save 75 ", "Save 77 ", "Save 78 ", "Save 80 ", "Save 81 ", "Save 84 ", "Save 85 ", "Save 90 ", "Save 91 ", "Save 94 ", "Save 97 ", "Save 100 ", "Save 102 ", "Save 104 ", "Save 106 ", "Save 108 ", "Save 109 ", "Save 111 ", "Save 113 ", "Save 116 ", "Save 117 ", "Save 120 ", "Save 121 ", "Save 123 ", "Save 126 ", "Save 128 ", "Save 129 ", "Save 130 ", "Save 133 ", "Save 134 ", "Save 137 ", "Save 138 ", "Save 139 ", "Save 140 ", "Save 142 ", "Save 143 ", "Save 146 ", "Save 147 ", "Save 149 ", "Save 152 ", "Save 156 ", "Save 157 ", "Save 161 ", "Save 163 ", "Save 165 ", "Save 170 ", "Save 172 ", "Save 175 ", "Save 176 ", "Save 178 ", "Save 179 ", "Save 183 ", "Save 184 ", "Save 185 ", "Save 188 ", "Save 189 ", "Save 191 ", "Save 197 ", "Save 200 ", "Save 205 ", "Save 207 ", "Save 209 ", "Save 211 ", "Save 213 ", "Save 214 ", "Save 217 ", "Save 218 ", "Save 219 ", "Save 220 ", "Save 221 ", "Save 225 ", "Save 226 ", "Save 228 ", "Save 229 ", "Save 232 ", "Save 237 ", "Save 238 ", "Save 242 ", "Save 245 ", "Save 246 ", "Save 248 ", "Save 250 ", "Save 251 ", "Save 252 ", "Save 254 ", "Save 256 ", "Save 259 ", "Save 262 ", "Save 263 ", "Save 273 ", "Save 277 ", "Save 279 ", "Save 281 ", "Save 283 ", "Save 284 ", "Save 295 ", "Save 298 ", "Save 300 ", "Save 301 ", "Save 302 ", "Save 310 ", "Save 313 ", "Save 321 ", "Save 324 ", "Save 325 ", "Save 332 ", "Save 334 ", "Save 343 ", "Save 350 ", "Save 351 ", "Save 354 ", "Save 361 ", "Save 364 ", "Save 365 ", "Save 369 ", "Save 376 ", "Save 378 ", "Save 387 ", "Save 389 ", "Save 399 ", "Save 404 ", "Save 410 ", "Save 411 ", "Save 412 ", "Save 413 ", "Save 414 ", "Save 423 ", "Save 424 ", "Save 425 ", "Save 428 ", "Save 436 ", "Save 438 ", "Save 440 ", "Save 441 ", "Save 443 ", "Save 446 ", "Save 448 ", "Save 453 ", "Save 454 ", "Save 456 ", "Save 457 ", "Save 458 ", "Save 462 ", "Save 466 ", "Save 468 ", "Save 473 ", "Save 479 ", "Save 480 ", "Save 481 ", "Save 482 ", "Save 483 ", "Save 486 ", "Save 496 ", "Save 498 ", "ASR_H1_TRANFORMED_OUT ", "Save 0 ", "Save 4 ", "Save 5 ", "Save 6 ", "Save 7 ", "Save 9 ", "Save 12 ", "Save 19 ", "Save 20 ", "Save 24 ", "Save 27 ", "Save 30 ", "Save 31 ", "Save 34 ", "Save 38 ", "Save 39 ", "Save 40 ", "Save 43 ", "Save 45 ", "Save 48 ", "Save 50 ", "Save 56 ", "Save 57 ", "Save 58 ", "Save 60 ", "Save 62 ", "Save 64 ", "Save 66 ", "Save 68 ", "Save 70 ", "Save 72 ", "Save 73 ", "Save 74 ", "Save 76 ", "Save 77 ", "Save 83 ", "Save 87 ", "Save 91 ", "Save 93 ", "Save 96 ", "Save 99 ", "Save 101 ", "Save 103 ", "Save 104 ", "Save 109 ", "Save 110 ", "Save 113 ", "Save 117 ", "Save 122 ", "Save 125 ", "Save 128 ", "Save 133 ", "Save 136 ", "Save 138 ", "Save 139 ", "Save 142 ", "Save 144 ", "Save 148 ", "Save 150 ", "Save 152 ", "Save 155 ", "Save 158 ", "Save 161 ", "Save 162 ", "Save 165 ", "Save 168 ", "Save 169 ", "Save 171 ", "Save 173 ", "Save 176 ", "Save 178 ", "Save 179 ", "Save 182 ", "Save 185 ", "Save 189 ", "Save 190 ", "Save 191 ", "Save 196 ", "Save 197 ", "Save 198 ", "Save 202 ", "Save 203 ", "Save 208 ", "Save 212 ", "Save 214 ", "Save 216 ", "Save 218 ", "Save 225 ", "Save 226 ", "Save 228 ", "Save 229 ", "Save 231 ", "Save 234 ", "Save 235 ", "Save 238 ", "Save 242 ", "Save 250 ", "Save 254 ", "Save 257 ", "Save 265 ", "Save 268 ", "Save 269 ", "Save 271 ", "Save 273 ", "Save 275 ", "Save 276 ", "Save 278 ", "Save 279 ", "Save 282 ", "Save 283 ", "Save 284 ", "Save 286 ", "Save 292 ", "Save 293 ", "Save 296 ", "Save 297 ", "Save 299 ", "Save 301 ", "Save 307 ", "Save 310 ", "Save 311 ", "Save 312 ", "Save 313 ", "Save 318 ", "Save 321 ", "Save 324 ", "Save 325 ", "Save 326 ", "Save 329 ", "Save 330 ", "Save 332 ", "Save 333 ", "Save 335 ", "Save 337 ", "Save 340 ", "Save 349 ", "Save 351 ", "Save 352 ", "Save 353 ", "Save 355 ", "Save 359 ", "Save 362 ", "Save 365 ", "Save 366 ", "Save 368 ", "Save 370 ", "Save 372 ", "Save 373 ", "Save 378 ", "Save 387 ", "Save 395 ", "Save 401 ", "Save 402 ", "Save 403 ", "Save 407 ", "Save 408 ", "Save 413 ", "Save 415 ", "Save 418 ", "Save 420 ", "Save 421 ", "Save 422 ", "Save 423 ", "Save 426 ", "Save 431 ", "Save 432 ", "Save 433 ", "Save 435 ", "Save 436 ", "Save 438 ", "Save 440 ", "Save 441 ", "Save 442 ", "Save 444 ", "Save 445 ", "Save 448 ", "Save 453 ", "Save 459 ", "Save 460 ", "Save 467 ", "Save 469 ", "Save 472 ", "Save 474 ", "Save 476 ", "Save 481 ", "Save 484 ", "Save 488 ", "Save 491 ", "Save 495 ", "Save 499 ", "TRS_AE_OUT ", "Save 0 ", "Save 3 ", "Save 4 ", "Save 5 ", "Save 6 ", "Save 7 ", "Save 8 ", "Save 9 ", "Save 13 ", "Save 15 ", "Save 16 ", "Save 17 ", "Save 18 ", "Save 23 ", "Save 24 ", "Save 25 ", "Save 26 ", "Save 29 ", "Save 30 ", "Save 31 ", "Save 34 ", "Save 37 ", "Save 39 ", "Save 42 ", "Save 44 ", "Save 45 ", "Save 46 ", "Save 48 ", "Save 50 ", "Save 51 ", "Save 52 ", "Save 56 ", "Save 59 ", "Save 60 ", "Save 66 ", "Save 68 ", "Save 71 ", "Save 72 ", "Save 74 ", "Save 78 ", "Save 81 ", "Save 82 ", "Save 84 ", "Save 86 ", "Save 89 ", "Save 91 ", "Save 94 ", "Save 95 ", "Save 99 ", "Save 102 ", "Save 104 ", "Save 105 ", "Save 109 ", "Save 111 ", "Save 117 ", "Save 120 ", "Save 122 ", "Save 124 ", "Save 126 ", "Save 130 ", "Save 131 ", "Save 135 ", "Save 147 ", "Save 152 ", "Save 154 ", "Save 163 ", "Save 164 ", "Save 166 ", "Save 171 ", "Save 173 ", "Save 177 ", "Save 186 ", "Save 189 ", "Save 193 ", "Save 194 ", "Save 196 ", "Save 200 ", "Save 207 ", "Save 209 ", "Save 216 ", "Save 219 ", "Save 221 ", "Save 223 ", "Save 225 ", "Save 226 ", "Save 236 ", "Save 237 ", "Save 239 ", "Save 242 ", "Save 249 ", "Save 250 ", "Save 256 ", "Save 257 ", "Save 260 ", "Save 262 ", "Save 267 ", "Save 275 ", "Save 277 ", "Save 278 ", "Save 279 ", "Save 282 ", "Save 284 ", "Save 285 ", "Save 286 ", "Save 289 ", "Save 301 ", "Save 313 ", "Save 317 ", "Save 322 ", "Save 326 ", "Save 327 ", "Save 334 ", "Save 345 ", "Save 350 ", "Save 353 ", "Save 359 ", "Save 362 ", "Save 364 ", "Save 365 ", "Save 369 ", "Save 373 ", "Save 376 ", "Save 382 ", "Save 384 ", "Save 388 ", "Save 401 ", "Save 404 ", "Save 409 ", "Save 415 ", "Save 418 ", "Save 420 ", "Save 421 ", "Save 432 ", "Save 436 ", "Save 450 ", "Save 454 ", "Save 455 ", "Save 459 ", "Save 467 ", "Save 480 ", "Save 484 ", "Save 496 " ] } ], "source": [ "nb_epochs=500 ", "for key in keys: ", " print key ", " try: ", " x_train=corps[\"TRS_SPARSE\"][\"TRAIN\"].todense() ", " x_dev=corps[key][\"DEV\"].todense() ", " x_test=corps[key][\"TEST\"].todense() ", " except : ", " x_train=corps[\"TRS_SPARSE\"][\"TRAIN\"].todense() ", " x_dev=corps[key][\"DEV\"] ", " x_test=corps[key][\"TEST\"] ", " ", " out_db[key]=mlp.train_mlp(x_train,y_train,x_dev,y_dev,x_test,y_test,[256,128,256],dropouts=[0.5,0,0],sgd=Adam(lr=0.0001),epochs=nb_epochs,batch_size=8,save_pred=True,keep_histo=True,fit_verbose=0) ", "out_db.close()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "TRS_SPARSE ", "Save 0 ", "Save 4 ", "Save 5 ", "Save 6 ", "Save 7 ", "Save 9 ", "Save 10 ", "Save 12 ", "Save 16 ", "Save 17 ", "Save 18 ", "Save 19 ", "Save 22 ", "Save 24 ", "Save 28 ", "Save 29 ", "Save 33 ", "Save 34 ", "Save 35 ", "Save 36 ", "Save 38 ", "Save 39 ", "Save 42 ", "Save 44 ", "Save 46 ", "Save 48 ", "Save 50 ", "Save 57 ", "Save 60 ", "Save 64 ", "Save 65 ", "Save 74 ", "Save 76 ", "Save 78 ", "Save 83 ", "Save 88 ", "Save 92 ", "Save 102 ", "Save 104 ", "Save 106 ", "Save 108 ", "Save 115 ", "Save 119 ", "Save 121 ", "Save 123 ", "Save 128 ", "Save 133 ", "Save 134 ", "Save 136 ", "Save 141 ", "Save 146 ", "Save 153 ", "Save 162 ", "Save 165 ", "Save 169 ", "Save 171 ", "Save 173 ", "Save 175 ", "Save 177 ", "Save 182 ", "Save 189 ", "Save 193 ", "Save 197 ", "Save 202 ", "Save 205 ", "Save 211 ", "Save 215 ", "Save 216 ", "Save 233 ", "Save 238 ", "Save 251 ", "Save 254 ", "Save 262 ", "Save 266 ", "Save 269 ", "Save 274 ", "Save 277 ", "Save 280 ", "Save 282 ", "Save 286 ", "Save 290 ", "Save 291 ", "Save 294 ", "Save 298 ", "Save 301 ", "Save 303 ", "Save 310 ", "Save 314 ", "Save 319 ", "Save 323 ", "Save 334 ", "Save 339 ", "Save 359 ", "Save 363 ", "Save 365 ", "Save 375 ", "Save 380 ", "Save 382 ", "Save 388 ", "Save 390 ", "Save 393 ", "Save 396 ", "Save 406 ", "Save 412 ", "Save 422 ", "Save 433 ", "Save 438 ", "Save 452 ", "Save 459 ", "Save 464 ", "Save 475 ", "Save 485 ", "Save 493 ", "Save 494 ", "ASR_SPARSE ", "Save 0 ", "Save 3 ", "Save 4 ", "Save 5 ", "Save 6 ", "Save 7 ", "Save 8 ", "Save 10 ", "Save 16 ", "Save 17 ", "Save 19 ", "Save 26 ", "Save 28 ", "Save 31 ", "Save 32 ", "Save 34 ", "Save 35 ", "Save 39 ", "Save 41 ", "Save 43 ", "Save 46 ", "Save 47 ", "Save 51 ", "Save 52 ", "Save 53 ", "Save 55 ", "Save 57 ", "Save 60 ", "Save 61 ", "Save 63 ", "Save 66 ", "Save 68 ", "Save 71 ", "Save 73 ", "Save 75 ", "Save 77 ", "Save 79 ", "Save 83 ", "Save 85 ", "Save 90 ", "Save 93 ", "Save 94 ", "Save 96 ", "Save 99 ", "Save 101 ", "Save 102 ", "Save 104 ", "Save 106 ", "Save 109 ", "Save 112 ", "Save 113 ", "Save 117 ", "Save 123 ", "Save 126 ", "Save 127 ", "Save 129 ", "Save 130 ", "Save 133 ", "Save 137 ", "Save 142 ", "Save 145 ", "Save 146 ", "Save 147 ", "Save 148 ", "Save 149 ", "Save 151 ", "Save 152 ", "Save 155 ", "Save 157 ", "Save 160 ", "Save 164 ", "Save 167 ", "Save 173 ", "Save 176 ", "Save 177 ", "Save 184 ", "Save 189 ", "Save 193 ", "Save 195 ", "Save 196 ", "Save 204 ", "Save 209 ", "Save 212 ", "Save 215 ", "Save 218 ", "Save 219 ", "Save 221 ", "Save 223 ", "Save 226 ", "Save 229 ", "Save 231 ", "Save 237 ", "Save 239 ", "Save 242 ", "Save 244 ", "Save 246 ", "Save 249 ", "Save 250 ", "Save 255 ", "Save 258 ", "Save 259 ", "Save 261 ", "Save 263 ", "Save 267 ", "Save 271 ", "Save 274 ", "Save 276 ", "Save 277 ", "Save 279 ", "Save 283 ", "Save 284 ", "Save 286 ", "Save 288 ", "Save 289 ", "Save 298 ", "Save 301 ", "Save 304 ", "Save 310 ", "Save 314 ", "Save 318 ", "Save 321 ", "Save 331 ", "Save 338 ", "Save 340 ", "Save 342 ", "Save 347 ", "Save 351 ", "Save 352 ", "Save 353 ", "Save 357 ", "Save 367 ", "Save 379 ", "Save 384 ", "Save 388 ", "Save 390 ", "Save 392 ", "Save 394 ", "Save 398 ", "Save 399 ", "Save 401 ", "Save 405 ", "Save 409 ", "Save 411 ", "Save 414 ", "Save 415 ", "Save 419 ", "Save 427 ", "Save 431 ", "Save 436 ", "Save 438 ", "Save 440 ", "Save 445 ", "Save 454 ", "Save 456 ", "Save 466 ", "Save 469 ", "Save 481 ", "Save 484 ", "Save 492 ", "Save 494 ", "Save 498 ", "ASR_H2_TRANFORMED_OUT ", "Save 0 ", "Save 4 ", "Save 5 ", "Save 6 ", "Save 7 ", "Save 8 ", "Save 9 ", "Save 11 ", "Save 12 ", "Save 13 ", "Save 15 ", "Save 18 ", "Save 20 ", "Save 24 ", "Save 27 ", "Save 29 ", "Save 33 ", "Save 34 ", "Save 36 ", "Save 39 ", "Save 42 ", "Save 44 ", "Save 46 ", "Save 47 ", "Save 48 ", "Save 50 ", "Save 55 ", "Save 58 ", "Save 59 ", "Save 61 ", "Save 63 ", "Save 64 ", "Save 65 ", "Save 66 ", "Save 70 ", "Save 71 ", "Save 74 ", "Save 75 ", "Save 77 ", "Save 79 ", "Save 81 ", "Save 86 ", "Save 90 ", "Save 93 ", "Save 96 ", "Save 98 ", "Save 100 ", "Save 103 ", "Save 107 ", "Save 108 ", "Save 109 ", "Save 110 ", "Save 112 ", "Save 114 ", "Save 117 ", "Save 118 ", "Save 119 ", "Save 122 ", "Save 123 ", "Save 125 ", "Save 127 ", "Save 129 ", "Save 131 ", "Save 133 ", "Save 135 ", "Save 138 ", "Save 139 ", "Save 142 ", "Save 143 ", "Save 149 ", "Save 151 ", "Save 159 ", "Save 161 ", "Save 162 ", "Save 164 ", "Save 166 ", "Save 168 ", "Save 172 ", "Save 174 ", "Save 178 ", "Save 181 ", "Save 182 ", "Save 184 ", "Save 192 ", "Save 193 ", "Save 194 ", "Save 196 ", "Save 201 ", "Save 206 ", "Save 207 ", "Save 211 ", "Save 214 ", "Save 215 ", "Save 218 ", "Save 220 ", "Save 221 ", "Save 225 ", "Save 226 ", "Save 230 ", "Save 232 ", "Save 233 ", "Save 235 ", "Save 236 ", "Save 241 ", "Save 242 ", "Save 244 ", "Save 245 ", "Save 247 ", "Save 256 ", "Save 261 ", "Save 262 ", "Save 263 ", "Save 266 ", "Save 267 ", "Save 269 ", "Save 277 ", "Save 280 ", "Save 282 ", "Save 287 ", "Save 290 ", "Save 294 ", "Save 295 ", "Save 296 ", "Save 298 ", "Save 303 ", "Save 306 ", "Save 308 ", "Save 309 ", "Save 312 ", "Save 319 ", "Save 323 ", "Save 329 ", "Save 332 ", "Save 335 ", "Save 345 ", "Save 348 ", "Save 349 ", "Save 353 ", "Save 355 ", "Save 363 ", "Save 364 ", "Save 365 ", "Save 371 ", "Save 372 ", "Save 373 ", "Save 374 ", "Save 375 ", "Save 376 ", "Save 378 ", "Save 381 ", "Save 385 ", "Save 386 ", "Save 388 ", "Save 391 ", "Save 396 ", "Save 400 ", "Save 405 ", "Save 409 ", "Save 411 ", "Save 418 ", "Save 421 ", "Save 427 ", "Save 428 ", "Save 431 ", "Save 432 ", "Save 434 ", "Save 437 ", "Save 442 ", "Save 443 ", "Save 445 ", "Save 447 ", "Save 448 ", "Save 451 ", "Save 452 ", "Save 453 ", "Save 457 ", "Save 460 ", "Save 461 ", "Save 465 ", "Save 466 ", "Save 477 ", "Save 484 ", "Save 486 ", "Save 489 ", "Save 496 ", "Save 498 ", "ASR_H1_TRANFORMED_OUT ", "Save 0 ", "Save 4 ", "Save 5 ", "Save 6 ", "Save 7 ", "Save 9 ", "Save 11 ", "Save 14 ", "Save 15 ", "Save 24 ", "Save 26 ", "Save 30 ", "Save 32 ", "Save 35 ", "Save 38 ", "Save 39 ", "Save 42 ", "Save 46 ", "Save 48 ", "Save 50 ", "Save 51 ", "Save 54 ", "Save 55 ", "Save 57 ", "Save 59 ", "Save 62 ", "Save 65 ", "Save 66 ", "Save 70 ", "Save 71 ", "Save 73 ", "Save 75 ", "Save 76 ", "Save 79 ", "Save 81 ", "Save 86 ", "Save 89 ", "Save 91 ", "Save 93 ", "Save 94 ", "Save 95 ", "Save 99 ", "Save 101 ", "Save 102 ", "Save 103 ", "Save 106 ", "Save 107 ", "Save 109 ", "Save 111 ", "Save 113 ", "Save 115 ", "Save 117 ", "Save 118 ", "Save 120 ", "Save 126 ", "Save 127 ", "Save 129 ", "Save 133 ", "Save 134 ", "Save 135 ", "Save 139 ", "Save 140 ", "Save 144 ", "Save 148 ", "Save 150 ", "Save 153 ", "Save 155 ", "Save 156 ", "Save 157 ", "Save 159 ", "Save 160 ", "Save 162 ", "Save 164 ", "Save 168 ", "Save 169 ", "Save 171 ", "Save 175 ", "Save 177 ", "Save 180 ", "Save 182 ", "Save 183 ", "Save 186 ", "Save 189 ", "Save 191 ", "Save 195 ", "Save 198 ", "Save 200 ", "Save 201 ", "Save 202 ", "Save 206 ", "Save 208 ", "Save 209 ", "Save 213 ", "Save 214 ", "Save 215 ", "Save 217 ", "Save 219 ", "Save 220 ", "Save 234 ", "Save 236 ", "Save 237 ", "Save 239 ", "Save 241 ", "Save 244 ", "Save 249 ", "Save 250 ", "Save 251 ", "Save 254 ", "Save 256 ", "Save 257 ", "Save 261 ", "Save 263 ", "Save 264 ", "Save 265 ", "Save 269 ", "Save 271 ", "Save 273 ", "Save 276 ", "Save 277 ", "Save 279 ", "Save 280 ", "Save 287 ", "Save 288 ", "Save 290 ", "Save 291 ", "Save 294 ", "Save 296 ", "Save 301 ", "Save 307 ", "Save 309 ", "Save 310 ", "Save 315 ", "Save 318 ", "Save 322 ", "Save 325 ", "Save 328 ", "Save 330 ", "Save 331 ", "Save 332 ", "Save 334 ", "Save 339 ", "Save 341 ", "Save 342 ", "Save 343 ", "Save 352 ", "Save 357 ", "Save 361 ", "Save 364 ", "Save 369 ", "Save 371 ", "Save 374 ", "Save 381 ", "Save 384 ", "Save 385 ", "Save 389 ", "Save 392 ", "Save 393 ", "Save 397 ", "Save 399 ", "Save 401 ", "Save 403 ", "Save 407 ", "Save 409 ", "Save 410 ", "Save 411 ", "Save 413 ", "Save 416 ", "Save 421 ", "Save 425 ", "Save 427 ", "Save 435 ", "Save 438 ", "Save 440 ", "Save 441 ", "Save 446 ", "Save 447 ", "Save 449 ", "Save 450 ", "Save 451 ", "Save 452 ", "Save 454 ", "Save 458 ", "Save 460 ", "Save 461 ", "Save 463 ", "Save 470 ", "Save 475 ", "Save 480 ", "Save 481 ", "Save 482 ", "Save 483 ", "Save 488 ", "Save 494 ", "Save 497 ", "Save 499 ", "TRS_AE_OUT ", "Save 0 ", "Save 3 ", "Save 4 ", "Save 5 ", "Save 6 ", "Save 7 ", "Save 8 ", "Save 10 ", "Save 12 ", "Save 15 ", "Save 17 ", "Save 18 ", "Save 20 ", "Save 23 ", "Save 28 ", "Save 29 ", "Save 30 ", "Save 33 ", "Save 34 ", "Save 37 ", "Save 40 ", "Save 42 ", "Save 46 ", "Save 47 ", "Save 49 ", "Save 54 ", "Save 55 ", "Save 57 ", "Save 58 ", "Save 60 ", "Save 63 ", "Save 67 ", "Save 69 ", "Save 71 ", "Save 74 ", "Save 76 ", "Save 79 ", "Save 84 ", "Save 86 ", "Save 88 ", "Save 94 ", "Save 96 ", "Save 104 ", "Save 105 ", "Save 107 ", "Save 108 ", "Save 112 ", "Save 116 ", "Save 118 ", "Save 121 ", "Save 127 ", "Save 130 ", "Save 131 ", "Save 132 ", "Save 135 ", "Save 136 ", "Save 141 ", "Save 144 ", "Save 145 ", "Save 147 ", "Save 148 ", "Save 149 ", "Save 152 ", "Save 154 ", "Save 156 ", "Save 157 ", "Save 159 ", "Save 163 ", "Save 165 ", "Save 167 ", "Save 172 ", "Save 176 ", "Save 178 ", "Save 180 ", "Save 190 ", "Save 192 ", "Save 197 ", "Save 198 ", "Save 201 ", "Save 203 ", "Save 210 ", "Save 215 ", "Save 218 ", "Save 220 ", "Save 225 ", "Save 229 ", "Save 239 ", "Save 241 ", "Save 243 ", "Save 246 ", "Save 257 ", "Save 259 ", "Save 266 ", "Save 270 ", "Save 272 ", "Save 276 ", "Save 279 ", "Save 281 ", "Save 286 ", "Save 288 ", "Save 289 ", "Save 292 ", "Save 294 ", "Save 299 ", "Save 307 ", "Save 310 ", "Save 311 ", "Save 312 ", "Save 316 ", "Save 319 ", "Save 328 ", "Save 336 ", "Save 337 ", "Save 340 ", "Save 350 ", "Save 353 ", "Save 354 ", "Save 358 ", "Save 360 ", "Save 367 ", "Save 368 ", "Save 374 ", "Save 378 ", "Save 384 ", "Save 385 ", "Save 388 ", "Save 391 ", "Save 393 ", "Save 401 ", "Save 405 ", "Save 412 ", "Save 418 ", "Save 419 ", "Save 421 ", "Save 428 ", "Save 429 ", "Save 431 ", "Save 433 ", "Save 436 ", "Save 439 ", "Save 440 ", "Save 443 ", "Save 455 ", "Save 456 ", "Save 461 ", "Save 466 ", "Save 467 ", "Save 471 ", "Save 475 ", "Save 476 ", "Save 478 ", "Save 482 ", "Save 487 ", "Save 494 ", "Save 495 ", "Save 496 " ] } ], "source": [ "out_db=shelve.open(\"scores/RAW_ASR_TRAIN.shelve\",writeback=True) ", "nb_epochs=500 ", "for key in keys: ", " print key ", " try: ", " x_train=corps[\"ASR_SPARSE\"][\"TRAIN\"].todense() ", " x_dev=corps[key][\"DEV\"].todense() ", " x_test=corps[key][\"TEST\"].todense() ", " except : ", " x_train=corps[\"ASR_SPARSE\"][\"TRAIN\"].todense() ", " x_dev=corps[key][\"DEV\"] ", " x_test=corps[key][\"TEST\"] ", " ", " out_db[key]=mlp.train_mlp(x_train,y_train,x_dev,y_dev,x_test,y_test,[256,128,256],dropouts=[0.5,0,0],sgd=Adam(lr=0.0001),epochs=nb_epochs,batch_size=8,save_pred=True,keep_histo=True,fit_verbose=0) ", "out_db.close()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['ASR_H1_TRANFORMED_OUT', 'ASR_H2_TRANFORMED_OUT', 'TRS_AE_OUT', 'TRS_SPARSE', 'ASR_SPARSE'] " ] } ], "source": [ "out_db=shelve.open(\"scores/RAW_ASR_TRAIN.shelve\") ", "print out_db.keys() ", "out_db.close()" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ASR_H1_TRANFORMED_OUT 0.697 ", "ASR_H2_TRANFORMED_OUT 0.682 ", "TRS_AE_OUT 0.838 ", "TRS_SPARSE 0.841 ", "ASR_SPARSE 0.78 " ] } ], "source": [ "data=shelve.open(\"scores/RAW_ASR_TRAIN.shelve\") ", "scores={} ", "#del scores_ordoned ", "for key,table in data.iteritems(): ", " scores[key]=round(table[1][np.argmax([x[0] for x in table[0]])][0],3) ", " print key,scores[key] ", " pandas.DataFrame(zip([x[0] for x in data[key][0] ],[x[0] for x in data[key][1] ])).plot() ", "data.close()" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ASR_H1_TRANFORMED_OUT 0.688 ", "ASR_H2_TRANFORMED_OUT 0.654 ", "TRS_AE_OUT 0.832 ", "TRS_SPARSE 0.832 ", "ASR_SPARSE 0.734 " ] } ], "source": [ "data=shelve.open(\"scores/RAW_TRS_TRAIN.shelve\") ", "scores={} ", "#del scores_ordoned ", "for key,table in data.iteritems(): ", " scores[key]=round(table[1][np.argmax([x[0] for x in table[0]])][0],3) ", " print key,scores[key] ", " pandas.DataFrame(zip([x[0] for x in data[key][0] ],[x[0] for x in data[key][1] ])).plot() ", "data.close()" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ASR_H1_TRANFORMED_OUT 0.697 ", "ASR_H2_TRANFORMED_OUT 0.682 ", "TRS_AE_OUT 0.838 ", "TRS_SPARSE 0.841 ", "ASR_SPARSE 0.78 " ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEACAYAAABF+UbAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz AAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VMX6x79nW5It6T2Q0BJCh0hRQLpIEwEbKqiAFbte 9SoqWH/YvSqIDVAuiopSpCoXERG49J6Q0NJD+maz2b7n98fL7J7tGxLvgp7P8+RJsnv27Jz2ne+8 884Mx/M8REREREQuTyShLoCIiIiIyMUjiriIiIjIZYwo4iIiIiKXMaKIi4iIiFzGiCIuIiIichkj iriIiIjIZUxQIs5x3BiO4/I4jsvnOO4ZL+/HcRy3keO4QxzHHeU47q5WL6mIiIiIiAdcoDxxjuMk APIBjARQBmAvgKk8z+cJtpkLIJzn+Wc5josHcBJAEs/z1j+t5CIiIiIiQTnx/gAKeJ4v5HneAmAF gOvdtqkAoLnwtwZAjSjgIiIiIn8+siC2SQNQLPi/BCTsQj4D8B+O48oAqAHc0jrFExERERHxR2t1 bD4L4DDP86kA+gBYwHGcupX2LSIiIiLig2CceCmAdMH/bS68JmQQgNcAgOf50xzHnQWQDWCfcCOO 48SJWkREREQuAp7nOW+vB+PE9wLoxHFcBsdxCgBTAax12yYXwCgA4DguCUAWgDM+CiL+8Dzmzp0b 8jJcKj/iuRDPhXg+/P/4I6AT53nexnHcQwB+Bon+FzzP53Icdx+9zX8K4P8ALOE47jAADsDTPM/X Btq3iIiIiEjLCCacAp7nNwHo7PbaJ4K/qwFc17pFExEREREJhDhiM0QMGzYs1EW4ZBDPhRPxXLgi no/ABBzs06pfxnH8//L7RERERP4KcBwHvgUdmyIiIiKXLO3atQPHcX+Jn3bt2jX7+EUnLiIicllz waWGuhitgq9jEZ24iIiIyF8UUcRFRERELmNEERcRERG5jLlkRLyxMdQlEBEREbn8uGREXKMBzp0L dSlEREREWpe6ujpMnjwZarUa7du3xzfffNOq+w9qxOb/irIy4CIybEREREQuWWbPno3w8HBUVVXh wIEDGD9+PHr37o0uXbq0yv4viRRDiwVQKIDVq4Hr3ZebEBEREfHDpZxi2NTUhJiYGJw4cQIdO3YE ANx5551IS0vD66+/7rH9ZZtiqNfT71L3CW5FRERELmPy8/Mhl8sdAg4AvXr1wvHjx1vtOy6JcArr 1BRFXERE5M+A8+phm8fFmP3GxkZERka6vBYZGQmdTtfyAl1AFHEREZG/PKGKtqjVajQ0NLi8ptVq odFofHyi+YQ8nHL6NDBnDv0tiriIiMhfiaysLFitVpw+fdrx2uHDh9GtW7dW+46Qi3huLvDjj0BE BFArLiMhIiLyF0KpVGLKlCl48cUX0dTUhB07duCnn37C9OnTW+07Qi7iTU30u00boL6ecsU/+CCk RRIRERFpNRYsWICmpiYkJiZi2rRpWLRoUaulFwKXQIrh0qXAjBnAsGHAkSPAiBHAypWhi2GJiIhc XlzKKYbN5bJMMWROPC0N0GqBLVtCWx4RERGRy4lLRsSjoykuXl9PQ/BFRERERAJzyYi4Wk1CLpMB dntoyyQiIiJyuXDJiLhKRSKemQkYDIDNFtpyiYiIiFwOXDIizpx4mzb0tzg1rYiIiEhgLgkRHzEC GDCARDwtjWLiboOcRERERES8EHIR1+uBWbOAgQOdIh4ZCbTi1AIiIiIif1lCLuJNTYBSSX9fdRVw 5ZWiExcREREJlktKxGfPBiZMEJ24iIiISLBcUiLOEJ24iIjIX4UFCxagX79+CA8Px8yZM1t9/0GJ OMdxYziOy+M4Lp/juGe8vP8PjuMOchx3gOO4oxzHWTmOiw5m395EXHTiIiIifxXS0tLwwgsvYNas WX/K/gPOJ85xnATARwBGAigDsJfjuDU8z+exbXiefxvA2xe2nwDgMZ7n64MpgC8R12qDPQQRERGR S5dJkyYBAPbu3YvSP2G+7WCceH8ABTzPF/I8bwGwAoC/lTBvBRD0cs5NTTTQR0hcnDgtrYiIiEgw BLOyTxqAYsH/JSBh94DjuAgAYwA8GMyXf/45UFJCg3uExMcDJ04EswcRERGRwHAvtXx9Nn7upTlT Ymsvz3YdgB3BhlK2bwceewyIiXF9PT4eqKpq5ZKJiIj8bblUBbg1CEbESwGkC/5vc+E1b0xFgFDK vHnzHH+XlAzDuHHD8N3x77A6bzWWXL8EYbIwxMcD1dVBlExERETkL8i2bduwbdu2oLYNuCgEx3FS ACdBHZvlAPYAuJXn+Vy37aIAnAHQhud5g499uSwKMXkycMcdwGLjdViXvw4nHzqJrLgsHD4MTJ9O i0SIiIiI+ONSXxTCZrPBYrHg5ZdfRklJCT777DPIZDJIpVKPbf+URSF4nrcBeAjAzwCOA1jB83wu x3H3cRx3r2DTSQA2+xJwbxiNQHg4kF+Tj9iIWJTryvF74e+Ij+dFJy4iIvKX4NVXX4VSqcQbb7yB 5cuXQ6lU4rXXXmu1/Yd0ebYRI4Bn51hx3S41ru10LW7tfivuW3cfdt65D30yMmEyAVzL+yNERET+ wlzqTrw5XHbLs5lMQK39HFI0KWgX1Q5F2iI0mBpQYShCeLg44EdEREQkECEVcaMR2KfdgD7JfZCi ScHxquMAgCJtEdLSgKKiUJZORERE5NIn5E78y9PzMXfoXKRqUnGs8hgAEvHsbCAvL8AORERERP7m hNaJm3jUmM6jW2I3pGpSkVtFCS/zfpsHdP1eFHERERGRAIRUxA3WJoRJwyGTyNAhpgMMVgPkEjkA QBu3Fbm5AXYgIiIi8jentUdsNgsj3wC1XAMAyIjKgFwix209bkOyOhl55+px5kwoSyciIiJy6RPa mDgaEBkWCQCQSqToGNsR8cp49E3ti0Z7FfT6UJZORETkciAjIwMcx/0lfjIyMpp9/CF14iZeh6jw SMf/WXFZiI2IRYIyAVprJZqaQlg4ERGRy4Jz586FugghJWQizvOAVdrgIuLTe05HmiYN0eHRqDNX iSIuIiIiEoCQibjJBMiUOmjCNI7Xbux6IwCguqkaNcZK8KKIi4iIiPgltCKucsbEhcRGxKLRogOM FgDy/33hRERERC4TQtax6RBxhaeISzgJYiNiYQ+vhsUSgsKJiIiIXCaETMSNRkAS4RpOEaJWqBER 2QhD0HMiioiIiPz9CKkTl0R4D6cAgEquQphGL6YZinhlxQrgb56UICICIMQxcRLxVK/vqxQqhKmb xAwVEa988QVgswHt2oW6JCIioSWk4RRObkCELMLr+yq5CmFqvSjilyD79wOnToW2DDqduIQfACxa BPz0U6hLIRJKQhpO4eQmhMnCvL6vUqggV4kifinyxRfA6tWhLUNDg7iYNgA88ADw1FOhLoVIKAmt iMvMUEgVXt9XypWQRYgifiliNod+wQ7RidMzBNC8+zZbaMsiEjpCJuJmMwCpbxFXyVWQiiJ+SWI2 A42NoS1DQ4Mo4jodEBsLxMeLC6j8nQmZiNtsCCzi4WLHZksxGIDz51t3n6F24jwvOnGAzoFGA2Rn Q5y2+W9MyETcbgd4iR8RV6jAhYlOvKW8/DKQnNy6+zSZQuvE9XoS8r97TLyhAYiMBNq3BwoLQ10a kVARUidu5/w7cU4hinhLBztFR9PvmpqWl4URaieu0wFSKWXIGI3/m+9s7UFn7L42m+nvs2fR7DER zIlHRPzvzoPIpUdIRdyfE1fKleAU+pB3oIWSwkKgX7+W7cNup9+//97y8jBCHRNvaADS0ykWPHXq n/99v/wCKJWtt7/qaiAtjdaQTUsDhg8H+vYF7rmnefvR6ciJh4eLIv535pIVcZVCBUmEvlUd5OVG VVXLQwZMbIuLW14eRqhFXKcDwjIO4d11P2HrVqC+nsIr7Ke1OX364j7nq0wnTlCZ77+fBD0vD9i4 ETh6NLj9sb8bGsiJiyLeOvwZ987/gpDGxAOFUySKpr9151VDQ8vFUq8HEhKA0tLWKRMQ+nBKcU0N Tg8cjenrbsC46/WIiQEkEvqRSoFVq3x/9h//AL7+unnfdzEC+cknzjK98ILre7m55MB37gTuvReY Ng3o3p3CQ75SBTduBGQyct46HZCSQq2QyMi/bzjl+HFgzJjW2dfixZdvvv0l7cQh1/+tO690OoqX spDIxdDYCGRlta6Im8w26BpbUKgW8lvZesTpB6NzfGc8+9YpF8f75Zf044tdu4C9e5v3fSwfuzks WQL8/DP9dm8F5eUBjz1GleEnnwALFlC4JimJYuPe+Oor4OOPgQ4dgP/8x5lx9Hd24vv3A4cOtc6+ li6lc3w55ttf0h2bNpn+b+/EAbSoc1evJxEvK2udMgFAcdYc1GYs9vn+0qXAN9+03ve5U9fYBLUk AZmxmcivyXd5b/x4YOtWz05CqxWYNIlCFsGm402YAGRk0AjV5lBaCuTnA8OGOZ2zkLw8Sgt0p3Nn +pw7PE9OfOJE+tyqVbRvgJz+5STiPE99GU8/3bL9LFgAvPUWUFmJFk9XXVkJHDkCtG0LXH118z// 4ovAr7+2rAwt4ZIVcbVCDQt0ooij+VkLQv4MJ26RaGGS1PqMIR45Auzb13rf5055lQFxkRHIisvy EPHYWKB/f3LBQv74A1izhs5lXl5w3/P77yScBQXNK9/atcC4cUB+3XG8Xnyt4zoycnO9i3hsLMXK 3ampIbFOTga6dCER79aN3isvv7xEXK+n4/nvfy9+HzwPfPABcOwY/V1e3rIy/fQTcO21wPbtFKJp Tj+c2Uxl+fzzlpWhJVyyMfFEVSLqLOf/tiK+eDHwf/9Hf7O4+EsvNV+M9XpyeBcj4kuWkPi5Y4MF vNToM+2uqenPG4jz1FPA3kNGJMWFIzs+G/vKPWuLyZNJSBm5ucB99wFduwIDBlAoIlDrhqX+9e7t +vqaNcCPPzr/37DBNQa/ZQvl5k+ezOPhjQ/jsPZXNOictV1TE31/+/ae36lSAevXe8ZmS0sphg6Q iOt09BugePilIuK7d1OrZc8e4JprSBAZL7xAbpVVUu59PZ98Qlk63lz1ww+ToTlyhPoQ8vPp8xoN EBUF/PYbcNddzu0ff5xaKv76Rhi//gr885/AlCl0/rOzg6/kLRbgxhupcl27FnjvveA+19oEJeIc x43hOC6P47h8juOe8bHNMI7jDnIcd4zjuICNi0BOPEWTgsqmCjTo+L/l6j5PP+0UXubElywBDh5s 3n4aG6kTzGCgkEJzWLWKmvHu2HgrIDX57HRtavrzBuK8/TZQrzMiNSECN3S5AXtK92BX8S6XbQYM cI2Vfv45CcT+/cB331FzPpDbqqkB4uKoU1jIjz+6PqyrV1MKIuOdd6jzVN5tHaqbqiGXyFHf5DxR +flAp07UAeuOWk2drm+/7fq6UMQnTybRmjGDwgAffnjpiPiHH1IF9uGH1En72WfO9159FXjwQRLx sDCgrs71s6tXA9u2AbW1rq83NgIffQSsWwfMm0f7PHQIuOoqCo2NGEHnW9gP8t13dM8Hk1a7Ywcw aBBw8830f3NEfPt2SgPevp3ugVdfbXlo52IIKOIcx0kAfATgWgDdANzKcVy22zZRABYAmMDzfHcA NwXabyARV8qVCJeFIzq5zuPC/h2Ii3P+3dhILZeysubHthsbSRzUas/Y7I8/+g8VlJZSJ9rSpa6v 23gr5EqjzwwVb05cq6VmZ6sgNyA1KRyaMA3eGPUGHtn0CHhBbIfFlgsKaKrW1avJiYeHA23a0AAo b2ELIdXVJPbx8c7XeJ4e8J07SUABcvnsWHU6arnccw9wrOooJmRNQEx4HBosVGOYzRQ/9RZKAega Cb+LUVoKpF6Ydl+hAIYMoY7QhAT6fTEi/sYbdG/U1wOzZ3tvcTWHr74iobVYgG+/pfO+fLlrqyU3 l8S7fXvP819RQb+FoafycuCRR+jvV15xOmsWjsrIoMqNXQuAzlt1NcW2A11jgMzG8OEAx9H/zZnC YM0a4JZbgMRE4MorgY4dSdBbm0AtimCceH8ABTzPF/I8bwGwAsD1btvcBuAHnudLAYDn+YCNaauV hw1myCW+F0JO0aQgKq38bxlSEYq4Xk83psVyceEUtdp7B9uSJdT890VpKTWR33zT9XU7LAhX+Xfi 7tds1SrguedalotrtVKa3ZSbjYiMCAcA3N7jdhTWF6JMV4Y6Qx0Olh+ERkPx5Wefpalaq6qAXr2c +4mO9nSC7lRVkUgKnbjFQg94jx5Op5+X5zzWo0cpzBEZCTSYGqBRaBCnjIPOSi7k5En63Msve/9O lcr5t1CYhE7cG80V8cpKCiHs3w98/z39vPRS8J93x2KhEMby5cDmzRQSGj2aWhT/+Add83C6XCgu JvHVal2zrkpLyT0L71GW3XP99RSOWbSInou8PGc46fHHyXlLpXQOdDqq6JKTA19jwFlZMxITg4+J 79vn2hE6eXJwIZzmsmGD//eDWdknDYAwSaoEJOxCsgDIL4RR1AA+4Hl+mb+dWu02cJBAKvHSrrxA ijoFVUnlqK7uFkQx/1oIRby2Fvj0U/pbKOI2G900N97oez/MiWs08Ohgq6/3XSksW0ZCxnHkaC0W QH6hvrXBCoXSGFDET5ygz1ss5ML1eqCkhB40kwno08f/OXCnooIeuNhEAyLktJgIx3HIScnB/vL9 KNYW46f8n7Bp2iZkZzuPNzvb6bQA30585UrKYJHJvDvxwkISo0GDSMzr62k7JuLCDssGUwPaRrZF gioOx7ga2O0kPn37OgXIHaETf/55cnldu1Kcec4c3+clkIgfOECC+csvdN5ZuKC6mlop8+eTGM6d 6zxPY8ZQvNhkoo7xhARym5oLS+JarRTmqK+n69KxI2XzAFTJAcAdd1AIZNs2CqEkJlKYJT6eWhCN jVThmUy0n/79Xe/RyAsrN/bqBdx2G4UEH32UzjPrN+jQgX4efZTE12Si/QfT2mLnQHiNIyKCm2KB 5z07qCdPBoYOpd9nz1Lrady4wPsCKIyWn08V0JNP0vliBGoZtNbybDIAOQBGAFAB2MVx3C6e5z3W f5k3bx4AYMcuC7gU3wIOkBNviC/7W+aKsxs4IYGc0g8/0P9C0T19Grj7bv8irteTw/Mm4nV13kVc r6cHEKBUwWefBc6coTAFzwM8rJBH+A6n6PUk1E88QQ9r+/Z0cw4YQAKyeDE9LIt9Zyl6hTlSo82I cFm44/UrUq7AgfIDKNYWo7yRUhXS06kVAXiGL7w94DYbcPvt1OfQtavz4Y6KIpdns1HHWnY2ifCe PU4BfP992ofQIerMOkSGRSJeFQdFVA30et9ZKQzmxG+4gUT31VdJyNPSnALpjUAiPnQoCWbfvpSC mZ0NjBpF5f39d7rG0dHOEaN799Lrx4/TqNLZs+n433yTWjYAxeUXLKBzlpxMcXB3OI4EbcECOoaI CBLx6GjnNYiMpLBJcjK9JrynDAZafm/6dOdx2mx032dkuH5XQgKZDrOZ/m6OiAtbW8GKeGUl3RfC z2Zn07Ny44303VdcEZyIV1XReX38cergHTkSMBi2Ydu2bQCoEvZHMCJeCiBd8H+bC68JKQFQzfO8 EYCR47jtAHoB8Cnir7xVjx36BX6/OFWdilPRZaiuppr/8GE6MX8HzGb6nZLiuvyWUHRLS+mm53lX p8mwWskFh4fTw7J7N7kk5qa8OfGdO51NX4BGBf773yRAnTvTPjmZBdIw/+EUgJrWkZGUKfDII9SJ tHw5Nbe7uTWudu2iYx461Ps+eZ5aBykpgMHiuqzf1RlX4+lfKPG4opGCq9HRzjm23Z2vtwf83Dn6 /tJSVxGXSKhVxHKJu3Shh/XRRymW+thj5JJXriTn+vzztL8GEy0CHhcRh7CYGuh0JJpjx3o/PsDp xKdMofOQk0OfuflmiuX7ItCIzQ4dqOxPPumca+b118nhDx5M1+iGG+gHoGv01FN0nPPmkZivW0eV 1v330+/Fi4GZM0m0/DF5MsXwR4ygltypU/Q3C2mlpzsrZ3ejYTTSvdOpE/3PcbSNVgvExLh+T3w8 XTOz2dOJ79lDrULGyJGUEw4E58R5nsJgERFUXqWSjJW3CvnRR4GFC6kls26d72fTbKZ7xmymsMzo 0XSuT5+mZy0zcxjGjh0GvZ5MgsHgO94VTEx8L4BOHMdlcBynADAVwFq3bdYAGMxxnJTjOCWAAQD8 NgLMNjOk8L40GyM9Kh1WVTGqq+lAZ84MorR/EYxGqsX79aML/e9/U+zv3DlnXLm0lBybr3Q5rZYe UHbzP/kkCSjDXcRLSihUsHUrfe+SJfR6RoZTEM1mgJNawcn9d2zedx/dfJ07U2wzLY2axABlKeTl ucbHZ80iUfQVxzx0iI7/rrsAo9XViV/b8VqkRaahSFuEOmMdLDYLoqPJfQ4aRDFVId5EnDVZ2fk4 eJDCCADFY6OjnU68Xz+6F+fNo2avzUYtot696fuACzHxMA3iIuIgj6yBVkuVmD8TwkT8i9q70OZz Dk1mE3bu9O/egeBi4vfc4+rm09KodTVpkue28fHkjpm4PfsssGIFVbTr1wMPPUTOWZjW54uBAyku fs89tL9Tp0iAY2Kc12DvXqo43fttDAYSTiGRkdTf4Z7dw0SciTK7xhYLCerWrRTW+fprSllkBCPi R49ShTpyJI2azcuj0NPs2Z7Hy3HUFzBvHl3PkhLv52X5cuqs3baN7tN//pNez84m5z12LJV78mSn MfBFQBHned4G4CEAPwM4DmAFz/O5HMfdx3HcvRe2yQOwGcARALsBfMrz/Alf+wQAi90MKbxnpjDS o9JhDCtEdTXV0E1N1DHChli3dFKnQPnMBw607iCZ5mA0kstLTaVm8O23AzfdRDcZy1BhZXMX09JS cszCpiILz7DjtVgo7FFWRi7TaHSum7lqFd1E7CEVPlwmEyCRWcHJ/Dvxl14iV9K1K+07LY1c39Kl lP8ulTqHjlssFEO85hrXSkbIqlXAnXeSW3QXcY7jsOG2Dah7pg4JygSc1593TME7fTqVQUhMDAmY MA2RxYnLymgQydatFHoASLRiYqgl2KULhVg++4yOhzF1KqUysvOtM1E4JU4ZB6mmBsuWkdj6iocD znBKnY1qzPQrjmHfvpaLeGkphWaEMfe0NBIc9woOcIoa+52TQ9sNHUoCeM89dPwpKf7LBdB1fust Oj/x8RQ6YOGUmhpnOGfSJKcTLyyk+7SmxlPENRpX0RWWefduct0sDNbQQK23rCzKnlm6lDJntm6l fbMBYcIZKr2J+KpV1CKrqKCyLlhAx8NMiTsTJ5J56dLFd7riqlUkzkuX0g+r3LOz6T7q35/+zsmh StAfQeWJ8zy/ief5zjzPZ/I8P//Ca5/wPP+pYJu3eZ7vxvN8T57nvUTIXDHbTAFFPCM6AzpJEaqq nPOIjBhBvfxbt1LTpiUsW+a7w8hgoBP70EMt+46LxWh0dqIJL6LwxvAl4lOnUlNO6DJYCIX1L2i1 5GgsFpqz49ln6cZq04Ycl3CQi1DEmRPnZf6dOHswmACxFDmGcCGDM2dIVMaOdcax3dm61TnZkcHq 7NhkcBwHjuOQoklBua7cIeLsuIVER1NecZ8+JMwAjSC84go6p8OGUWshNtb5GYWCKhpvg3Tuuovi /0KE4ZSk9jXYuZMeWm9NawYTWQOvRdeErug++gCuv94z/uuOPxFnGRvuwtezJ91XSUmen3EXccYT TwCZmVSZXgysgmvblp7dOXPInLRtSzH6yEhqiXXpQtvOnevdiXsT8ZEjqVI+doyun1RKrdR773Ud 4h8TQwJ59dVUIbkLsTcR37qVXPO//kXX/8QJamkGondv7/dzYyM5cGYShFx5pbP18swzgQUcaL2O zWZjDtKJ19qKXJy4xeK63JivmFMw1NX5no2PNfVaMucIz9ND5H4jemsmusNE3H0uh+xsEtk+fZwi XllJcUOOo+88fpx+und33vDuTrysjG7oqChni2PfPrpxXnmFYnQMjcbZ6jGbKSYOid2rE+d5uk7s +Lp0IdF0n49bo3EOYmIdfiwE4o28PDoewNOJC0lRp2DbuW3QS6oBjHUctxDZhbt+5kwKU2VlUebG m2+SK+J54LXXXD+jUDjL7Q4LOwlhKYaxEbFI61SDjXO9HxcArDi2AnnVeZiaPA8A0GTTYmK7sbDY 92PR04EnGQ8Pp3tKWHkyysrIMUvc7FpiomfqKIOJrbtYDh9OPxcLm1yqTc/TSKo9ibwF47BypTMW r9FQZSoUUW9O3Nvc7lOm0I87M2Z4vj55MpmzgwddzcrXR79GpuRaGAxxLtvn5ZEDT01tnqmbOJFC mM88Q6aJnddNm2iwEjMaQtLS/Kf9eiN0CyXbzJBx/kU8JjwGdlhRXquFTkcPfWMjCRF7EIPpgfYF 26c36uroZmlJOGXPHu8xx169AlcOTMTdGT6cerB79qSyhYVRGOJCRzaqqqjsLH/Z3YlXV9PD3qsX hVyYU87NpRvrmmuouSzMWfZw4hIr7FLvKYYmE10bdn369vWeWaFWOwX79GlyeCqVdxGvqiIBSEyk /907NoVMyp6Ep7c8jZdOjXM5biGZmfTwPvIINbPHjqX/Bwyga+aekgg40yuFIQkAOFN3xmP+FkDg xJVxqGlyTTz+vfB3nKw+iQPllHbwzq538NJvL8Emp5tZb9ViUPognKjyG5EEQMKzvfg/sFi8d5rm 5lLHZnNQKkk8vTnelnDFFeS4e3yahRdPjsfEiTRnCSMyks6/sLUTrBP3RteuzmwaIVOmUGhSOHbg UMUhTF81HQfqfnWpRGpr6VkMJnTkzuDB1Jd0zTVUAZw5Q6+vWkUVSWsRMhG38oGdOMdxSFAmorS+ Gg0N5MINBhIi1nxsicgyd++N+npykZWVFz89JRNUITxPFzbQKFRfIn7LLdS5WVlJv7Oy6JwcOULv 5+XRQ8hGEgpFXCql19hMeYWFzhjt2bMUSunXz3NkpTBrwGwGILXCzpm8tmLc3WBaGoWt3BEKdlUV NeuFwi58Tp3eAAAgAElEQVSEpe4xYfXnxGf0noGp3aeiV+xVAODViV91FbmwXr0oRvrbb/RQ9ejh nGTKHebEhZUbACw7vAyf7f/M5TWr3QqzzQylXIm4iDjUGFxF/LHNj2HI0iEYt3wcGkwNyK/JR0ZU BiosBQB4NJi16JvaFwW1/mfe4nket/94Ox7YcD8AcrHug6nWrPHebA+Ee458azB+PLD5ZzvsvB1t IttgzRrXSlGjoftz0iTnPRhsTNwbx49TTNmdlBTqJGf3E8/zeGTjI0hWJ6PKVOQi4mzGyYtp7ctk wHXXUYf2+PHU52Q20+Adb30RF0vIRNwShBMHAHVYBBqaDC6jqIQi3qMHxcgvBhZn90Z9PTm/2Fjf q8Vv3+4/Y6ax0TNWqdc7Fxo+edL5gL3/PsXcGL5EHCAxTkqicrEMCpZdUVBAoZCTJ6lnnDXhMjIo vl5V5Yypd+vmXP5Nr/f9cHjGxC2wceTE+/en+PEnn9D73pr03lCrna2gqir6bpXK+Vp9PTkpNkpS 2LlntBo9YuKOcyOR4h9X/QM2jk68NycuZPBgcoiTJ1PIYdo0OiZ3FAq6Hu5ZEXqLHgaraxBVZ9JB rVCD4zgPJ87zPPJr8lGpr0RMRAz+tftfkEvkuLLNlSg15qNLDyM4jkOHmA5oMDWgweSW3C/AYDVA wklQ2lAKyJtgsTjDZQcOUJx47VrvrcFAdO/uPf7fUgwWA6ScFJX6Stjsru6IpVH27eu8bu4i3qED taRak5KGEpysOYnHBjyGCoOriB865NkxLuRc/TmcqDrhMu2DkOnT6d56/HEKrTzxBA2Muhhn74vQ ibg9OBFXKpSITTS4zLMsFHHg4leZCeTEo6PJSfpy+ydOeJ//maHXe4o461jU60lomfiePOnaCeIt li4kLY0EmgkvE+aGBhLsXr2ckz0BVFl8/bVzObDnn6dOoGuvdc5v4T7ZE0PoxE0mABIrrDCitJTS w5YudU4tGqyIC504azEInXhhIZ2b335zHUQDkHj5cuIATWNstNOOvDlxITIZHQPrJJ8/nzrD3FEo PEMpAKA362GwuIp4vbEe0eEU8IwOj0ajuRFWO80+VtFYASknxfSe0zHn6jl4/7/vIysui+ZGr83F 1p1aRIVFQcJJ0Cm2EwpqfLvxOkMdklRJ6JLQBbvOHMGVVzrvp337qEMuMZFEo7ls2EAZFq2NwWpA VHgU4iLiHDn9jIEDqTPyttuc1839GZgzh+LcrUmlvhJpmjS0j2mPMn0RzGZn65tNK+wNnUmHLgu6 YOjSofjswGdetxk+nHLKhw6lDta9e/3n/F8MIRVxKXzPm8KIkEUgLqXJZeipu4h7G2FVV+fa86zT OWcqE74WSMRTUz3j13v2UK1aWkrbTZhAHRfuCJ34Rx/RqEvmlBobnZ8HSNzXr3fW+v6cOEAizgZI JCaS2L3zjnOY/dSpFHIR1vhs9r533nF2EgLODpZgnPi0aQAvscLKmxwpek1NJB6LFlH6lTexc0fo xJmIC504qzhXrfLuxP2JuEqhQpNVj/j4wCIOBNdUlss9QykA0GRtQpPV9SYqbyxHioZOvISTIDo8 GnWGOpTpypD6birilHH4avJXGJc5DhGyCAxIG4B+af3w2u+v4cfcHx0VQGZspt+QCqsseib1xNHz R9GlC+UfP/QQVXxqNYXfLiUMFqqA06PSUagt9HifXQtfTvzPoKqpComqRKRHpaNIW4TwcLrvnn2W Br/5WgLuUMUh9ErqhYXjFmJ13mqf+2fHFBNDIVBvHZotIWTZKTbeBikX+OuVciViEgzYKZgSlYn4 jBkUy/Um4uXlNGKQUVXluVBAME5cq/V0+seOkWBNnEi5o8eP05St7iuvC534xo00hJh18un1ThG3 2+mYdDqnk9Jf9Sye3qbDwgkfeS1fWhq54shIivsNHUpx3rQ0KveDD1L52Mg0gDpBi4rofAnTMwOJ uEZDZauvp/OakGRBtcEImdSZ9ZCXR3HM3FzKDw+ESuWs+Lw58dJSCv+sXk1umYk4z/MBRVytUKPR 3IiKIv8VYXPw58TNNrPLa2W6MqSonbWn1qTFlV9ciacG0oQfaRqazSo2IhYlTzhHg9za/Vbk1+Qj KjwKANAuuh2KtEU+y1RnrENMRAziI+JRa6jFNdfQPSiVUojoyy8vLpRysfA8jztX34lbu9+KsZne h6YarUZEyCKQEZ2Bs3VnMbDtQK/b+XLiwfLk5ichl8oxf9T8gNtW6iuRoEpA++j2OFV7CuGROrz3 ngY7d1IL1ldI7kD5AeSk5GB0x9G4+6e7UdFYgWR1ss/viY4mY9XaIh66jk27FVLO/9wpABAhj0B0 glNpFQoSZIOBTm5kpHcRb2x0Dknfto2a/Ho9bTtkCN3g/px4XZ0zNa6piYbSfvUVOU2W4bFmjXPG MzZ72bJl1JHBysBEPDeXflg4hTlxnqdyVFc7a+zGRoC/4mN8vN/3tATp6STQMTH0OzOTysRmLeQ4 2sbdZSYlUWUiTDkLxok3NFDIJzsbsMMKk9WEseN4DBtGoQ6plDpro6K8p3q5EygmXlpKYwKiouhv Fp81WA1QSBWQcL5vXZVcBb1Zj/Dw1lu+XKHw7sS9xcTLdeUuIm61W3Gm7gze/ONNLJ+yHFvv3Or1 O5RyJcp0ZYgKIxFnztAXdYY6xITHICo8ClqTFuPGUaWVlUWtxZ49PVML/0w2n96MX878gltW3oKF exd63Ybl+PdM7InD5w87Xl+4dyHGLR/nqBBb6sTf3f0ulhzykvvphUp9JRKViUhQJeD67Oth6vM+ du6kMJS/e/lgxUHkpOQgKjwK911xH4YsGYJt57b53J5NFdBcEf/8gP9lg0K3PJs9OCceIYtAx2x6 SFQq6tgoL3eGG3xNWKPXU6eYyUSx5p9+opS6s2dplNi2bYHDKTExThFfupTyPVetIsFt29b5vSkp 5PqNRhpkw6aOZE7cYKAYr3DaUubE2XdVV1PTrV07SkXirBRYXrDHu5Dffz/w4ktmNPX8F/7v/5wC yMIpjCPnj2DZYb8TSjpuLl8xcZWKjuH4cRJxq90KHjz+9aEFq1bR8W7fTnHxkyepkgwEi4lbrVRB xMQ4X+N553wav/xCnXQsZbFIW4S2kW397lsulUMqkcJku4gVjn3gz4k3WXyHUwCg6qkqPH7l4+A4 DlO6TIFM4v2+V8qVKG8sdzjxgCJ+wYlHhUVBa9RCo6Hm+h9/0L3E5hzxx4f//dBv5ynj30f+7bUs erMe83fMx+KDi/HV4a/wUL+H8I+B/8DGU15WE4EzPTQnJQcrjq3Al4doNYevDn+Fjac2Or6jOU68 Ul+Jj/Z4tlg7xASXW1mlr0KCim7+Ee1GwBBxGnI5nUN/UwsUagvRPprcxWsjXsMzg57BtB+nYcaa GZixZgaWHlrqsj0T7+aK+B/F/id7D52I81a/09AylHIlMrvSQxIbSzdmVRU97OHhzoEO7rBmuU5H 7zMHzOYAMRhIPIxG76vJ19eTC1QqnesyVlTQfqqrnZ0rcjkJW48e1JEkzP5obKSK5ORJckcNDdQC kMnovZIS+nxdHTn6nBwSrueeA3gzifjrO173el7UasCkKMPrO+ciLs4ZimCzFjLmbJ2DO1bf4fcc s/lVhE681lCLrWfJMUoktM/duy9MgnWhk04dZUJkJDn+rl2pQzUpCTheeRx51f6XR2FOvKaGbmqp lM6FXE4Vb0kJ9UekpZGjZOTX5CMrLsvvvgEKqZTpyrDt3Db8mPsj7LyXiyxgX9k+vL3zbcexuePX ibt1bJY3ujrxeGU85lw9B5unbfYbBlLKlTjfeB6RYaRgvuLGAAnPmpNrXJw4QOc/JobSKANRb6zH 45sfx76ywAuiTl81HWOXU4jkdO1pvLr9Vby6/VXcsfoOPPef5zBr7Sx8c+wbXJF6BYa1G4Y6g/dJ cJgTz0nJQXFDMe5ddy+OVR7D0cqjyEnJQWE9HS9z4t7CYWvy1jiu07HKY7hv3X14eKNzQpSvj34N AIiLiPP8sBvn6s9h46mNSFTRIASlXAnIm9CuHfU1+WvJlOuclbVcKsesnFlYNGERhqQPQaIysdVE 3F/nNhBSEQ/eifNSA/74g1KPoqNpVjk2t7M/Jw6QcApFnA31Zq41LMy7G2fLcymVNGkPi4uzSXZy cihskp5O4nf11ZQRUF0tiGtfKMO5c+Tcf/yR5kN54AEa4FJeTvs5d44EQqGg71u/HoCFLIjO5Dv1 ptHciEZzI3ie9+nE45WBk2olEnIdwk7ADQUbHDMDAjQYZtkyctkWmwVyiRxGq/ex3jmf5qD7wu5e 32Mw1332LLU+hK/X1NCoVJb+CJBwGCwGFNQUBC3iSw4uwfAvh+OG727AyhMroTPpcLbuLLRGz17o j/d+jKd+eQqnaj0m3gRAlYs3J95kaXJx4pX6Smws2OjixAEgThmHTrH+rbFSrkSlvhJqOX1RRlSG w5keqzyG/Jp8fHP0G3xz9BvcteYuRydoVJhTxIPFYrPg7Z1vw8bbvA5WckfCSXCi6gRsdhtu//F2 nKo9BaPViB6JPbBj5g68OORFAEBOSg7iIuJQa/A+EII58SR1ElbcsAIze8/Eu7veRZvINuie2N1x vOxce3PiM9bMwM+nf0Z1UzWe+89zLp2KPM9j9vrZuKv3Xag3UtZAXnUebHYbbHabxwCq+Tvm42jl UWgUVGuQiOtd7klflOnKkKpxnU9iQtYEzOgzAzd1uwk6s+uzy8TbfQbGQAS6PiHr2LTarZAEERNX ypUwWAwYOJgurEpF7uz0aRJAJuLffUdNc5aRwgSUOXE2tWtREX2+qsrp5BcvppS8Hj0olnjmjGvG xIED5DRPnKDXWQx30CC6MPHx5MY3bXK+b7E4WwPl5bQdG8qu11Pe6E030d8FBU4XfPbshQO3kBPX mXWw83avMWCdSQcbb4PZZoZaHebVicdHBDcy4sorXf8vqClAfk0+eJ4Hx3GYPJkqp8GDAesOK6LC o9BobnQ0Q4VoFBqPAS7uqNU0QOm771zTB8PDKZe2WzcaeMN4YP0D6BLfBUarEb2Se3nu0A2VXIU6 Yx3UCjWuTr8at6y8BbP7zsam05swtdtUvDbSdVx9VRPV8uW6cmTHe8445S+cwl3oeOB5Hrf+cCt6 JvVEToqXUSYBUMqV0Jq00ISRoMRGxMJsM6NKX4UeH/eARqHB6I6jIZfKHSGl0oZSjGw/0mvF5I/d Jbvx+YHPMSl7Eg5XHEaTpYkEDIDWqHWEdAASXrlEjjhlHLYXbkdJQwl2ztrpck/2Te0LqUSKRFUi bHabz+svnPfmlu63oKqpCs9vfR7jMschPdIZPpJK6T52F3GLzYI6Yx3Gf00DLDQKDV4c8iJe3v4y DBYDynRliAyLxBNXPoGpP0yFzW7DoMWD8Pl1n6OgtgDPbHkG9hft4DgOPM9jfcF6PNL/EQxtN9Rx DZgT94ferIfFbnH0X7gTGRbpEaby58R5nseR8zRir2dST8c9lVuV69Hn4k5Inbiv2KCQCHmEw+ko la4iHhHhFPFbbqHJdBhMQJkTZxQVUbO/ooKabLW1lE0xaRLNzDZ3LmV2lJY6VyApKKAKY/lycmRn zzrjxzEx9HeXLs5RkrGx9HlWhooK1wunUlGFM3w4vc5WOwHIre/eDXTv7FTiRrP3CUVYTd9obvTp xOVSSuNs7kOeX5sPnVmHSj2tEzZjBs0fIZVSBRyvjHc4HXe8Cbv7wA6Vis7Re++5pg+WlZGws4UW GI3mRizctxBr89eiX2o/BEKtUKNQW4hH+j+CN0a9gTRNGpYdWQar3Yr1BZ5TJVY1VaFtZFuU6Zz5 pMIQjLdwip23Q29xxsRP151GblUuNty+wW+Wgi+YiKoVdAE5jkN6VLojJvpw/4ex8uaV+OaGb7Bo wiI8NuAxTO4y2SWcEiz5NfkY02kM7ux1JxbtX4Sbvr8JRqsRu0t2o9OHnWC1Wx3HX95YjmR1MjrH dcaWM1vQMbajh6lQSBV4cSi58TglOXH3ATB23u7ITmFkxWVBa9IiJyUH6VHpKKgtcNzvS5YACYmu YbDqJue0ox1jOmJWn1l4afhLaBPZBlVNVdhfvh85KTmIiYhBnaEOu0t2o9ZQi/UF67FgL/UvsQom vyYfEk6C98e87xJO6dyjCfMDJLWwkBnnIz9Vo9AELeJaoxYf/PcDjFk+Bld9cZXDedt5O0b/ezRu 6eY/TzS0MfFgnfiFmkipJIFii6MKwykeI+kETlyYU15URCGQigrX8IHBQJ2WLOxSW+sUcYOBxPq2 20iwz593ii5z4p070+guhYI6X3/7zemqmRNnMDHo0oX2KxTxHj1oDo+UJGcF5yukwm52vUXvMyau N9OJ8NdB5o38mnwo5UrHDRUdTfNe8DwPi92CBGUC6oze457uIRye59Hj4x4uTVm2/JRC4TnV6pQp rqEUgBzcA30fwMSsieiXFljEVQoVirRFiFPGoUdSD/w8/WfozDo8N/g5nKo95VEBVeor0Tu5t2Nl oFpDLdr/qz1yq3Id5XR34gO/GIjqpmpHTLy0oRQdYzsGZU68wUScNe0Biov/Xvg7hrUb5tF6eG/M e5iQNQFRYVE+K1RfsL6F3sm9oVFooDVqkflhJpYdXobqpmp8f/x7SF+WotZQ6wgbZMZmYsvZLUiP 8j99qEKqQLgs3EXE9GY9Ut9Jhc6kcxHxzFgafnlFyhXoldwLm05tQtybcag31kPRYw3kr7o+2MxU yCQyHJ99HO+NeQ8AkKBMQJW+CrtLdqNfaj9Eh0ej3liPdfnrMLX7VKw4tgJSTop+qf0c9/SB8gPo l9rPRYiVciXkyiaXGSy9IYyHeyMyLNLjuQ0LI70SasF3x79D8jvJeGvnW/h52s8YlD4I5+rP4aeT PyHrwyzozXp8dp33gUSMkIm4vRkxceZ0Jk6kxHu2aKxQxNkIK1b5+3Pi6enUecY6TxISaDTjoUPk Dnv1ovfCwpyjD9mJZ/sVzlc9ciRVCFIpiWhaGsW9i4qc8xB7E/HsbIq75+Z6pvcJm1DsYZi6cqpL fIzdJEInrtO5io3eQiK+t2yvv9Pswena0xjZfiRyq13X9mChnThlnE/hYINVWLpYXnUecqtzcfT8 Ucc2nTrRxPnvveeazbJwIfDuu577bLI0YXa/2fjkuk+CKr9aoSYRv9C51TmuM1LUKbiu83Vey16l r0KvpF4o15GIv7D1BVQ3VWPNyTUAaNSe+8g9Fj9n96d7h2ZzcYh4mFPEM6IysKN4h1/hjAqPanZL q6C2AJmxmWgX3Q4NzzZgx8wdmJA5AZ8e+BSjO452jEBs+15bXL3kakSFRyE7Pht7SvcgIyrA3LiA x5wxR84fwXn9eRRqC12mTEiPSkeKOgV9Uvqgf1p/VD9djQ4xHVDSUOK4RoMWD3LE2KuaqhCvjEff 1L4IkzkXlUlUJaL/5/3x7yP/xrWdroVKroLFbsGPeT/i4f4PY1afWbip603oGNsRgxYPwvRV03Hb j7d5hL2UcqVHtpE7pQ2lGLVslN9ropQrYbKZYLFZXF5/5RXntMyN5kY8sfkJbJm+BSVPlKBHUg+k R1Jn9tNbnkaZrgw5KTk+3T4jhBNgBZedEiGPcDidYcModusu4jU1zvg2c93uMXEGC6cATic+ejS5 vw4dSLQzM52i6i7i1dUUq2W91hMnOkdZskUC0tKc3xkT4ynirCKIj6dty8s90/vYMTNHw/M8Np/e 7NJTzZx4o7kRUilVOtXVriLeZGnC/Vfcj5d+C345c5vdBp1Zh2HthuFQxSGX96x2K2QSGWLCY3xm IAjFGwA2ntoIDpxLBRQR4VwdRXjsDzzgff5sfzMXekOj0KDeWI84JYm4VCJF8ePFSNWkergkg8UA k82EzvGdUd5YjsMVh7EydyU+u+4zrC9Yj9t/vB3fNMx2yfhwj/tabBaP/PDm4h5OAUjk9pTuQXqk b8GIDIt09J0E4kTVCQz8YiB+Pv2zR+x/4fiFqH26FtN6TMPukt24ocsNKHm8BCnqFJhtZozsMBIA AqZ4AhRS+fbYt3hvFzllNmPjmbozLhk6UokUJU+UOCp+AEjVpKJcV+4I2ews3uloxVXqKzGqwyj8 MdM17a7eWA87b4dcKncIn9VuRX5NPgakDcD7Y97H/436P0crZ+WJlQCAXkmu/SuBRHx3yW4MWjwI jw14DF9N+srndhzHOa6LkCefBHiJGZO/nYzei3pjePvhGJQ+yPF+elQ6fjnzCxrNjbiz151BhQ5D 58TtwcXElXKlx7BmdxFnc2OzQSkACSVb3UMo4na7UyQ0Gpp2lY0wzM52Dmf3JeLz5nmfPxqg+Zkf ecRZvpwhFYgY/KmHiPfr5xxEwLb15sS33rEVA9sOhM6sQ3VTNeqN9Y4OOMAZE2chE5WKOlRdwikW PUZ3HI2ShhKf6XPuNJoboZKr0De1r+PhY1jsFsgkMhpK7iOcYrAYMCFrAuZuo0m0j1Uew1Vtr0J+ bT4qGivw/u73vX7OH94WgvBH5zia+EOYZsZMA4tXFmmL8Nr21/DUL09BLpEjRZ2CMl0Znvj5Cbw8 7GVM6TIFhysO4+ujX+OnfOdCp+/uehdn6s44/mchP/f88ObiLZzCXK8/1yeTyKCUK/1mMgHA2pNr MfnbyRjbaSz+mPkHuie6ZhBxHAdNmAbpUekwWA1IUacgJiIGhY8VYu3UteiR2MOlnP6ICovCc1uf w1s738KxymP4cA+tE3O67rRHZeweX09Rp6C8sdwlHMPMS6W+EgnKBI/PNJgaoFaoceyBYy7vze47 G1KJFBzHQcJJ8MHYD9D0XBNKHi9B3TN1GJfp2rwKJOKfH/gct/e4Ha+PfN3R3+QLbyEVgDKhDBYD Vty4Ap9f5zqQJyM6AytPrMS4TuPw1ui38PyQAGuzIZTD7mGFLBgnLovwyMNlzREm4izmbDY7R2lq tTQIx92JA85Z0LjYM5jxwnn0a0sWq0sXZzjEXcRZWtBcP5P79+9PP8uX0z7eWHIMN3y0FIYN97qI eIcOztXrfYm40WpEelS6o5ebzaHBYoKAqxMHnHNeywX3lt6sh1qhdgxFFzqerWe3IisuC20iaUae X8/+ivYx7SGTyBAZFok+yX1wtPIothduR5omDR1jOwblxJssTXhl+Cu47pvrUG+sR35NPsZnjscn +z/BNcuuwbHKY3jsysd8n0gf+wxGPBismcycuBB2TtfkrcHzvzofkuz4bBw5fwRGqxEbbtuAMFkY hrcfjlpDLYq1tCoGz/N4ZfsrMFmdA4ki5BE4UH4Aa0+uxbODA6wc7AeVnGpfoROflD0J3974La7t eK2vjwEAOsV2wsmak+if5mUKRlCM/+61d+Pda9/Frd1v9dsKZhWGMAeaCdaR+4+gc3zgmbE+GPsB zjeex+wNs/Hiry+ie2J39E7ujV/O/BKwMk5R0+pMdt6Oqd2nIkmVhPyafHyy7xP8kPuD13Ox5Y4t kHASxEQ48/dOPnTSMRiHwVoBvsrgT8TX5a/DmpNrsGvWrqCiCN46NwFqmc7uNxt9U/t6vMdacrP7 zXa5D/wR0ph4sCmG7ifV3YkzEddogP37Sbx/+IHEsrDQU8TZsPPquLX4ZL8zxjp0KP307UszqgGe TjwYevWibBej1QjITLBYfOeG+nTiFnKekWGR2HJmi2NkW5Ve4MQv1PIs7l1XB0BZ7RK20Fv0UClU UCvULq5gZ/FOzN8xHxsLnCPrHt/8OJYfWe5Y5FcTpkGSKglDlw7FrLWzAFA4RS6RIyYixmdM3GA1 IF4Zj8Hpg/Hz6Z+RX5OPW7vfigf7PYhpPaYB8MxWAaiCOld/zuN1nuebHU5xiLiXAR9MxFmFlh2f jd/u+g2pmlTIpXJ0SejiiLfOHzkf80fOd+TEsxbRptObMCBtAH669Sco5UrM2ToHJ2tOBpWX7wtv MXFNmAY3d7vZJeXP6/Em53i0mgC6zvk1+Vi4dyGGthuKaT2nBRSgtMg0cOA8cqABoEdSDyikgWcf 7Z7YHSM7jMT4zPFYlbcKN3W9CVlxWag11Aa8jikapxPvmdgTV7W5CsuOLMObO9/EmI5jvGZrpGpS PTKCsuKyArpld9j2wlg2z/P44cQPuHP1nZg/cn7AfH+Gt3AKz/M4UH4AV6R4XzF7aLuh2HT7pqDS aBkhzU6RB5li6J4nyUZSMhGvrSWRjYykQSss73jKFBoS7r7QABtUg4g6hwACFBt/7jlK/Xv+eRIV Fppojoh3706zFhqtRkBq8vv56Gg6Dm/hlAhZBFRyFT7e9zGMNiNu63EbKptcnbiEkzicuMkEaKbN ROePnE5Jb9ZDJVdBo9A4ttOZdBi0eBCOVh51ZGOUNJTg8PnDOFBxwLEqDQBkxlGzhYmTixP3EU5p sjQhQh6BCVkTsPzocjRZmtAuuh2eHvQ0nhn8DOKV8R55xDzPI/ntZAxdOtRjfyabyTGUPlhSNal4 YcgLLs6MwR4uVgmNaDcCQzKGgOM45KTkICfZ2dnVJaELuiV2c9yDrILcXrgdbSLbYELWBNh5O3YW 78TcoXNd4pvNxVs4JVhyUnKwv2y/y2t7S/di8OLB6PNJH7zw6wuYmDUxqH0ppAqkaFJaFN9nTMia 4Cgf218gJ56qSUWZrgw6sw6aMA2GZAzB2E5j8fWUrzFnyBzHPfln4W4cj1cdx/3r78fCcQsxK2dW 0PuJDItEraHW0Vleb6zH6brT4DjvFSRALYVrO/lvdbkT2lkMg3goY8JjPJa34jiapS0+3jmSMjqa 3PWePTRTYG4uOeKkJJp1UCaj3GyGUgnYFXU+m05GqxFJbydhw+TdAAZc1MxjRqsRdgmJuK/JpTiO nL/7os9syk7WofPlpC+xoWCDyxwROrMOiapER0w8NhZo11GGA4I6j4UhNGE0AIfneUe6YUVjheMG 2xJjU+0AACAASURBVFu6F1lxWdhXts9l6HdWbBZ+Pv2zI4/WYgsuJq6UKzE+czwe2vAQRrQf4dLD nqBMoEmHLuwToOHPPHivaafNdeEAxXdfHv6y1/dYM7fR3IiMqAzc0PUGx3t39LzDIwQTLgt3OPGC 2gKM6jAKW85scczNcku3W1BvrMe8YfOaVUZ3vHVsBktOSg4WH1rs+N/O2/HQxofwzKBnYLVbYbKZ MD4r+CV+ZvaeiZ5JPQNvGIDB6YNxd5+70TG2o6M/h4P/bIs2kW1Q3FCMcFk4IsMikaJJwWcT/afZ tSZMxKPCo8DzPL4//j1u6XYLbunevHl91Qo1Htv0GPQWPXbM2IFOH3ZCTkoOeiT2CJhx0hxCJuJ2 WCGTBv76jrEdcbb+LE2YJRD97dvpd8WFeeVZuGLjRprUn6UaZmaSiMfHO7cFSMSt8jqHALrDYlmf HX8HwHfNHioLkIgbLfTw+5pcCqAJuYTYeTvMNjPCZeEYlznOMcyciR9DZ9YhWZ3scNg1NcAD65Jw QGDIhOGUSSsm4YuJX7g0h5kTbzA1oF9qPxysOIhJ307ClC7U88q+m2U+WO1WyKVyxCvjXUI7Qlgr IlmdjJu73YxnBj3j8n6iKtHjs4XaQlzV5iocOX/EY8Rgc+PhgWDhFK1Ri0cGPIIR7Uc43ru1x60e 24dJw2CxWWCz21BQU4DBbQejS3wXtItuBwB48xofKw43E2/hlGDpldwLuVW5MNvMUEgV+PLQl5Bw Erw28jW/Mz764pURrzT7M95QSBUOAR7YdiD6p/VHRrT/FMXM2EwU1BQgSZXkMBP/S4RO/MVfX8TH +z7GutvWNXs/vZN7Y0fRDlzb6VoMWUp5tCUNJR4dyi0ldCLO2yALMiYer4xHcUOx46EREnXhWU9I IKdtt7sO42Yx5/R0cqps6lilErBI6l3CKUKYiJ+qz0NMTOBlvrzBYuLCleOD/VyYLAwcx+HpQc75 S9Ii03C2/ix0Jmpm1hnqkKxOxvO/Po9rOl6D/mn9ERtBoxQsNgvkUrlLOKXGUIP5f8zH7hJaQkjC SRwjFBvNjYgMi8T3N32Pbgu7OZr0fVL6uJwPFk7pFNsJp2pPOYblC2HhFABYceMKj+NLVCVixFcj cPC+g+idTMuNF9YXokNMB1jtVhyvOu4yz3RzM1MCERkWiVJdKeqMdUG5TY7jECYLg8lmQlFDEUa1 H4W5w/z0cF8kKoUKnWI7IUwaFnhjN5RyJWIiYhD2ahhqn67F3G1zsfLmlRcl4H8m/737vwG3SVQl wmK34Fz9uZCJuN6iR01TDT7a+xGOzz7uM/zhj+eHPO+SXbL00FLMWDOjVcJUQkLasRmMEweoZv7h xA8Y+IXnBPKZmZT7/eyzzvTCKwR9BkzEt2wBDh92ToClVAImiX8nzoSqqNjuMSLUFx/+90P8cvoX ACTGykgT1q8HPt3/KdbkrQlqH+5DkxmpmlRMyJqAV7e/CpvdhuNVx5EVS06ZpWCxNMJSXSl4nndx 4gAcAp4Vl4WclByHE9eZddAoNI4cYCbig9MHY+3UtQ4RZymGcco4SCVS/Lf0vxj+5XDHEGuLzQKe 5yGX+O5QYnnkwuyWIm0RMqIyEBsR69Gj39pOXBOmgc6kc1lGLRARsggYrUYUaYsCjli8WGQSGQoe LrjopjYTh+2F22G0GoPKMb4U4TgOmbGZOHz+8EX1D7QUrVGLXot6YeKKiRiaMfSiBNwb7Pr8ZUQ8 2BRDgATnle2vYFfJLry6/VWP3Mu2bWmgi1ZLsW9hip1wtXeZzDncOzISMKDOpxPXmXRI1aQiOjwa tVZafSWvOg+LDy72uv2KYyuwv2w/1uavdcx1YbQaYbKaIJMB6wvWY+3JtT6Pked5PPXzU3hp20uO zBRvvDHqDXxx8AtsPr0ZSaokvHPtO5jddza+PPwlFu1b5IjTnqw+CYPVAJlEBplE5vEw3NT1Jmy6 fRMq9ZWw2q1oNDc6MlIAEmuGsJedOXGArsuXh77EtnPb8P2J7wEA/9zyT9h4m18hYudcuCIOE0dv 2UgXExP3R2RYJD4/+Dk2ndrktePTG+GycBgsBhTWF/5pIt5Sfp/xO67Lug6rT64OaqTfpQwL44XC iRc3FKN/Wn9HamxrwVI2WzKWwBshE3EewTvxwemDHRP8vL/7fZeBFkK++cZzZXpfcyB8+SVglvju 2GQZGllxWY6MhG3ntuGbY9+gtKEU6/LXoVhbjM2naA245UeXY9u5bcivyXfMAW20GmGymRwrnB+o 8EwBY6zOW41NpzfhnV3vYP6O+R5LfjGS1cm4seuNmLN1DnJSciCTyJARnYFfzvyCB9Y/AKPViJyU HDz585OYt22eI9VOrVA7OpT23L0Hz139HOKUceia0BWv/PYK8qrzXDrUhJ2WmjCNSziFueysuCxs PLURbSPb4ptj38BoNeLd3V7GzLux4oYVGJA2wJHxcbjiMLae2+pTxFvbibPym2wmxIQHL+J6ix5l ujJHXv2lRoQ8Au2i22FV7qqLmkXxUmJmn5kALq5/oKUUPVaE32f8jj1378Fdve9qtf3+NZ14EDFx ABjTyblSaa2h1iP3khEV5SnaiRcSIHiedyydVK4rhy4sF/XGer/hFNYzzjoTC+sLUdNUg61nt+K1 319D5486Y8xyKluRtghF2iIUa4sd2R9sQIjBasDZurM4WX3SZQ7uncU7HWL967lfMbP3TAxvPxyr T67GFxO/8Hk+JmRNwKGKQ7i1O3XCCW8Ko9WI2X1n48F+D+K93e9hQialeGnCNEiLTMP629ajX1o/ hyhOyJyAl7e/jB9yf3Bx68IccOG0miw7BQAGpA1AobYQjw54FFvPbg1qcQGABuC0j2nvGMS15NAS 9E3ti6szrvYQ8d8Lf8d3x79r1Zj4uMxxWHEDxeoD5V8zIuQRWH5kOeKV8S5zdlxqpEelQ2vS4ur0 q0NdlBYxqsMo/OeO/7S64AVD26i2UEgVaB/Tvtl55v6IU8ZBJpH9dZy4nbdBHqQTj1fG4+PxH0Ml V4EHH9RyUoxBgyh3vEhbhJu+vwkAMGb5GHRd2BUWuwVGq9HrpOs6sw6Rikio5c5BMkUNRagx1KCq qQpHzx+FwWpA1wSaOKVIW4RdJbsQJgtziDgT7PyafCSpkzCs3TB8vPfjC8dvx6DFg/DadpqZrryx HKmaVMy5eg6+vfFbTOzsO6d3VIdR+Hj8x5iUTavgspsiNiIWRqsRKoUKD/R7AMunLHc6GoUGiapE j2HG915xr2OIOnPia6euxb/G/MuxjVDEheEU1tS8qu1VGJIxBA9ueNDvtRAinNjsQPkB3HfFfVAr 1B4i/uimR7Fo/6JmXfOA3y2PwC3db8EHYz4I2lWHy8Lx8vaXMatP8HnCoYBdw+Hth4e4JC3HPTX1 ckfCSfDh2A+9Jmi0aL/BbMRx3BiO4/I4jsvnOO4ZL+8P5TiunuO4Axd+Ag74pxTD4Adv3N/3fscD F+wDTRP201JV9cZ6h6ieraM5YqPCosCDdwyO4Xne4Z6FoxYbzY0wWo0orC9EraEWlfpK6C16pGpS oTfr0WBqQL2xHgcrDmJQ20Eo1hY75k4GaEbA9Kh0vDTsJSzavwiAc9DIV0doEh02tWX/tP4+VwBn hMvCcX/f+x03OHMryepkl5Xgb+52s0Pg1Qo1EpSeeY5to9rigb4PAHA2Xa/rfJ3L5EjCOSCKtEWO /O6M6Aw8NfAp9EjsgfevfR8ZURlYNH4R7sm5J+C1iZDRIC47b8ehikPok0xZMO4izgYF7SzeGXCf zeXhAQ8HPW0si8k/NeipVi9Ha3JNh2vw6IBH/S4DJxI67u97/0VPVeyLgHvjOE4C4CMAIwGUAdjL cdwanufdF1HczvN8cEPCQDHxYJ04I04ZB9T4X7KMUdpQimFfDkPBw5S1oTVpHaLKwjEqhcohEhab BZO+nYQibRGOPnDUEU4x28zQmXXI+jALxQ00f0apjlY4HtVhFFbnrXasC2i1W9E7uTfyqvNwpu4M jDb6vlpDLdQKNfqk9EFJQwkaTA3YX7YfU7pMwS+nf3HM2XyxTcd20e2QGZsJCSdxEXEh3RK7+Ryc wxZx8DXIJEwaBhtvg8lqwvqC9RjbaazjPZYjrQnTYO2tvjtu3WFiXawtRlR4lKODUSjiPM+jorEC 745+1+eyaf8rWKpeKLIlmkPH2I54f0zzJxgTuXwJxon3B1DA83whz/MWACsAXO9lu2a1e+wIbipa ISwHOhgnXmOocVmlRWvUwmq3uszkJ+wsK9OVYUPBBkfaGxNxjYLS0dh8xrERscirzkO76Ha4Lus6 NJobMWrZKMdcCFlxWRjdcTQ2FGxwVBp1xjoo5UrIJDL0SOyBN3a8gRlrZmBYxjD0Tu6NA+UHWjQD nkqhwuZpm6Ez6XyK+OD0wfjn4H96/Txz1r4EiuM4JKmScLzqODaf3oyxmWO9btcc2BTD5/XnXea8 EIp4raEWSrkSj1/1OBaMX9Di72wJrEx/pea9yF+DYEQ8DUCx4P+SC6+5cxXHcYc4jlvPcVzXQDu1 X4wTvzCZUYOpAadqT6HNu77jmbr/b+/eg+MqzzuOfx9Jq8tKsiQbS7YsMNgmGIiTGIhDggsmDMQ1 AYJJEyBDEjpt3AvkQppgknRwOp2S5I80zKR0SEs7KUnjTOkEnIEQx5MsGXdC4tZOICARYxvjOzbI 8kW+SKunf5w965Wsy0p7vMer/X1mNOyePT7n7Ivn8aPnvOd5Txymt683e+MwnN2S230uN4h3Huhk Wl2wWMDyHy7nrWNvBUG8ppGeEz2kPU3vl3qZ0TCDrgNdfH/59/nwJR+msbqRvnQfv/jEL4AgiC+/ eDmfefYz2Z7FYTACWDRrEQ+tf4g1d6zh3vfcy8IZC3nuteeoqqia0OPWobBL4UhBfDRhmWW0mQAP LH6Au5+6m0RFIpIpdmGwHvr4fW4QL3SRhSiNNBVVJG5RFWf+DzjP3XvN7I+BJ4FhlyRftWoVAMc2 beT1+R3wwfxP0lrfSnNtM4dOHGL7we3sOryLW394K49+8NFBgQBOlUwOHj9Ia31rduWT3MfWBwXx /Z1cMv0SOg908qOuH9Fa38ryi5dTVVHF79/4PW31bdQl6phWN42X97+cPV9LXQtNNU00VDdQn6jn bdPeRntjOysuX5HtkNh9rJtkVXCub1z/DVYuXpl9gGB6/XQ27d1UcLBqrGnk8MmRM/HRhN9ltH9E Pv7Oj3Pf2vu4fs71BV1nqK6qjt39u9l/dP9pQfzZV5/l+sev58YLb4z8Tv5EjbXai0iUUqkUqVQq r33zCeK7gNzUqyOzLcvdj+S8/omZPWJmU939raEHC4P4N1/vYv7CBXldZGjl4pW01bfReaAz+1DL k11P8sX3ffG0IB72E+k+1s2ew3t48pUnAU5r5h/qOtDFzMaZpD1NdWU16YE0111wHanXUmzcszG7 GnZYuw2z15baFjqmdGBmvPiXL2aDc/g4OQTllFmNwS8vtVW1g54Aa6xu5PWe17OloomqqawhPZDm 0IlD4w7iYYfC0eq9jTWNXDP7msjmH+dm4rk3XJOJJNt7tnOg9wDrtq7jzgV3RnK+Qo00FVXkTFiy ZAlLlizJvv/qV0demSufIL4BmGdms4E9wO3AoC5BZtbm7vsyrxcBNlwAzzXe2SkQ1KM7pnTw612/ HrSmYNpP700d3vzsPt7Nz7b8jHVb1wGw7eA2OqZ0sPPQTuoT9Wz48w2sXLeSrje7WDhjIV943xeY npzOoROHaKptorGmkb6BPuY0zwHgwWse5PZLb8/OL26pa8muvnJBy6kG9Nm2m1V1dB/vzi4IO1RD dQO7D+/m0umXjmsshgpXZTnQe2DcQTxRmeC5Tz5HfXX9qPs9vPThvOdVjyVsMby/d/9pNXGAh657 iKl1UyPppBcFlVPkbDVmTdzd08A9wFrgJWC1u3ea2Qoz+1Rmtw+b2e/NbBPwLWDMno0TmZ0COR3o TvRw+czLmVo3ld6+Xtydl954KbtfmIn/asevBt3g3Na9jTktQUBOJpJc0X4F7Y3tdO7vZGbDTK5o v4LZzbNZ0Bb8lhCWGMI68GUzLxvU6a65tnnYGnFYBmiubQ7KKSM8cdhY08jeI3sjeTKtsTooqUxk etnVs68ec5+Lp18cWR+J0TJxCNqRfuwdH8v+f4hb7kNaImeTvKKouz8LXDRk26M5r/8JGNf0gQHr JzHOTBwGtxG99vxrObf7XHr7enl689Pc9IOb8AeDRkxhTfy+tfcNWm1l28FtzG2Zyy+3/zIbMJpr m9nfu3/Y+mtYYhipfeZHLvnIsMtVhZl4U23ToBubwx1/wAci6RER/oNTCnOEw2X3jvcfP60mDtH3 lyjU6ttWj3s2lUgxxNaKdqKZ+IyGGWzv2c7B4wdpqm3KZnRDF47InUt+oPdA9vW2g9uyTxqGAaOp JigRDF2PD07PxIcaqVF8W0MbEATpvUf2jhjEw+NPqS48iIfZfCkE8WQiyZ4je9h7ZO+glVqyQfws mZUSGu+CACLFEl8DrAlm4nNa5lBXVcf6HetpqmkiWZXk6Mmj7D0SrPgQtkQNyym5Kq2Sbd3bOL/5 fAzLBozwV+UrO6487c+EgXG80+rChRemJYNpi6OVUyCabm3hzdGJ9KMutrpEHS/se4FlFy4btGZh +A/Q0PUSRWR4MQbxNImq8QdxM2PZhctY//p6mmubs5l42DkwnLUytEnWns/v4Ya5N7Dv6D5mNsyk LlGXDaz11fUkE8lhm92EmXI4u2Q8/EGnvSGoIY+ViUdRE7/q3GB9x1J4ICV8jP2ud9w1aHs4Tmdz kymRs0msmXh11cSqOe/teC/AoHLK5reCx+t39Ozgs89+liMnj7D6ttU8fefTQDCNLszyzkmeQzKR zAaMB695kJ6VPcOcKWjUf/IrJyfczSw852g1cYgmEx/a3OpsFnYlXHze4kHb2xvbOfmV4dvwisjp 4u0nPsEbReFc5aaaU0F89+HdVFVUsXHPRh7Z8Ei2Zj6nZQ7T6oIWkGFAnZacRl3VqUzczEZtSlNI O8pzm4KVcsasiUcQxC+beRk7P7ez4OMUw7yp89j5uZ2D1vsMRdn+U2SyK8lMPLwRZmbZ9fD2H93P 3Ja5vPrWq/QN9PHS/pdorG7komkX8czHngFO/Yo+rW7aoEz8TApXKBnpXMlEkgqriGwFk1lTxl/2 iUspXavI2Sq+VVQnWBOHoKPcE3/yBO+Z9R6SiST7ju4jUZmgraGNLd1bANh7ZC/zps7DzFg0axEA 6YHgoaC6RN2gmviZNFYQNzMaqhvO+u54InJ2im+KoaUnnIkD3HbJbUDmMe2D25menE5jdWM2iL+7 /d3ZaX6h3P4XxcrE57bMBRi2bBBqqG6IZS1BESl9JTfFcKhkIslrB1+jtb6VKTVT2PLWFhaft5h7 F9172r65j04vm7csu6LNmVSXqGPhjIWn9XbJ9dFLPxr5ah8iUh5iy8SxNNWJwk+fTCTZdXgXC2cu ZErNFHYd3sXfXft33PXOu07bN7eJ0Zev/nLB587XxhUjL5AM8M0PjL24sIjIcGLJxN2Bin6qJ1gT zxWWRFqTrdmSxEhZr5oYichkE2MQn9hj90OFQbytoY2W2qBN7EhP+13QfEFBCy+IiJxtYimnpNNA RT+VFl0mfve77qa9sZ0b33YjC1qH73z3veXfG7Q8m4hIqYsxiKcjWfX57a1vp/OvO7Nzx0frP10K jaFERMYjlnJKNhOPoLWnmTH/nPmFX5SISAmKJYgPDIBFlImLiJSz2DJxj6gmLiJSzuIrp5gycRGR QpV8TVxEpJzFVhNXJi4iUrh4M3HVxEVEChJLEO/vd6hIq5wiIlKgWIJ4X/8AuFFh8bUzFxGZDOIJ 4uk0uLJwEZFCxRLET/b3YwO6qSkiUqiYyinKxEVEohBLED/R34+5MnERkULFMzslncaUiYuIFCyv IG5mS82sy8z+YGb3j7Lfu82sz8yWj3a8vv60MnERkQiMGcTNrAL4NvAB4FLgDjM7rfdrZr+vAT8d 65gn0/0YysRFRAqVTya+CNjs7tvdvQ9YDdwyzH73Ak8Ab4x1QGXiIiLRyCeIzwJ25LzfmdmWZWbt wIfc/Z8BG+uAfel+1cRFRCIQVTr8LSC3Vj5iIF+1ahUvbnmT/q09pFIplixZEtEliIhMDqlUilQq lde+5u6j72B2JbDK3Zdm3q8E3N2/nrPP1vAlcA5wFPiUu68Zcix3d/7jmU7+InUrvd/oyvMriYiU LzPD3YdNjvPJxDcA88xsNrAHuB24I3cHd5+Tc7J/B348NIDn6kunsXjWaBYRmVTGjKTunjaze4C1 BDX0x9y908xWBB/7d4b+kbGO2Zfup0I1cRGRguWVDrv7s8BFQ7Y9OsK+fzrW8fqViYuIRCKeBljp fio0T1xEpGDxPXavTFxEpGDxBPEB1cRFRKIQ26IQFcrERUQKFlM5pR/TIskiIgWLqZySplKZuIhI wWIqp6iLoYhIFGLLxDXFUESkcLHVxCtN5RQRkULFEsTTrkxcRCQKsdXENcVQRKRw8WTiA2kqNMVQ RKRg8U0xVE1cRKRg8T12r0xcRKRgsZVT9LCPiEjhlImLiJSw2KYYqiYuIlK42DLxygpl4iIihYov E1dNXESkYMrERURKWHyzU1QTFxEpWDxBnH4qNTtFRKRg8WXiFcrERUQKFdONTWXiIiJRiG12SpUy cRGRgsUSxAdcs1NERKIQ4xObCuIiIoWKrSaucoqISOHyCuJmttTMuszsD2Z2/zCf32xmvzOzTWb2 v2b2/tGON+BplVNERCIwZjpsZhXAt4HrgN3ABjN7yt27cnZb5+5rMvsvAH4EzBvpmMrERUSikU8m vgjY7O7b3b0PWA3ckruDu/fmvG0ADox2wDR9JCoS471WEREZIp8gPgvYkfN+Z2bbIGb2ITPrBJ4B Pj3aAU9yiGTllPFcp4iIDCOyG5vu/qS7XwzcBDw+2r7H6aGlrimqU4uIlK18CtO7gPNy3ndktg3L 3debWZWZTXP3N4d+vmrVKnr+p5PfbP0hqbmVLFmyZNwXLSIymaVSKVKpVF77mruPvoNZJfAKwY3N PcBvgDvcvTNnn7nuviXz+jLgv9x97jDHcncnuXIej1z1Ez5504V5fiURkfJlZri7DffZmJm4u6fN 7B5gLUH55TF37zSzFcHH/h3gNjP7OHASOAp8dLRj9lX2ML1R5RQRkUKNmYlHejIzHxgYoHJVDc/f fJhFl9cU7dwiIqVqtEy86E9sHus/Bl5ByxQFcBGRQhU9iPcc78FONJNMFvvMIiKTT/GD+IkeON6k IC4iEoFYMnFXEBcRiUTRg/h9P/08fqyZ6upin1lEZPIpehD/q4WfJ/ncw9iw91lFRGQ8it5K8Lr2 W2k4XuyziohMTkXPxHt7UT1cRCQiCuIiIiUsliBeX1/ss4qITE7KxEVESljRg/jSpdDaWuyziohM TkWfnfLmm1BbW+yziohMTkXvYljM84mITAZnVRdDERGJjoK4iEgJUxAXESlhCuIiIiVMQVxEpIQp iIuIlDAFcRGREqYgLiJSwhTERURKmIK4iEgJUxAXESlhCuIiIiVMQVxEpIQpiIuIlLC8griZLTWz LjP7g5ndP8znd5rZ7zI/681sQfSXKiIiQ40ZxM2sAvg28AHgUuAOM5s/ZLetwNXu/k7g74F/ifpC J5tUKhX3JZw1NBanaCwG03iMLZ9MfBGw2d23u3sfsBq4JXcHd3/e3Xsyb58HZkV7mZOP/nKeorE4 RWMxmMZjbPkE8VnAjpz3Oxk9SP8Z8JNCLkpERPIT6RqbZnYtcDewOMrjiojI8MZcY9PMrgRWufvS zPuVgLv714fs9w7gv4Gl7r5lhGNpgU0RkQkYaY3NfDLxDcA8M5sN7AFuB+7I3cHMziMI4HeNFMBH uwgREZmYMYO4u6fN7B5gLUEN/TF37zSzFcHH/h3gb4GpwCNmZkCfuy86kxcuIiJ5lFNEROTsVbQn Nsd6YGiyMbPHzGyfmb2Qs63FzNaa2Stm9lMza8r57AEz22xmnWZ2QzxXfWaYWYeZ/dzMXjKzF83s 05ntZTceZlZjZr82s02Z8fiHzPayGwsInkMxs41mtibzvizHoSDufsZ/CP6xeBWYDSSA3wLzi3Hu uH4IZui8C3ghZ9vXgS9mXt8PfC3z+hJgE0F56/zMWFnc3yHCsZgBvCvzugF4BZhfxuORzPy3kuC5 iqvKeCw+B3wPWJN5X5bjUMhPsTLxMR8YmmzcfT3QPWTzLcB3M6+/C3wo8/pmYLW797v7a8BmgjGb FNx9r7v/NvP6CNAJdFC+49GbeVlDkOB0U4ZjYWYdwDLgX3M2l904FKpYQXy8DwxNVq3uvg+CwAa0 ZrYPHZ9dTNLxMbPzCX5DeR5oK8fxyJQQNgF7gZS7v0x5jsU/Al8Acm/MleM4FERdDONVVneVzawB eAL4TCYjH/r9y2I83H3A3RcS/DbyR2a2hDIbCzO7EdiX+Q1ttKnHk3ocolCsIL4LOC/nfUdmW7nZ Z2ZtAGY2A3gjs30XcG7OfpNufMysiiCAP+7uT2U2l+14ALj7IeAZ4ArKbyyuAm42s63AD4D3m9nj wN4yG4eCFSuIZx8YMrNqggeG1hTp3HEyBmcZa4BPZl5/AngqZ/vtZlZtZhcA84DfFOsii+TfgJfd /eGcbWU3HmZ2TjjjwszqgOsJbtiV1Vi4+5fc/Tx3n0MQD37u7ncBP6aMxiESxbqDCiwlmJWwGVgZ 9x3dInzf/wR2AyeA1wl6yrQA6zLjsBZoztn/AYI77p3ADXFff8RjcRWQJpiVtAnYmPn7MLXcxgNY kPn+m4DfAX+T2V52Y5Hz/a7h1OyUsh2Hif7oYR8RkRKmG5siIiVMQVxEpIQpiIuIlDAFcRGRwdxk ZwAAAB5JREFUEqYgLiJSwhTERURKmIK4iEgJUxAXESlh/w+FKeZ+iKIc4QAAAABJRU5ErkJggg== ", "text/plain": [ "<matplotlib.figure.Figure at 0x7fc258328890>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEACAYAAABF+UbAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz AAALEgAACxIB0t1+/AAAIABJREFUeJzsXXd4VNX2XTdlaiYzkx5CEkoSCL33EilSBUGxAQrWp/Ce vTyeiiggvmdXBJ9dFHmKitIREASk95KQUJKQEFImk2RqZjJzf39szp2aZBKiCf7u+r58k5nbzr33 nHXW2XuffTie5yFChAgRIq5PBDV3AUSIECFCROMhkrgIESJEXMcQSVyECBEirmOIJC5ChAgR1zFE EhchQoSI6xgiiYsQIULEdYyASJzjuLEcx2VxHJfNcdyzfrZHchy3keO4YxzHneQ4blaTl1SECBEi RPiAqy9OnOO4IADZAEYCuAzgIIA7eJ7PcttnPgAZz/P/5DguCsBZALE8z9f8YSUXIUKECBEBKfF+ AHJ4ns/jed4OYBWAyV77XAGguvq/CoBOJHARIkSI+OMREsA+CQAuuX0vABG7Oz4CsI3juMsAwgDc 3jTFEyFChAgRdaGpHJv/BHCc5/lWAHoCWMpxXFgTnVuECBEiRNSCQJR4IYAkt++tr/7mjsEAFgEA z/PnOY67CKAjgEPuO3EcJyZqESFChIhGgOd5zt/vgSjxgwBSOI5L5jhOAuAOAD977ZMJYBQAcBwX CyANwIVaCiL+8Tzmz5/f7GVoKX/isxCfhfg86v6rC/UqcZ7nHRzHzQWwBUT6n/A8n8lx3EO0mf8v gFcBfMZx3HEAHIBneJ4vr+/cIkSIECHi2hCIOQU8z28C0MHrtw/d/i8DcFPTFk2ECBEiRNQHccZm MyEjI6O5i9BiID4LF8Rn4QnxedSPeif7NOnFOI7/M68nQoQIEX8FcBwH/hocmyJEiBDRYtGmTRtw HPeX+GvTpk2D719U4iJEiLiucVWlNncxmgS13YuoxEWIECHiLwqRxEWIECHiOoZI4iJEiBBxHUMk cREiRIi4jiGSuAgRIkT8gdDr9ZgyZQrCwsLQtm1bfPPNN016/oBmbIoQIUKEiMbhkUcegUwmQ2lp KY4cOYIJEyagR48eSE9Pb5Lzt6gQwz59gGHDgDff/NOKJEKEiOscLTnE0Gw2Q6vV4syZM2jfvj0A 4J577kFCQgIWL17ss39jQgxblBI/fBhwOJq7FCJEiBDRNMjOzkZoaKhA4ADQvXt37Ny5s8mu0aJI HADk8uYugQgRIv5q4Pxq2IahMWLfaDQiPDzc47fw8HAYDIZrL9BViCQuQoSIvzyay9oSFhaGqqoq j98qKyuhUqlqOaLhaHHRKSKJixAh4q+CtLQ01NTU4Pz588Jvx48fR+fOnZvsGi2OxGWy5i6BCBEi RDQNFAoFpk6dihdffBFmsxm7d+/G2rVrMXPmzCa7RosjcaMR+Pjj5i6FCBEiRDQNli5dCrPZjJiY GMyYMQPLly9vsvBCoAWFGFZXkwpv3RqIjQUOHfK7mwgRIkR4oCWHGDYU13WIYWUlfer1gELRvGUR IUKEiOsFLcacUlFBnyYT4OXMFSFChAgRtaDFkTgANGEIpQgRIkT8pdFiSPzYMSAmhv43mcSZmyJE iBARCJqdxGtqgEuXgB9/BG67zfW70dh8ZRIhQoSI6wXNTuI7dwL33APs2weMG+f6XbSLixAhQkT9 aHYSr6qiiJSqKiAuzvW7aBcXIUKEiPrR7CRuNgPFxYBUCoSFuX4XlbgIESJE1I8WQ+IqFRE5g6jE RYgQIaJ+tAgSdzp9SVxU4iJEiPgrYOnSpejbty9kMhnuvffeJj9/QCTOcdxYjuOyOI7L5jjuWT/b n+I47ijHcUc4jjvJcVwNx3GaQM5tNtNneLgr+ZVGIypxESJE/DWQkJCAF154Affdd98fcv56p91z HBcE4H0AIwFcBnCQ47ifeJ7PYvvwPP86gNev7j8RwGM8z1f4O583GIm7K/HYWFGJixAh4q+Bm2++ GQBw8OBBFBYWNvn5A1Hi/QDk8Dyfx/O8HcAqAJPr2P9OAAEv5+yuxBmJR0YCVmugZxAhQoSI/78I JAFWAoBLbt8LQMTuA47j5ADGApgTaAHclXhQEBAaCkREUFZDESJEiGgKcAuufX02fn7LzJTY1FkM bwKwO1BTCkBT7AFS4gCpca1WJHERIkQ0HVoqATcFAiHxQgBJbt9bX/3NH+5APaaUl156Sfg/IyMD ZnMGAFLiAC3PFhEhmlNEiBDx/xc7duzAjh07Ato3EBI/CCCF47hkAEUgor7TeyeO49QAhgOYXtfJ 3EkcAP79b4pKYUp8wwbg99+BnJwASiZChAgRLRwOhwN2ux0OhwM1NTWorq5GSEgIgoODaz0mIyMD GRkZwvcFCxbUum+9jk2e5x0A5gLYAuA0gFU8z2dyHPcQx3EPuu16M4DNPM9b6junO8xmmm4vDTPj QOEB9OlDJhXRnCJChIi/AhYuXAiFQoHXXnsNX3/9NRQKBRYtWtRk52/25dn69QNmzwZK2y7F/P1z wc/n8cUXwLZtwJdf/mlFEyFCxHWK/+/Ls7WIGZtDhwIJMTTTx2gzikpchAgRIgJEiyBxhQLQW/UA gGNXjokkLkKECBEBosWQeImpBADw3NbnMOO0WoxOESFChIgA0OwkbjQCSiWR+KQOk7Dn0h6YHVWi EhchQoSIANCsJG63Uzx4WBhQai7FXV3uEraJJC5ChAgR9aNZSbyykjIWchwp8bbatjj/j/MI5kJg sf41vM0iRIgQ8UeiqafdNwgVFUTiAFBqKkW0IhpttW0hC5bD4qwCoG7O4okQIeI6QHJyMjju2nOj tAQkJyc3+JhmJXG93kXiOosOkYpIAIBWGgkLdBBJXIQIEfUhNze3uYvQrGhWc0pFBaDW8KiwVsBs NyNMQotsamWMxEWIECFCRF1odhKvabULo1eMhkqiQhBHxYlURKI6WCRxESJEiKgPzU7iknA9ssqy oJa5TCeRigiRxEWIECEiADQ7ictUFhhtRqilLhKPVkaiOkiH6XXmQxRxPeOll4ArV5q7FCJEXP9o dhIPVdDSPu5KPEKhAaSVWLmyuUom4o/G6tVAVlb9+4kQIaJuNDuJh8gpc627EtfI1ICssrmKJeJP gMVC0UkiRPzR0OuBJUuauxR14/Jl4P33G3dss5K4TgeEyH2VuFqmBqQiif+VYbFQJy5CxB+NpUuB f/6zuUtRNxYtAv7+98Yd26wkXlYGhPpR4mqpqMT/6hBJXMSfhY0br/0ceXnAggVN78cxGIDFi4F1 6+i7dypxsxl47bW6z9HsJB4kvarEpZ5KvHPvSsjlzVUyEX80RBIX8WfhwoVrP8fq1eSM37Pn2s/l jq++An7+GXj00aspub1MjD/8AKxaVfc5mpXES0uBIMlVJS5zt4lroNBWwG537Wu3A4cO/dklvD5w 7Nifv7D0vn2+qsEd+/cDDof/bU4nJTgTSTxwHD5Mz3vtWuCzz0gAiQgMNtu1nyMzkz4bm5jPZKKV ysrLXb/l5gKffgo8/TTwxBNAmzZAodsS9IWFwIcfAv/4R93nbjYS53mqiM4QM9pq2qJDZAdhm1qq RpWtEk4nUFNDvx04ANx3XzMVtoVjzpymVwj1YeDAuq95yy3UufgD63BEEg8MFy8CffoQkU+bRk66 H39s7lJdP2DEey0ruGVlAW3bNp7Et20D7rkHWLjQ9dsjjwDt2wPjxtH3hARycDI88QQQEUFtqS40 W+4UoxEIDQXsvAULMhZgSvoUYZtapkZlNZlTzp4FOncmwjcam6u0LRtVVfUrcauVskbGxl779Vhj OH0a6N0bPmavmhqgqIgqZO/e/ssCuIaOBgOppchI330LC6nMIc2a5ad5sWYNEBRE5J2WBowaRe9c RP1wOsl0FxREo3mJJPBjCwuBmBjiqawsYNiwxo94CwqAAQPIPHLTTVSW3bvpd4WC9klIAH79lcro dAKbNxP/hYfXfe5mU+JlZUBUFGCpsUAe6skCaqkalVYi8S5dgA0byPRiMjVTYVs4DIb6K9eDDwJx cU1zPdaZPvII8MILvtuLi6kSug8N3WEhC5qgxJctA+bN87/vtGmkYv4/Y98+YNYsIoCOHQGVit65 iPphMpHIUCgaTsBjxwKbNhH3OJ1AYmLjlXhhISnuUaOAl18GXn0VePJJT4IeN47MkC+/TIr9oYcC E13Npm8YiZvtZihCFR7bFKEK2J12yBR2AKH47jugXbvrV4lbLC61arNR/nSepx6XLU/XENhspCwc DkAq9VXiFgsgk9F1GA4cuPb7YGDk63TSsH7+fCoHUzmMvGsjcd3VjArnz5Miyc8Hzpzx3Y/n6ffi Yvp+5QpV+vqeV2OeaUuG0QjcdRcp8vR0ega1PduWCquV6kdQE8jGhrxfg4E6Pbu9YQSckwOcOgVc ukSZVjt2pDZV1zmsVhqB+kNhIS0I/+KLtR9/223011A0mxLX6wGtFrDYLZCHeCpxjuMQLg2HVE1h hps2URylyUTEcb2hSxcXEY0aRZW5Vy+ycQ4b1vDz9e9PncLQoUR03kpcoSDnlzuaMjSqooLMG7Nn AykpNExMSQGOH6ftdZH49u1A9+5AfDyR06OP0n7MceSO4mIyAZWV0Wd8PNn/60J5OS3391dao9Vo BNRquvdhw65PJX7PPa4wumtFt25EroGgqoo6vfoI2Btr1lAdZ3UzPZ2ESl316q67gMGDgREjPP96 9wa++ILMJX8Emo3Ea2roIflT4gAQpYhCiLoUMTEUJ8leABuKX08oKXH10MyWefo0sHJlw8OfsrLI YVhTQ8M8q5X+Z5WL2au9Q5UqK/2rIJ4P3OHjfu4BA8izvmkTEcqlS8D339P2wkIgOdk/ia9ZQ58J CUT6q1eTEtfpPCMueN5F7GVlrkbLOsPa7oMRhU7nu+16hdFISxi+/DIwciSRUkNs4uz+3f/+LLDr nT9fu5BoaB3Mz6fIjkDAlHh9BOx9jR9/BKZOpTqclUVKXCqtvSOoqgK2bqV9L170/GMhgn85Enc6 geBg/zZxAIgPi0dQeJEwlGFgJhWOA37//U8qrBt4nhytLGomkP3NZhdBdelCnzfdROFDer1nxzRz JnDrrbWfb8sW4MYb6f/0dJciY0O5bt3ou7uzkVU8tgAHg8NBxD5jhufvPXpQTKw7OI6Gep9+6rki E8eRIp82jcqWlUUzz8aPpyGpd+Pcu5c+a+SXkZzMIyEBOHIESEoCjh6lbZ9+SuUaMYKcnaWl1JjC w2sPrZs9m46ZPZu+s/2cTvIF1PVMAwHPk6IKVAE2JUwmGl0wBKrEp04F7r+fhvBSKdlYg4Lo7623 /rjyAi6z4ZQp9A7z8vynWeB5GmEFBQHffFP/eauqyDQSqDnJYACkUYWQSPmAlfjkyeSUnzGDrnPs GLX5utT8xo3AkCH+nZAZGfSZlBTY9RuKZiNxRiC1KfF4VTygIhLv4Io+9HBuBvLSmxoWC9lpAx0R 2GxEJKWl9N1qBb77jpwa7F7cK+TPP7sUrT+UltKQ7bffqEIzRWa1kso9dYq+V7pNeK2sJCVnMHiS akkJkf3atZ7K7vhxKqP7PQOkmj//3JPEAZrJtngxEWdODhH40qXU0XnbutlzODYyAf87/T/cfLOr I1i7lrZ9/jkpap4H/vtfOm9hIZlh2PHeOHiQyu1wEPmz/fLzqRxbt3qq84bi+HHqbGobCfyRYEqc IVAlvns38MknZFqLjQW+/poU5u7dvua2pgarfxs3klgrK/MfUmoyUb389lsyOdQH1jkHSuJVVcDv A1vD2u7bgJR4cTG1LRZSeOoUzU8ZPrxuJf7jj9Rh+YNEQnVZ/QctVNasJB4c7N8mDpAS55VE4mo1 PVCNhhor89i6K/GcnKaLvgCo4U+Y4Ksk3ZVvIGBEzSqfyUQ26yFDSIHEx3tWSPcXfe+9FIIEUCX/ 739dBKrREEGNHEnbV6+maJERI+h7RQUpH5mMyhwdffV5u3U+hYU0yhk5ksrj7jjW6Wj4vmmTq3y9 egEnTgDZ2b6qXqOh6xUW0rCR44Dbb6fK7x7n6t6QC6oKcMstZHq57TbqhIqL6RrsvqKiPEmcPUej kWKn//UvelcXLgCpqa5jLl8GRo8mFdWrF53vWmyyLC7bXUTcfjuV/cMP/R+j19PzfeONxl+XXTMQ Jf7661Se5GQqb+fO9HtkJBGM2UzlGTCASDYpiUZz7qaJK1fovgAyAzz3HI0e2XnffNO179q1rt+9 p4az8k2YAPTrR//7I3EW4DBuHLXnZ5+l8/3tb0DfvhRVBQDvvUfROez9z5tH+/lLV3333WTGcC9H jSbbh4BLSmjkyt6P2UzPY9IkajeJifQ8xo2j5+9tkrFYyD+VnEwRdJMm+Zblz0Czm1NMdpN/JR4W jxrFZYEsTp+mCnjwID18gIZoDDt2NK1K0unoxXiTdUNJ3ExZBYTKxzzrwcHAuXPknHQncXdy/OUX VwPbu5ciTCoqyCGs0dDQPj+fth8/TqaYLVuAd94hAtm0iZRDeTk1fI3GsyExwv3mG2pImze7tpWW Ah98QM+7sJBIfu9eYMwYYMUKKoM71GoihoICoFUr+m3JEgoP3L6dvjudnuRjspnQpQup9fR0ajgv vUTXkMloH3cST0+nkY3VSmW9eJHu98IFuiYzIUVFUae2dSsRTXo6cPPNLnt8Y7BmDZEh6+hyc+m+ 3nuv9uxzJ0/Sc3z33WuzQweqxA8epNl/t91G/zM77Z499AxCQmhySXAwlW3XLiL0//3PdY4jR4gs 7XZ6d6+9Rp3Bb7/Ru9m61bXvsmWUWOrxx+l87qiqIoJctYquDdRN4mFh1OH/+980SvjiC1LA7Hq/ /UYx1Kwd2WxUnh07PM93/jzVz2+/dZUDAHh5qQ+J//gj1Vd2DZ2O7vvjj+m7Wk0k/uWX9N3bnLJ1 K8WQ//Yb1cWmmIPRGDSrEkewDWa72WPKPUO8Kh52aZFAanI59YYsbC4tzTMqI9Dh1auvBuYUYZXF 247nbr7wh08/pQgUpnhrI3GAPhMS/CvxO++kYxjpFRa6hqQajS+J8ryrgcbG0n5MeV66RA3fncT3 7QPuuIOuL5ORTfvnn2mbUkmEW1xM12VkL5GQnTU/n2aSuSM0lM5z9qzLgRMcTA3ZYqH7rqykzoTB bKeHI5fTe506FVi+nD4ZoqOpIeXl0XmVSlLWP/9MJqmsLJfjiSEqCli/ns7588+0beJEIiX3Kdhz 5xIRZWR4/t10E416MjKIFHNzqQzDh5MqLi4mopw8mc5bWupSfgzbthHJTJ5Mz+bYMap758/DB//+ N5HWgAGeZOh00ixlFo7KUJsSLyuje01Pd9WXlBQiyE6dqM2EhtK+4eGkIO+8kzqoRx+l6d2ZmTSy OXeOnmtQEO2TnEwdOXM2V1WRWeauu0ixsnrOYDDQNSQSurZC4ap7J09Sx8bKHBVF/0+dCnTtSqPJ 0aOpPMwsxqJESktddW/6dBJ0zD81dy69u86daVSSkeEaOThkpR6TzCZNovfzzDOuezIagdatPZ91 bCwpcMDXnLJ2LflakpP9T1T7sxAQiXMcN5bjuCyO47I5jnu2ln0yOI47ynHcKY7jfq3vnE4nYJeU IkoRJayt6Y74sHjYJEUeZBUW5rJrxsSQKYJNU2WKtL4QxO+/J5VSH1jl8VYP9SnxLVuoAbOKUReJ A1RJ3O28TIGuWkXXYJ1GYSHtp9cTGSuVRJLuYE4VRtZnz9L3/Hxq+Fqt637Wr6fzMxNUp06uzo1V yG7dPEkcIPLaswc4mDALhmpPJtFoaMTk7oXnOFLJhYW+tnST3XP21oIFdG73WNmoKCLy7duBQYPo /jMzSTEOH07PYe9eyjvhfozTSWacsjIihYgIapzseRoMZLefO5fC3156yfVnswEPP0ymgE8+IYdr 3770fI1G8hfExwNvv00k17UrmZjcsXYtKcf0dDJl/Pgj8NFHvnWvupomdrz+Ok302LfPta2ggESB o/NXOH7luPC7SuVfiTNCZNO3S0tdBDl0KI3MvJGRQfXk3XdJgbKFOljnePQodUQAmTSvXKE67O7I Uyh8SbyqytVhT59OiZ5Y3du6lfwegGcZ77nHNbHriy+A//zHNXpjUSJlZWQuyc+n9xkZSZ2qw0HP 6u236TmuX0/v8pNP6Hw1khKBgH/6ier+Dz8ATz1Fx5vNvmYrb3ibU86edQUSNCfqJXGO44IAvA9g DIDOAO7kOK6j1z5qAEsBTOR5vguAafWd1+EA7KGliFZE+90eIY+APVjv0eiVShfhscpaWEjDQlZB S0ooprw2VFUFptoZ6bKKt3o12d1Z41m1yv/KNFVV1Nl4kzgrtzeJM3MBgz9FA1CjdFfiHOdrl2aN hpE4m7Ken+9S4vPnkxORdX5sxBAV5Soj6wzmziXSeeMNFzFzHJHpyjNf4OiVox7X12rpvr1Dqdh7 YmVPTLx6r3bPm5VK6dzuk5RYhMPAgUTmDGfO0HnT04kUmAmH3UvnzqTKOnZ0qXSZzNUIWQcXH0/k 4a7E776bSP/xx2mfXbvoHGFh1NB/+omeITNxeI+mANf779iRyr9qFXWS3vtt307v+MwZun/37ULs fMc1+OToJx7PyW73tcW7kziLDGJ1LSjI9dzdIZGQI/rWW+mcmZnka1i0iL537ep6H8wcs2CBpyNP qaxdibPydujgGtVmZlLbefNN6hQYiQcFud6xVktlS0igkWRREQm4L78kAcfuhT37vDw6z403Unn6 9aN3OXw42bFskmJUV1MnuXgxveOBA+meUlKoPnibrbzhbU5xFzfNiUCUeD8AOTzP5/E8bwewCsBk r33uAvA9z/OFAMDzfL051hwOwBZaghhljN/t4dJwyDUGIWQMoAfM7OHuJP7DD1TZoqPJbvz887XP nDIYPJPM1AZvEl++nMwTjFQ//hjYudP3OBZDzQjebKZKxWyp7DuDN4kbjdQ4W7em71VV1Bi9SRyg z4ULXauWsEaj1RIhs+H1pUtE8IsWkSrKzaVOadYsV7J893LY7aRgJkwglTJggG8YIgBUVXvKQXb9 du089/Mm8f37rz4LLxKvDfPmkcoCyPbfpw8ptFat6P4OH/ZsTBMnEmlOmeJp73Un8cxMGr5v3uwb P3/bbUSuISF0fjZTkr3Hs2eBnj19788dWVl07dGj6fmx9+i935o19LycTiIe9+2CSAixYl32OvBX DescR6p+6VLXviyhHGsXjNTcO8Ta8PrrpMQVCnIqv/UWdeDff+97/Mcfk8167VqXI8+fEmfx2Qzu o8DMTBIPTz5JHSIjcX9g8wnCw2nfJ56gTtd9u3sstzdsDrKf1YRUwGol81pSkst5C1BHXlISmBJ3 T6bVlCS+r2Af7A57/Tv6QSAkngDAPTq24Opv7kgDEMFx3K8cxx3kOG5mfSd1OgFbaGmdJG52VHk4 C5RKTxJnw/TCQlJGkZGuCQWrV/sP1WNDs/rgTeKsojAS1+n8O2oqKqiHz8wk50pVFak6Rh71KXGT iYb/ycmu8paV0TFVVfS/O4n36OGKQnBX4rm51KlFRbls4j17EnEPHUrnGj7cda6ICHKAOp1U1hEj XI6auXNJ/TDUOMkIWW5xy6sJ1yjFvfECviQeH3/1WQRI4mq1q2Po1o1su9HRpNQ6dqQG5d6YVCqK qFCpPIe7jMT/9z8y+3Tv7np27ggNJVEAEHlfvOipxN3tuO73B5DNe/58qqe33ELXDAoikwSbAbhl y1UziYOI6eGH6VhG4jxPtnohj3RwNS5WXERWmWvod+edpLbLyqgjX7iQriOTud5poFPc4+LonURF UX3r14/qCYsQcseAAXQvPXu66kdt5hT3mGkWvcTz1I46daLf9uzxHGF5IyGBBFRCAqnsWbM8R10J CfQsP/jA5UB1h6WGhpr2IAOqq+n5Tp/u8g0ALh9DfUqcmVN+/ZXat0RS9/6Bgud5DPxkIF7b47v6 g5N3YmeuH7XohqbKnRICoBeAEQCUAPZyHLeX5/lz3ju+dHUWyZEjQKmkFD1rMaeES8P9Kr0rVyh6 YeZMsnu522zDw1228eXLSUW6h7c5HNQIAyFxb5s4I/GUFNe5aiPxbt1oiH/77eQwjIyk67KJP+4T cfwpcaXSRUrMgcSm6bOYbwB45RWKGWd5UVijYQRjs1FD+f13SubDwM7t3nhCQ6kyV1RQRZXJyOa+ ahVwww2e92iykS27yOA53KltRl58PI2MoqOpPA4nJRo32Bo3dzwhwXUPrOEGoohkMlKAd9xB7yCQ dK5z5pAJoXdves55eZ5mCnZttnrMSy/RNT74wNNn8fTTdJ41a2gobzQSKURHU2cKEHn+8gs5QRcu pPA6nQ7ICbGic3RnrMtehyR1EpQSJZRK6liff546pD17XBEwHEcjKW/nd32IjiYyqy/T3/PPe9bZ QJS4TEbPaeVK2n/ZMqqv69aROac2zJlDo6UePfxvf+ABl0PeX8pWi92CSHkkys16WK08Cgs5n7rC on14vm4lzswpzMdyrSrcYrfgsuEyHDy1hy+Pf4nnhz0PANixYwe2/7odey/txcHLdTvxAiHxQgDu c41aX/3NHQUAynietwKwchz3G4DuAGol8Q8/BJbnzENMLU9NGkIu4eqaauF/jYYIpn9/6smPHaMw JEbiKhWReJs2ZGPkOFc8utNJDQRwkTgzTzBidkdZGdnd9HpXL52Z6WpwADmeTp6kayYmEnlXVND1 WSX/6SdSvjodkWpIiGdaVXdbNEBkHxbmihoxGKjhT5nicnqxIS7LQ8ycoazRBAVRJdPp6JkVFXmq Ilb5vIex0dFUbpZAC/AcdgplvOqQvGzwtEvVNpsyKoqeEwuPZENcvaVxKyW7kzgbQgdK4uxZSyS+ nZM/9OpFfwC9l9xcXzNFQgIR6eefk7A4edK3PCkpZL559lkaJUycCDz2GKlwtm/fvnT+114jpT1/ PtXxnJBqTEybiO252/HM1mdQ+EQhWqlaIT2dzCrr1xMpMjIDaI5BQxEVFVh+ERYbzqBQ+GYYrapy mQQBel6KdtyTAAAgAElEQVQ330z3PH26K2dQbeTMMHAg/dUG9/fjD5YaC1RSFSrMRhisFhQWKnze DVPiHFe/EmfPp7ycRnLXgme3PouvT36N6ppq9E/oj1Mlp1BVXYVwaTgyMjKwtnotsjOzsXvJbnSN 7VrreQIh8YMAUjiOSwZQBOAOAHd67fMTgPc4jgsGIAXQH8CbqANOJ2AMyUO8ys+Y7SqYGo8OIcnI honu+XcLCoikWrVyKfGBA6kx8DyRcFQUKZVx42hozoasq1aRumJxoO4oLqZhO3MQtm9P52bmHMA1 LD96lLafOkX3FR/vimG32VzmFDbRxx1aLVUgu53Ine1z662uFeEPHCC7sNPpOROTgRGuO1Fv2UJm lNOn6bu7KqqNxNmogCnx2sDMIEVGTyW+caN/FcfOW1pKo5JqB7WEMnPjlqcZM8ZFIq1bk0+gvpzL AN1TQQGVcenShuWWBkil5eX5Dv/T0ymsdMcOIunaOpTkZFfUS9u2RBosRfBrr9H2WbOoPrBEX4sX Awd/JCX+38P/BQBszNmI+3rdhwcfJDEzYgR1Zjfd1LD78UZdtum6EIgSB8gsZzDQ558FNplQAhUM 1Ua/JM6UeHBw/Y5Nq5Xud8YM13T6xuK8/jw+nfQpHlr3ENKj0xHEBeHYlWMYljwMPM/jh6wfsP6u 9egS06XO89RL4jzPOziOmwtgC8iG/gnP85kcxz1Em/n/8jyfxXHcZgAnADgA/JfneT/JRV2w1zhR KP0FI9rWHkoSLg2HwWZAtJJaDRseupP48eNUWWQy+jx+nJQvIw5mv2RDZxaWWFHhsjH7Q2Eh2eB2 7SLFlpDgSvQUFHQ1RNJOBJ6eTpV41SpXDLfNRjbD4mLqOKxWUvLeJM5UM5uQw8wYgwbRb2++SZ1U +/a1L9PkrcQBGv737u0adQSixKOiqLw2mys21h+YOaWgqsDjd3eTjfd52YSdjAxS4hHyCJSZy6iR +cmdUxfcI06Cgog4A4FMRu+vWzf/M/3qA1Pi3o1XqaS48voQGkpmFoaPPnL9/8wz9PnOO57HpKcD ym3VSItMg95KI5dVp1fhvl73YepUV0x9mzaUJ+VaEBXV8I4NINOUxULCiI1QvG3iAPk13O/5z4C1 xgp5qBwyToWicgMcjhif6e8qFY1aQ0Prd2yWldE9Ll8emNO4LuRX5qONpg0mdZiEtMg0qKVqTPtu GlQSFZy8EyFBIegc7cdp44WAbOI8z28C0MHrtw+9vr8O4PWAb8B+BDJnFNpo2tS6j7dd3J8SN5lc TiimxDUamoL+1Vf00FlWMrmc9uE4IhTmNPSHwkJy4Lz7Lpl+WrUim29uLtki3e2/6elk12ORNHI5 VYiEBCJFlu97yBD/12KmD47znV596BBV/rpWtvFH4gx9+tAwvYtbZx4VRYrQu5HFx9PsR+9c5N4w 2U1Ii0zDqZJTcPJOv3H+L/76Ip4Y+AQ0Mo0HiSckkIlMHiJHrDIW58rP1TlUbEowJV6bI+3hdQ/j QsUFPDPoGYxs5ztCVCqp426sYm0srDVWxIbFQiVR4Ya2NyCzNBO/XvwVN7QNwB7UAIwc2bhFD4KD ifytVpe/JyenZYTfWWpIicuC7MjONQgpIdyhUpHzWir1dOB7QyolzkhNvXYCB4jEk9RJeHfcuwjm glHjrMHcfq5hSrQiGlwAF2q2GZtVNaUI5+tO66WSquokcVZhBg26ur+KZm9pNBTL2qULqe7jx0mx 9e9P+7CoFnclbrGQ/by6ml6Uw0EK/JFHyL7OnHIXLvjG23bsSDPr+vSh7yyGm5W3qKjurIfh4XRN Zg/3/t2f190dWy7/DxJNmV8V1b8/mWPcozCCgkgRetePDh3oWdVlSgFIiSeGJyJCHoFz5eT2WH5o OSx2igRw8k68sfcNnC2jYGxvErc5bJCGSJEamYpsHc2S+erEV9CZryFDVQBgJO6PhKuqq/DliS+R GJ6ILee3+D2evRt2/MqTK7Ezdyf+sfEfjbbvB4LqmmrIQmRI1iQjNSIVY1PG4njx8foPbCDGjSO7 NcOhy4fwW95vAR3rblLJy6MRz4ABTV7EBoON9FRSFU7nGP12LO7trz7HJuCKrqoPG3I24Hy5nym6 ACqtlXDyTmhkGshCZAgNDoU8VI6UiBThz99Mdn9ovnziTgeCEFznPuHScHx7+ls4nA5sPrcZYeHE hO4miQ4dyNsPuEKeGHlGRZFj7h//oMrJIlhYSJjB4HJ0jR5NzqSHH/ZM4hQVRcQdFeVyrLo7bG68 0eXsfOklVwIqZla5+26KUGEVwD2+mIHNwCsv90yAlZBA12XnrA2fZ72FfpOO1blPsbEYJ4tP1rlP ejqZh+ojcZZ5sner3jh0+RBKTaV4ZP0jOFF8AgA5PM12M0pM5EBQq6mBX7x4VYk7qiEJliAtIk0g 8Wd+eQb7C/fXfeFGQm/R49DlQ5DLiVy8SXxN1hr8Z89/0C22G25ocwPyq/J9znG27CzsqnMICaF3 aLQZMfun2Zj4zUS8d+A94d6bAjzPY122K1uXtcYKWYgMSeokJKmTEKOMEZ7tH4nXf38d7x+oJTGM F9wn/KxZQ/b5lrAuKlPiankYDNUGvyTO2l99IYZyOdXluhZy0Zl1eHvf23j999cxYeUELD1IwfwV 1gq8ve9tLD+0HEeKjuDV3a8iSZ0UkNKuD832mB28A0Fc3STO8zyWHlyKe3vei7t+uAvf3LQWwCCP 3tJ91uS4ceT9ZkTIVPauXeQgWruWzCCMxNmLu3CBHJ+hoRSy5x7Ez6ZwMxIHiMSZHXDpUld0y4QJ 9Ae4lDhLpjN/Pn0eOeJ7n0wJlJaSM5UhJqb21KvuMNqrMP9fdY+D496IgzxEDvO/ao/N7tiR7Pb+ Zva5w2Q3QSlRYlzKOLy17y2cKD4BHjyyddno37o/cnQ5AIBSMxWe41xL0anVQG6xDdJgKdpq2+JE 8QkUGYpQZCxCZmkmesT1QCtVq7ou32AM+GQAsnXZmCvjfZR4mbkMd/94Nww2A8anjkeSOgn5lb4k /s7+d6CSqGC3vwaH04E39y6jZ2EzYUjSkFpJtcJaAZPNhITw2m0LF/QXEC4Nh8lmQrImGQabATd9 cxM2z9iMIUlDYK2xQhosxeMDHkd7bXv8cuEXHCwMIHdEADhXfg7tte0FMuF5HlllWUiJSMHm85sR IXclydFb9LDUWDzez/ny8zhVcgqh0d1hNrcBQKbLJ57wvE5uRS5ilDF+k901Fg6nAznlOegY5TnL x/2eLHYLZCEyRIZJAEndShyoW4kHB/sPKwYAu8OOzec346MjH8HmsCE9Kh2DEgcJE3jWZa/Dx0c+ xqWqS+jTqg9Cg0Ixb0gtC8s2EM2rxP3YUt2xr4Bi6nJ0OSi3lONs1RFwXO3r6zECZLk/OnUiQurT hyJWunQh+3JiIiky9uK++YZIhiWbP3fOFf3A7KfuJM4UcufOtdv9WKZBBpns6ow/m1EgOQYW4pSV Vb/pxB8MNgOsNbWnVWQ5ToYmD63zPElJ1JFJwoywO+ww2Ux+Z5GZbCYoQ5WY0W0GBrUehMyyTIxp PwbZumzwPI+9BbTygzuxxcdTp8RxZB6QBEsQHxaPImORMH1/wc4FeGnHSw29/Trh5J3I1mWjdXhr yGQ0ZHa3iW86twkj2o7Alzd/iReGvYBkTbJfEs/WZQvROB8c/AAfHv4QK6aswJJRS9AluovQYXlj 1ppZGPv1WGGClD88tO4hdFvWDW3eaQPAFbo55qsxeGzTY4L5aVS7UWirbYtoRTRKzP47DZ7nfeZX 1Ibz5eeR+l4qDhS6FmDNKsvCuK/H4bz+PDQyDUpMJSg1lcJit+Cd/e9g/q/zPc4xfuV4/Gv7v1DR 8yWYTCQ6jh6lka07Ht30KNaeXRtQufzBZDMJoakMu/J34dZvPVf72F+wH6nvpQrcwRadiQ5XAVKD x0QhBqbEDYbGT95Zfmg5nthMPqDV01bjzTFv4qmBTyG/Kh8mmwkHCw9iZreZSIlIwemS05jTdw6m d2uEd90PmjEVrbNeJf74AEpesTt/NwDgyJXD0GjqXiSV510mi1dfJUfngQPUi86cSYo4LY0SFrEZ hocPkwIHiMTXrqUwNsCl2phNXKOhlx4WRiGF8loCK9xt4gCReFgY8PLOl5H2fpoHkbMQp8xM/1OH 60NVdZUQtucPjGDqIhKAnlGHDkBZn8ex8uRKqF5V4e8b/+6zn8lOJB7EBeGdce/gpzt+wt3d70Z2 eTYOXj6IRbsWoU+rPig1uYgtJ8flDGakFK+KR5GhCCeLT0IZqoTBZvCJPefryOFqc9jg5OvOeMZs 1dYaq0d6W57nwfM8Pjz8IW7tdCtmdp+JAa0HoJWqFUpMJULnVV1TDZ7nPUh8+eHlWDFlBW7rfBue GfwMopXRfpV4QVUBdufvRrQiGh8c/MBnO0NhVSGuGK8I5S0yFCE0KBR/7/d3fHTkI/DgPQRPjDLG 49m64/0D76PT0k4w2lzJ4dk98DwPi90Ci90CnueFMuWUu+piuaUcZeYy6Mw6xIXFYXDiYPT/uD8m rZqEQ5cPIa/Slf85W5cNo82IRSMWAfIymM3UdkaP9m0XZeYyIbqmMXhu63M+pp2zZWc96stXJ77C +JU0c4j5aqw1VsGcotDUrcR1uoY5rZ28Exa7BU7eiXU56/DqyFfxxc1fQCkhOZ+kTkJuRS5GfjkS 7x54F71b9Ua0IhrFpmIh4q4p0HypaAOwib8w/AUsvGEhdl/aDa1MixPFJxAf3/CZaN5mJ2Y2MBjI yXn0KMX5RkSQ0+/XX12zyNhLjYqi60ZFuVR1XYiL81ykgh1TaaVAb/cp1A1R4h8f+dhDrTp5JwzV BlTX1E7iLB47kGnuHTsCkFWgyFgEHrxPGCE7D6uoDKkRqcjR5SCzNBNTOk7B3L5zPdQix7neA7OJ MyWeV5mHvgl9AQAnik+g7TttUeOsweJdizF3g/+gYovdAvUSNe77+b4676fUXIr22vaosFYgVEqd WFHIHgz8ZCA2nduESmsl7uzimvYQEhSCBFUCzpWfw7ErxyBbJMPC3xbiUtUlYYZqmbkMbbVthWNq I9WCqgK007bD++Pfxyu/vVKryYU9awDYmbcTRcYiTE2finfHvYvQoFCf/WvrNHiexyu/vYLW4a3x 5XGa/PBT1k9QLlZi3rZ5eH778whfEo7wJeF4/ffXcbjoMAa2Hij4JQBAb9XDZDfhsuEyIuWRWDJq CSLkESgyFGHTuU0eo5RtF7ZhTPsxiFJEwSnVwWCofYUbnVkn1P3G4Jz+HM6UekYtZ+uyobfqhVHo K7+9gh9v/xHzh8/Ho5sexau7XhXixFVSFSLiDD55fQAicbYgd0NIfPoP0xG+JByTV03G75d+x+j2 nsOPJHUSThSfgN1JgqB3fG8hzUht6UYag2Y1pwTXo8QBehDHrhxD34S+KDYW49Ahz9lijUGrVmTP zsujGWO5uRSmeOkS2buHDnXZ1d1JXKNxkXh9w67//AceybvkcjrGXGOGVqb1aDjh4TSp59w5T5u4 P+RV5OGC3rW6sslmAg/eQ4l3XdYVO3J3CN/LzGWID4sX4rvrQno6gFCLECnibhN1v6a3bbONpg3y K/ORU56D1IjUOtVidU01pMFSxIXFodhYjNyKXPRP6A8AuFR1CbkVuVh5ciX+8/t/8O2Zb4Vp+j+f /RkLdiwQ9rPWWD1StAJEZNwCTrjXElMJ4sLioJFp4JTSPWXbduJA4QHcv/Z+TO86HcFBnvVwdLvR 2HhuI/Ze2ovUiFS8ue9NxIXFEdnyPPQWPbQyl5KozbxRZChCvCoenaI7YWa3mZi3jWyg+ZX5GPHF CFRaK2GxW1BhJUNr7/jeOFt2lo4LoxAIfzbkGGWMMLo6fPkwui7rCp7nkVuRC0mwBLek34Lz5edh tpvx6KZHsfKWlfjoyEdYnbkaG+7agG13b8PKUytx9MpR3NHlDmTrsnH76tuRW5ErjFxyynMQqYhE j7geOPTgIbw//n3EhsUivzJfGB1llWWhS0wXRCoiAYUOx49TUjjmF3KHzqJDZbUvibP3VR/B51fm C20mqywLKe+mIEuXJTxnvUWPy4bLGJw4WIip/zn7ZzyxhUwcYZIw3H630e/szqgoan9lZQ3LC74n fw/23rcXG3M2YkDrAQiXesbsRimikKBKwPIJy8HP56GVa4WsrbVlb20Mmk+JB+DYBCDEkfdt1Rel 5lLIZNe+VDfHkeK0Wl1LRyUkkJkmKclzUQI2ASIykv5iY4mM65shKJG4cmc8vulxhCrM5MG3m9E9 rrvHEFalouxxcXF1m4oAoLK6EjqLKxSP5R9hStxkM+FUySkPc02ZuQxJ6qSAlHinTgAXahauESn3 rdUGmwFhEs9eLEoRBbPdjKNXjiItMg0xyhhhqPvz2Z/xU9ZPwr42hw2SYAmkIVKopCocvXIUgxIH QS1VgwOHYC4YD6x9AE8NfAqxylgcKSJv8FcnvsKq06twwxc3IK8iD73iewl2eIDs2y/++iIAYPtF Wk6o1ERJ1mKUMbBLiPjOm4/gX0P/hRJTCSamTfS5v4lpE7H6zGocLjqMuf3mggOHJSOXwFBtgN6q R0hQiJAKAnAp8Zd3vozPjn6GkV+OxJnSMygyush4/vD5WJ+zHkM/G4qMzzOQWZaJJ7c8iSn/c8nW Ue1GCWabeBUd528ilFqqRnVNNXRmHU6WnMSpklMYvWI0tpzfgl7xvZCkTsKOvB0Y9Mkg9Evoh9s6 34ZxqeOQrctGr/heGJQ4CBf1F6GVaTGw9UAcu3IM35/5Hrvzdwsmj2xdtse7z2iTgbzH8iALkQl1 I7s8G2mRaYiUR8IeqsPSpeR78k6R7OSdKLeUC52VO1gStfU563Hbd7dh2GfDMGHlBI/ZvDzPCwIB oI7rvP48NuZshEamEfwqPeJ6IDgoGB2jOiKIC8K+gn0YlzIO84bOg0qigtXpmavnhe0vILciFyEh 5K9RKv1PdrI77JiwcgL+s+c/wm+lplJUVVehd3xvDEsehpvSfKfLchyH3MdyhVEmQHVFFiLzaT/X guY1pwRA4oMSB2HPvXvwzOBnIA2WCk6bpQeWBuzA8QcWFtj36vNltrJPP/VU0DIZ2c9DQylsavly YIfkaSxbXs/qE274/Pjn4NQFpMTtZvSI7YH1OeuxIWcDlh1chvBwstsHYg+vrK70iKdmz4ANKTef pzXW3G3FpaZSvyT+Q+YPmP3TbHxxzLVC7c03A8kpFsH+66+yZZZlIi3Sc8jAcRwS1YnYemErUiNT 0SWmC/Iq81BmLsNPWT9h6wXXul7VDlc+nFaqVrhivIIhSUNw8uGTiFZG44VhL2DHPTvw3JDnkBaZ hvzKfNgddvxy4Rdk67KxI3cHTpacRLfYblBKlIJCHvf1OCzctRAAhBC9ElMJohXRiJRH4jvzI0CQ A6fLj2B6t+m49PgldI7xnRE3NmUsKqsrserUKvRP6I/MOZm4u/vdiA2LRWZpJjQyT5aKUcbgXPk5 vPLbK3hg7QMAgFu/vRVfnfhKIHG1TI0D9x/AohGLsGLKChx58AhWn1ktvC8OHG5ocwOyy7ORX5kv HOdv/VmO4zC7x2ws2rUIJaYSzOoxC0nqJDy55UmBxI8UHUGiOhGf3/w5AGBi6kQkqZMQqYhESFAI jv3tGH6Z+Qu6x3VHoaEQDt6BI0VHBCXuTeIAmZqS1EmCvTlHR6MurVwLK1+JgkKHR5w5A4uJdlfi Nc4avP7768ityAUAzNkwBya7CQtHLESMMgY3fXMTZv80G8sOLkOFtQIcOBiqDZi1ZhZWZ67G3L5z sfe+vRiePBzPbX0OO3J3oFccyeyecT1x4m8U8jmw9UCEBodCJVV5JFwz2oz49+//xtYLW/HVia8Q 07a4VlNKQVUBDhQewOt7X0dmKSV5P1B4AD3je4LjOKy+bTXm9J3j99iQIM8AQCYomiK0kKFZlXgg 5pTgoGAMShyEcGm4hy3w5d9eFhyeAKk799ja2rD1wlZUVVcJU8Q7daJ4VhaxkJDgmaYScJlvpFIg LMKIt/a/DnVkgMvdg+y3QQq9oMTHpozFuJRxuGfNPXhkwyPI43agoiJAErdWCurF4XQIBFztqIbD 6cCLv76IlIgUDydSmbkMyepkDxLneR5PbXkKHSM74qlfnhKGqqGhQA1nFuyP3hEBPM/jSNER9Ir3 HZcqQhWwOWzoGtMV0hApRrYdiee3P49Tpac8ojeYEgeAMe3Jg6yVaZGoTkR8WDy6xHTBwMSBCA4K RqQ8EjqLDmdKzyAuLE7II7E7fzeSwpOQGkEThi5WuNZHkwRLsLdgL8ot5fj2zLeIUcbgePFx5Nh2 QRtPw+5kdTLiwvyvrB0aHIq1d67FhxM/RJ9WfRAbFguO49BW0xZHrxyFVu7plOkQ1QFqmRoqCU2Z /d+t/8PMbjOxt2CvoKgBIFGdiGHJwzA4aTDiVfHYOWunUIY99+5B19iuOFp0FNsvbhfsq7WlJLi/ 1/3YfnE7igxF6BLdBe+New/LJizD3/r8DckaqrCj240WzDFT0qfgu2nfCce30bRBamQqJMESjGk/ BsnqZBwuOizUG2ZO8cbtnW/HU1uewis7X0FBVQHaatsiJCgEYRIVIKsQVgFyB1Pu7iaTDw99iKd/ eRoHCg9gZNuReG/ce/jy5i8xLHkY3h/3Ph7p8wiGJg3Fy7+9jGe3PotkTTJ+uP0HyEJkWJO1Bv0S +qF/6/64bLiMXfm78MbeNzC8DSkzjuPQOaYzYpWx6N2qNwASI8zZa62x4l/b/gWbw4Z9BfswZ8Mc 1HT6ulYSz6/MR8eojrgl/RasOLECi3ctxrzt83BPd0psHiGP8DHJ1YZoZXSTmlKAZlfiDbs8swXW OGtQaioVhtkAcLrktIcTjOd5HLviOwHmn9v+id8v/Y4RIyg2PDmZFjqtL/fymdIz2JizUXBu1RUN 4g4n76R95XpBiWvlWszqMUsYMp6105pUQ4e67sU7KqPEVIKCqgIPc0pOeQ6W7KEVIaprqnFBfwFG mxH39rjXY+jqbk45VXIKANkVa5w1eGbwM7i3x72CIwygToc5sLzvM78yH7IQmV8CPF1C2baYyn7l hlew59IeHCg8IHS++wv2Y3f+bkiDXfusuX2NoEwWjljoMeU9Qh4BnVmHI0VH0Du+N14b9Rp6xvUk ElcnoU+rPtiYsxHfnPwGw5JpFsaItiNwrvwc3t3/Lnbk7gAPHltm0CxMTWwVHLwDspC6ZzS107bD 9G6e9vK0yDTsL9zvYQ8HSG19e+u32DB9A76/7XtEKaLw+ECKrGKdlT90j+uOvfftxc5ZOzEwcSDi w+Ixf/h8rLxlpfB8/SlxAEiNTEVOeQ4KDYWIV8VDKVFiZveZiAuLQ1xYHEKDQj06WkmwBP0S+vk9 1wvDXsDbY99GbkUuOYCDQlFmLvPrD3li4BOYmDYR1Y5qvDXmLeH+opWR+HqNzm8IHzNtuSvxn86S eW33pd3oENkBM7rNEDoNdi/39rwX3037DjHKGLw0/CXc2P5GvDDsBQAQRoIfT/oYj/Z/FHaHHaPb eToWl45fiuHJROwqiUoItX1z75s4ePkg3h7zNlacWAGbwwZ99Lo6STxJnYTe8b2xZPcSbL+4HbO6 z8Ld3e/2f0AdGJI0BAsyFjT4uLrQjJN9nAEpcXdEK0iJFxuLwYPH4aLDwrYSU4kwXDLbzcgszcSk VZNQ+IRn1lydWUfDM841Xb+uVJcMT215ChvPbcTmGTT8tdgtQAB5m4SoEbkeYYqrkR2hSrTRtAEH DqPajYL5KuGOGUND1C7LumD//fs9Gt0HBz9ApbUSldZK6C16OJwOj6neldWVOHj5IDpGdYRWrhWG qQBQZilDK1Ur2J12dF3WFZtnbBZMGBzH4aYON2HuhrlYOIJMESyRPgCf+PPDRYf9qnAAWHPHGo93 2jmmM/7W+2+Yu3GuoMRv/e5WFFQV4N4elCtVHirH5I4u+eZto45URKLEVILLhsvoFd8LY1PG4sfM H3H0ylF0iu6EZE0yRq+gxvvkwCdxsPAgWqtao0NUB7y9723c0/0ezOg2Ax2jOiJe2h6quBKES8Mb NZxNjUjFJ0c/8TElsXt1hyxEhsUjFgsjjdrQRtNG8PtwHIenBz/tsb22yTHh0nCES8NxuOgwHun7 iMe2IC4ICzIWoHd87/puCQB1JsmaZOgteuiterTVtvVrTgGog35uyHM+v0cqItGuk+ciIXqLHjqL Dg+tewgATXw6WnQUXWO7Iqc8B91ju2NX3i6PfCHeGJI0BEOSXEmHEsITsGjEIiHfTrfYbnhh2Avo ENkBKqln8qBbOrkSjKukKkGJrzixAl9P/RodozriWPExjGgzAg+u+XudJJ6sTkbvVr3Bg8eCjAUY nDS41jLXBY1Mgwlpfjy/14DmixPnHQEPQRiYA6nIWAR5iFywTwEUSsZ62jd+fwNzNszxazPXWXQB 57lwtysXm4oBQDAzmO1mvzHMNc4ajxhdRoi8tEIwpyhCFVBKlHio90MYnzoeUo0e339PjpUVJ1YA 8E3TmleZh3JrOSqrK8GDh96qF8oEAEsPLsX0H6YjLTINWpnWx5ziHpe6ZPcSXDZcRutwyh8woPUA XKq6JIQTMrPLqHajfJT4kaIjgu3RG+NTx2NMiidpTUmfgmmdpglKnA2p2YSg+sDMKXsu7fFRkv0S +mFY8jDc3f1uzOoxC7d3vh3xqnjEKGNwV5e7MChxEJZPXC7M6NOEyTH17mLB7NFQpEWmIac8x8ec Uhv+OfSfHuaUxqCuDI9pkWm4oL8g2M+9r92Q7JDh0nCY7WaUmcswIXUCOkZ1RIeoDvUfeBUamUZo V07eSUr+3xFYtGsR2mnb4YFeD+BUySn0+7gfHt/0OIoMRRiWPAyXqi4hNSI14OsAwLyh8zw6t0hF JIaCGUQAABwVSURBVB7u+3Cdx4RJwmCwGVDjrMFF/UWkR6VDEarAZ5M/w11d74KNM+Chhx1C+d0/ 8yrzkKROQqfoTrir610Y0LoFJIVxQ4t3bLojShGFUnMpLhsuIz063YOoSkwlsDvtsDlsyCzLxLEr x2C0GYXwNIC8zFXVVQFNOjBUG9DqjVbC8UWGIoRJwgQST3s/DY9tesznuEc3PgrVqyqBhIWkUBKX OYVVwGUTlyElIgVVdr0QEcOclt7hefmV+dBb9Ki0VkItVWPBjgW4/2ff3KOpEanUoLxIPEpBMiNC HoFDlw/hrO6s0PhDgkIwNmUs1mev9yjzxNSJPvHnR4qOCHbGQNBK1QpfT/0a5ZZyGKqpEc3pOwej 2o0K6PhIRSROFp9EbkWu0HgGJg7E0KShCA4KhiRYgi9u/gKfTf4MfRP6Ij4sHtHKaDw9+GlsmL7B w2wSJpWjVUqJTyhYoOgWS2u9eTur/kjUZk4BgCGJQ6AIVQid8bUgiAtCuDQcF/UXMavHLGTOyWzQ eRWhClhqLDDbzUh+Oxk/ZlLu5/XZ6/HJpE/w2ihaeuzNG9/EihMrkKxJRqySkh35yxjZ1FBJSInn VeQhNizWo4MLDgqGSqJCh26VuPP7O4WRXcKbCXhpx0vYc2kPOkZ1hCRYgq+nft1g8flHo8U7Nt2h DFXidOlpTF41GSkRKaiwVoDneSw/tFwILTNUG5CtyxYUJFPFAz8ZiI+OUDJjphjWnl2LxbsW+73W 0StHUWwqpuWTnA6UmkvRMaqjx4SDdw+863Mcc7CxyTxMiSel6TFqlCeJA+TQcx8ZVFRXIFYZ6zOZ I68iD3qrHpXVlUiNTMWPWT9CZ9Hh2cHP4vPJnwv7dYvtBq1ci60XtiLitQikL01HqalUcKbEKmMx KHEQVp9Z7aESx6eMx5YLW8DzPKw1VjhedKB1eGtUO6rx4q8vQvuaFtrX6Lx9WvXx/4JqQWhwKFQS FU6Xnka8Kh7vj38f747zfXb+ECmPxOGiwxiTMkYgz1k9ZuG32f6z66VEpNSa3lgeKkexqbjRJN4+ oj26xHRBWGjThYfVhyFJQ8DBv+ln0chFMM0z+Uy8aiy0ci2KjEW1OnzrgixEBovdIvhuHt30KJ4c +CRKni5BRpsM4ZnP7D4Ti0bQjF6Wg6Wx76MhCJOEIbciFynvpfjtnJgJctWpVZQLiOdxxXgFC3Yu QIIqQbCtt0Q0rzmloSQuUQpRFNJgKYK4IFhqLNh8frOwZJjBZvCIwWYmFeaFBuDhgT9Z4j+zH3Oa 5lfmo8RUAq2MAvW9Z415LxZcZCxC5+jOyNHlYNI3k4R0rOGxevTqxcNsN3uoAK3c0/Sht+iRFpnm QeJO3olLVZdQWFWIkKAQjG43GoUGsvVHK6IFR+I7Y9/B8DbDBcfbklFLUGQoQrmlXDABKCVKDGg9 AEab0WMY3i22G86UnoG1xgpJsARBXBCkIVJU11Rjd/5ufDrpU1z4xwWUP1veqARVsWGxOHz5sN+h f11gzq6Jqb7x3P7w2eTPMLmDnxAJkKotNjaexAHgxN9O4J1x79S/YxPhyYFPwvGio/4dmwAamQYh QSHCqK0hkIfIYamhSWIdIjsgLizOw/wVHBQMx4sOaGQazOk3ByumrMDsnrP/tHtzt5czp7o7tDIt 9l7aiy4xXVBmLkPPD3siShEF4z+N2DB9Q5OGBDY1mleJN3BYogxVosRUgmHJw/DhxA8FO5x7lMoF /QWPHCEGmwEV1goP9csiN0w2U62x5keKjiCYC0Z+Zb4w+YKZKZgy6h7bHS9sf8HjuCJDEYYnD0e2 Lhtrs9fi8c2PC9e0OWwICQrxGI5rZBqPSBK9lUi81FyKedvmocxchivGK6hx1iC3IhdqqRoT0yZC HiJHaFAoYpQxQqVk8cssqmBKxylI1iRDK9cK1wyThAmOSXcyTolIwUX9RRhtRuFZSYOlsNZYkVOe g17xvaCVaxs9SWFw4mCsPLWywTbiKEUUgrggjE2pZdkgL3AcV2uDY0rc2wHWEHAc1+CoqmtBXffT 1NDKtIhVxjbq/uQhcljsFpRbypEQnoCjDx3FtE7TPPZxPy/7/896lqyNTO4wGWvv9E3EpZFpcODy AcFkdrz4OBxOB5QS5Z9qPmsMmlGJOxFUX1yfF5QSIvEIeQTkoXJoZVqcKz/nQYJZZVlIjUgViKiq ugo5uhyPiAKmfI02o+AMZdhyfguKjcUoqCpA19iuROKGIrRStRIULnP4vHHjG1iduVrIJV3jrIHO osPgpME4VUqhfGxUwHJSeEcbeJtT9BY9OkR2wBXjFby6+1XsL9iPnbk7MTx5OHjwSFQnYmDrgdh9 726007ZDtNKlxJnCjFRE4vCDhxGtjEaSOslDWSlDlQKJuxOqPFSOGGUM5u+YL9iRpSFS6K16lJnL kKiuJz9tPZiQOgG/X/q9wUo8RhmDgw8c9Buz3FDIQ+QoMZUgXPLHD9+vR2jl2kanAZaHymGtsUJn 0SFSHgm1TN2i1CsrS6wy1q/5SSvXYn/BfqRFpCHn7zm48uQVHPtb3Tn6WwquO5u4tcYqqEGtXIvj xcfRTtsO6+5ch8GJg3FBfwExyhjEh8UjJCgE2y5sw8mSk8IadoDLJm6y+yrxxbsWY8v5LdBZdOgZ 1xP5lfm4WHERSeFJgkkiJYISiCeqE/Fwn4eFCTclphJEKaLQVtPWw+wSLg2H0Wb0sYcDrugD5kys sFYgLTINey7tAUBOtHU563Bb59sAUEgax3HoFd8L7457F4MTBwuk6x51wYg6KdyLxCVKJKgSsHra ah9VfanqEpYdWibEoUuDpThdchrtte2vWTGNTx2Pt8a8hft61p2wyh9qC2lsKGQhsmuyif/VoZVp Gx1N425O8Rea2FJQW2SRVqbFWd1ZpEamIiUiBbFhsUhS173yWEtBM6aidSCkgeYURoDKUOpJtTKt kANiQtoERCujcUF/AdHKaDw35DkMSRqC5399HvN3zEfPuJ7YOH0j3hn7jocS9ybxUnMp8ivzoTPr MDx5OA5ePogcXQ46RHUQhpvMbKEIVeCmtJuwPmc9dGYd8iryEB8Wj0hFJPIq8gTlrpFpYHPY/JI4 4LKL8zyFDjKbNUDmoONXjmNgawpmd5/tdWP7G6GSqoShoj9yStYkCyT+8U0fY0HGAnAc5xFDy7Du TprxymZpykJkqHZUCzMArwXSECkeG/AYusd1v+ZzNRZNYRP/K0Mr0zZ4pMQgDyVzis6ia5JR0x8F 74la3r/3jPOz9FYLR/OROBoeYsiGQUxBamQaXKi4IJCqSqIiJa6Iwf297he80AVVBZiQOgEDEwfi vp73odRUCpPNROYUm6c5pcRUQiRu0WFyx8nI1mVjV/4uir+Wa5GsSRbCvpShSvSM7wkH70CXZV3w wNoH0D6iPSLkEXDwDqEnZwmLaiPxKEUUJd6vsYADh9iwWHw66VOoJLTGaGV1paAg/KWw9DanuCOj TYaQnOe+Xvf5rILijglpEwSboPt5W7KyagjkoXLorXqRxGtBRpuMgH0P3rgelPi0TtMwNX2q320F BpojUVf7aKloVnNKQ5U4U+CCOUWmxQX9BaEXDZOECUoccEWOTE2fKuTcUEqU6N+6P7Zd3OZjTnE4 HdCZdcjSZYHneailakxImyBk5kuPSseINiME84VSQgsjvD/ufbQOb43TpacxLmUctDItOHCIkEdA JVFBI9Og2lENo80o3IM72JJgeoteIOvZPWdjdo/ZROJXY8PbadthfOp4n+PrUuL9Evrh/l6+8eS1 ITHcZftm522pjbKhYJ1voAvQ/n/DuNRxuLmjnwxWAYAp8XJreYtV4t9O+xapkf4nFmUkZ2Bap2kt yo4fKK6rGZtMiTMijJBHEIlfJT6VhDKVMbXKVkv5/rbvPV7OmPZjsO3CNhhtRtgcNmFCi86iAw8e R4uOIkIeAY7j8HLGywCAtpq2GJg4EK+OehXyEDlCgkJcSZxSxmD37N3oFN0J41PHIzgoGBqZBmqZ Glq5lki8phrllnK/+SiSwonES82lHoQZLg2nNRrtJqikKpz/x3m/+S+YYr6WqAuGSR0muaJTmBJv oY2yoWD+h8bEQYuoG/IQOcw1lJunqddI/TPwUJ+H8O20b5u7GI1Cs8XOOHHtSrx1eGtKKOVmewZc duNkdbKQsModcWFxOFVySlg44NOjn2JX/i6cKT0jrDbDTDHtI9rD+aLToxOQhch8FLU0RIpTD58S 9otUREItVUMr0wpKXGf2by9kSjzsSpiQEwIgEs/WZSNMElanY1EWIgMHzq/Kbyge7P0gHuz9IN3T X1SJN9buK6J2yEPl+O70d+gc0xkj2o5o7uL8v0LzkXgjQgyZQmQkzhxuTInP6DYD87bPExx539zy DRy872QCZagSRptRcB5+fvxzYbFYpq7dV97xHmLJQmR+bdvu+0XK/6+9u4+R4r7vOP7+7i73wB3P GCgHR2xwcOzgJ9k4tZvm7MQOdVVw6iqGSOkDrYoqGTeVEj+pVc5J1Mb5p65EEtktrSI3LVXT1BAl cVAabSukuCENtkkNNrFbGw5zqDQp5oh9t7vf/rGzd3PL3e0uMzfD7n5e0skzs7+bmfvp+Pp7v8cg iIcy8crwq2r9C/p58fSLvF14e9KiRfM653H87PHxUTXT6c51z8qQrkomPtVfD82okolHXc9ELlTp BB9YM5DoOHpJNYgXyV1kx2Z4I1KY6FlevWA1rz7wKpcvLO9/GN59Jay3o5eRsRFGxkZY0r1k0uSg 0eIoN6y4YXwH9ql0z+muOdV5ydzyWNmFXQtZ0LmA0eLotJ0+/Qv6OfDGAXKZHLs37x6/Pr9zPifO nqjZhntZz2V8/3frW1CqEZW2/1ZpTqlM2oh7PWeZ+Csnzr0jpT6pNqdks40F8Y5sR7AAfTkTr3TC hcd+XrFoip1Qq/R0TGTiaxas4cenf8xnBj7Dfe+9j3Oj51g5byVDZ4em/f6pmlOqLe5ePN6csqAr COI/PzPlcL2b+27mwVsfxMy4bfXEEpfzO+dz/OxxNizbcMH3VJuNXvVK0KveyaZZVTqxL7UFjFpB 5a+cOHdxl/qkm4lfxD+mnjk94wG0p6OHJd1LGg4ylV0+zo2e49rl13L49GHuvfreSbM6Z+r86s7V zsS3X7+d5b3LuWnlTSydu5RH/uURhkeGp8zEu3Jd7Lxl5wXXK0MM0x5NEed+gGmqdwliaZwy8fTU FcTNbBPwBOXRLLvd/fGqzz8A7AUq27B/3d0/N9M9L6ZjE8qBOxxUdm7cOeUi/TPp7ejlzPkzzMnM YfP6zXz18FcnDa2rpZ5M/PbLby8fBIlJZ7aTk2+dbKhpojJksFab+Gy6+8q7WbMg+mSfS8FHr/no BfMCJB6VTFxBPHk1g7iZZYBdwAeBk8BBM9vr7keriv6bu2+u98EXm4nftfYu+ub3jZ9/euDTDd+j Z04PwyPDLOxayJ1X3MmynmUNDc+7csmV3Lr61oae2ZkLgngDIz0qQ7Wq97lM0jc/9s3Unh23Dcs3 8MSmJ9J+jZZUycTV35C8ejLxjcAxd38dwMz2AFuA6iDe0NAIp0iuwTZxKC81GlVvRy+FUoHL5l7G ou5FDH9yuPY3hdz4Czc2vJ5HZ7aTU+dONTTSY3nvcras39IymbC0LmXi6akniPcBx0PnJygH9mq/ aGbPA0PAp9z9pSnKjCtRSm0oUmV4YJK/cJ25Tkpearh9+5mtz8zSG4nEJzyLWZIVV8fmfwD97n7e zH4FeAaYsqF6cHAQgHM/PMTQir6pisy6bCZLd6470Z70ysSZVukkFAlb2LWQkUdH0n6NlpHP58nn 83WVrSeIDwHhNRlXBdfGufu50PG3zexLZrbY3Sdve8NEEN916mXWbnhvXS85G3o7elk2N9lMvNbM S5FmNtUEOLk4AwMDDAwMjJ8/9thj05atJ6IcBNaZ2Roz6wC2AvvCBcxseeh4I2BTBfCwkl9cm3hc ejp6Em1O6ch2aPU8EYldzUzc3Ytmdj+wn4khhkfMbEf5Y38K+A0z+wNgDPg5cF/N+1qROSkG8d6O 3sSbUxTERSRudbWJu/uzwPqqa0+Gjr8IfLGRB5dofBXDOPV29CbesakgLiJxS23GppNuJv6hyz80 aQOE2daZ7cQ6mm+tYhG5tKUYxEtkG1zFME6fveOziT6vM9c5PgxLRCQubZuJJ60zqyAuIvFLLRW+ 2BmbzUpt4iIyG9Lbns3aLIhnO5nXEX37NBGRsFQz8XZqTtE4cRGZDam1idNmmfj2G7YrExeR2KW6 s087ZeKNrnooIlKPFBfyKJHLah0REZEo0msTT3navYhIK0g3iOcUxEVEokivPUOZuIhIZJrsIyLS xFJtTulQc4qISCQpNqeUlImLiESUcsemhhiKiESRbsemmlNERCLR6BQRkSaWShB3BzIK4iIiUaUS xEsl2m4BLBGR2ZBKEC8WgUyRrCmIi4hEkWImXkp1t3sRkVaQaiaeMQ0xFBGJIr0gbmpOERGJKr3m lEyBXCa9jYVERFpBqpm4griISDTpZeLZgjo2RUQiSiWIjxVK5YerY1NEJJK6oqiZbTKzo2b2ipk9 NEO5m81szMx+fab7jRaKUFRTiohIVDWDuJllgF3Ah4FrgG1mdtU05T4PfKfWPccKBXA1pYiIRFVP Jr4ROObur7v7GLAH2DJFuZ3A14DTtW44WihirkxcRCSqeoJ4H3A8dH4iuDbOzFYC97j7lwGrdcOx ojJxEZE4xJUOPwGE28qnDeSDg4MMnT6PHx4ln88zMDAQ0yuIiLSGfD5PPp+vq6y5+8wFzN4HDLr7 puD8YcDd/fFQmdcqh8BSYAT4fXffV3Uvd3cOPD/MwD9soPBnNVteRETanpnh7lMmx/Vk4geBdWa2 BngT2ApsCxdw9ytCD/sb4BvVATysUCyqOUVEJAY1g7i7F83sfmA/5Tb03e5+xMx2lD/2p6q/pdY9 RwsFdWyKiMSgrkjq7s8C66uuPTlN2e217jdWKGLKxEVEIktlymShpCGGIiJxSCWIjxYKGMrERUSi SicTLxbJKBMXEYksnUy8qExcRCQO6axiWFSbuIhIHFJqTlEmLiISh/QycQVxEZHI0tmeraSOTRGR OGiIoYhIE0ttsk8mtgUURUTaV2odmxll4iIikaXTsalMXEQkFhpiKCLSxFJsE1cQFxGJKsU2cTWn iIhElV4mbsrERUSi0hBDEZEmltKMzQJZZeIiIpEpExcRaWIpBfGC2sRFRGKQ3gJYCuIiIpGlNGOz QFbNKSIikSkTFxFpYukEcS+SNWXiIiJRpdaxqSGGIiLRpRLES8rERURioSGGIiJNLLWOTWXiIiLR 1RXEzWyTmR01s1fM7KEpPt9sZi+Y2SEz+6GZ3THT/YquNnERkTjUTIfNLAPsAj4InAQOmtledz8a KvZdd98XlN8A/DOwbrp7Fr3IHAVxEZHI6snENwLH3P11dx8D9gBbwgXc/XzotBf4n5luWPQC2Yya U0REoqoniPcBx0PnJ4Jrk5jZPWZ2BPgW8MBMNyyPE1cmLiISVWwdm+7+jLu/B/g14OmZyhZLRXLK xEVEIqsnkg4B/aHzVcG1Kbn7ATPLmdkSdz9T/fng4CBD//p93sr9hPz7r2VgYKDhlxYRaWX5fJ58 Pl9XWXP3mQuYZYGXKXdsvgn8ANjm7kdCZda6+6vB8Y3AP7r72inu5e7OdX+8g7Vzb+Trj+6o80cS EWlfZoa721Sf1czE3b1oZvcD+yk3v+x29yNmtqP8sT8F3GtmvwmMAiPAfTPds+gFchm1iYuIRFVX w7S7Pwusr7r2ZOj4C8AX6n3oO5ylKzOv3uIiIjKNVGZsvmVvsCTXX7ugiIjMKJ0gnnmDpQriIiKR JR7E3ym8w9uZ/2VhbkXSjxYRaTmJB/ETZ08wt7iSOTl1bIqIRJV4EN++bzu9hX4yqTTkiIi0lsRD 6Sdu+QTXnfgyc+cm/WQRkdaTeBD/yHs+wrn/upq+C1ZfERGRRqXSqDE0hIK4iEgMak67j/VhZl4q OV1d8LOfQXd3Yo8WEWlaM027TzwTP3MGenoUwEVE4pB4EB8agpUrk36qiEhrSjyI33ILvPvdST9V RKQ1Jb4zw5kz0NWV9FNFRFpT4h2bST5PRKQVXFIdmyIiEh8FcRGRJqYgLiLSxBTERUSamIK4iEgT UxAXEWliCuIiIk1MQVxEpIkpiIuINDEFcRGRJqYgLiLSxBTERUSamIK4iEgTUxAXEWlidQVxM9tk ZkfN7BUze2iKzz9mZi8EXwfMbEP8ryoiItVqBnEzywC7gA8D1wDbzOyqqmKvAb/s7tcBnwP+Mu4X bTX5fD7tV7hkqC4mqC4mU33UVk8mvhE45u6vu/sYsAfYEi7g7s+5+/8Fp88BffG+ZuvRL+cE1cUE 1cVkqo/a6gnifcDx0PkJZg7Svwd8O8pLiYhIfWLdY9PMbgd+B/ilOO8rIiJTq7nHppm9Dxh0903B +cOAu/vjVeWuBf4J2OTur05zL22wKSJyEabbY7OeTPwgsM7M1gBvAluBbeECZtZPOYB/fLoAPtNL iIjIxakZxN29aGb3A/spt6HvdvcjZraj/LE/BfwJsBj4kpkZMObuG2fzxUVEpI7mFBERuXQlNmOz 1oShVmNmu81s2MxeDF1bZGb7zexlM/uOmS0IffaImR0zsyNmdlc6bz07zGyVmX3PzP7TzA6b2QPB 9barDzPrNLN/N7NDQX38aXC97eoCyvNQzOxHZrYvOG/LeojE3Wf9i/L/LH4CrAHmAM8DVyXx7LS+ KI/QuR54MXTtceDB4Pgh4PPB8dXAIcrNW+8K6srS/hlirIsVwPXBcS/wMnBVG9fH3OC/WcrzKm5r 47r4I+BvgX3BeVvWQ5SvpDLxmhOGWo27HwB+WnV5C/CV4PgrwD3B8WZgj7sX3P2/gWOU66wluPsp d38+OD4HHAFW0b71cT447KSc4PyUNqwLM1sF3A38Vehy29VDVEkF8UYnDLWqZe4+DOXABiwLrlfX zxAtWj9m9i7Kf6E8Byxvx/oImhAOAaeAvLu/RHvWxZ8DnwLCHXPtWA+RaBXDdLVVr7KZ9QJfA/4w yMirf/62qA93L7n7DZT/Gnm/mQ3QZnVhZr8KDAd/oc009Lil6yEOSQXxIaA/dL4quNZuhs1sOYCZ rQBOB9eHgNWhci1XP2aWoxzAn3b3vcHltq0PAHc/C3wLuIn2q4vbgM1m9hrw98AdZvY0cKrN6iGy pIL4+IQhM+ugPGFoX0LPTpMxOcvYB/x2cPxbwN7Q9a1m1mFmlwPrgB8k9ZIJ+WvgJXf/i9C1tqsP M1taGXFhZt3AnZQ77NqqLtz9UXfvd/crKMeD77n7x4Fv0Eb1EIukelCBTZRHJRwDHk67RzeBn/fv gJPAO8AblNeUWQR8N6iH/cDCUPlHKPe4HwHuSvv9Y66L24Ai5VFJh4AfBb8Pi9utPoANwc9/CHgB +GRwve3qIvTzfYCJ0SltWw8X+6XJPiIiTUwdmyIiTUxBXESkiSmIi4g0MQVxEZEmpiAuItLEFMRF RJqYgriISBNTEBcRaWL/D0/4iN+zdJOWAAAAAElFTkSuQmCC ", "text/plain": [ "<matplotlib.figure.Figure at 0x7fc26840aa50>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEACAYAAABF+UbAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz AAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4FFXbBvD7ScIGQhoQaoCEKr0JgoKIgNKUoqgg9kax v6KIjSBdpEovNkAQQQVUqhJEREGBoKHXj9CbgZC25f7+OOkJycquWUKe33XtlZ2ZM2fOnMw8c+ZM WSEJpZRSBZOXpwuglFLq2mkQV0qpAkyDuFJKFWAaxJVSqgDTIK6UUgWYBnGllCrAnAriItJRRPaI yD4RGZTD9GAR+VpEokTkNxGp4/6iKqWUyirPIC4iXgCmAOgAoC6A3iJSK0uytwBsJ9kQwOMAJru7 oEoppbJzpiV+C4D9JI+StAJYBKBbljR1APwEACT3AggXkdJuLalSSqlsnAnioQCOZRiOSRmXURSA +wBARG4BUBlARXcUUCml1NW568LmaAAlRGQbgOcBbAdgd1PeSimlrsLHiTTHYVrWqSqmjEtD8jKA p1KHReQwgENZMxIRfVGLUkpdA5KS03hnWuJbAVQXkTARsQDoBWB5xgQiEiQiRVK+PwtgA8m4qxRE PySGDBni8TJcLx+tC60LrY/cP7nJsyVO0i4iLwBYkxL055LcLSJ9zWTOAlAbwGci4gAQDeDpvPJV SinlOme6U0ByFYCbsoybmeH7b1mnK6WU+u/pE5se0qZNG08X4bqhdZFO6yIzrY+8SV79LW5dmAjz c3lKKXUjEBHQhQubSimlrlMaxJUqhE6dAkaP9nQplDtoEFeqEPrkE2DwYODoUU+XRLlKg/h16ORJ oHfv/3YZa9cCb78NbN5s/ublzz+B6tWBWrWAixf/27Lll507gSpVgLAw8/nyy+xpJk0C5s/P/7I5 a8sWoFo1U/5nn807/cGDJv2IEcDttwNNmwI9egB6qer6M3t2+raZm0ITxPN7I3VleX//DXz1FZCY aPJxNi+Hw/llTJkC/PgjsHUrsGZN5jwcjszLtNuBjz4C+vQBgoOB7dtN2azW7PPFxprPlSvZl0kC cTk8AvZv1jF1WTYbkJCQ87Tc8kpdlsMB/Pwz0KqV+Tt6NDB2bOZ1SkwExo0DVq50vmwZJSebuoiL y7yOV/s/2WwmvT3DCyuy1k1iokkHAJcvA5MnA088Afz0E7B0KXAo23PSmW3aBNSvb4L5+vXm/799 uzmYJyfnvEzlGZs2AS++aLbP3BSaIH7nnWaDzQ8bNgAdOlz7/EeOmB05Ohr48EPgvfecm691a2Dj xrzTnT1rAveRI+kfwASH0FCgXTtg3rz09H37mpZ7376m5RYVZVpzLVuand1qBerUAe65ByhfHqhc GShd2gSHjEaPBgICgB07so9//XXn1jE2FqhQwZSxdOn0wJOqRg3grbeuPv+AAcC995r5o6KAW281 LZ0HHzTrcttt6QGsXj3Az8+kuxYdOpj6DAkBwsNNy3fqVOCZZ3JO3707UK4c0KtX+rgVK4CHH05f 99BQoEsXYPlys/6//AI895z5f/TvD9Subc7kriYqCmjRAihbFvD2NuV69VWgY0egbl2z3XXpAtx3 37Wts3KfI0eAJk3ybonn96OjzC8OB7llC3nuHGmzkcWKkdOnk+fPp6eJjyfPns0+b0yM+ZuYSJ45 Y76fPk0mJZnvSUnkqVNXX/bo0WRgoCkDSdrtJs+DB8mNG9M/sbFm+rFjJm3q37ffNm2huXPJ++4j 27dPL8f27enzkenjo6PNPDNnZh6fWva//kofP3ky2bs3abGQnTqZ+fbsIf/+O7UNRg4YYNLv2kUG BZl6JMnZs8m77iJDQsgqVcg//zTLTJ3v6FGTbuhQ8oUXMtdLt26knx85a5YZTkgw9VC1KtmqFRkV Rf72W3q9JSWl19Xp02bchg1mOSVLmvmiojIvI7UcGzeaOsnozBmyUaP0NKVLk7/8kj7d4TDr9Mcf Zn0DA00ZixY1f1Pt32/yv3DBDMfEpJc5o3LlzLTU+ilenKxXz2yL//xj0mzbZvJasYIsVcpsn8HB pl5J8s03yYYN0+v+nntM3TdqRM6bl32Z7duT33+ffXyqdu3IH37IeVqTJuS0aaastWvnnOb4cfLA gczjrlwhN20ik5Ozp4+JSf8fpv6vjh27evk8JbVMrpZtzx6TR3IyefJk+vgzZ8iLF009pNbh8eO5 5xUenl7XKbEz57h6tQn/xSc/g3hqQHruOXL3bvM9OJi89970NG3amB0towsXSF9fE+BnzTJBlDQB 6OOPzff5881OdDW9e5vlHTpkhletIkNDTTBs2dJ8qlQh33nHLCcoKD0Iz59P9ulDNmtGPvIIWa0a 6eVFBgSQq1eb7z17mny3bDEB4eJFs7MXL06+9ZYJ2BaLCXwOB9mggZlv507Sx8fkuXq1+evvnx7U Jk0yAaN7d1PGM2fMcocMSV+3nTtJERMs3nuPvOkmsmxZc4B8++30dAcPmmCTeuAjzUbZvz/5/PNm +MUXyZo1yQcfJL29yRIlyPLlTR2QZl2qViXr1CEfesiMmzyZvOUWcsoUM+7zzzPXfXAwedttpvyB gWanIk1dWCxkkSJk377k+PFmHeLiMs8/ZAj50kvkjz+aAwtp/hdr16anqV6drFyZfOUVM1yjBvnz z5nzSUgw25Hdbv4/bduauixbluzYkVyyxOzkRYumbxOTJ5t5x441aY8cMQfZ4GAz/vbbyW+/JadO Ndtx1rKT5GuvkSNHZh9Pmm0hJOTqwePbb005GjQwdZyV3W7+h/7+Zp1SjR9vtp8lS7LP0769ya9l y/Rt0scn+4HAkw4eNOt08KDZh6zWa8vn+HGzb7RpQy5ebLZbh8M0FH19zb5Sp47Zdvz9ybAwU6c5 sVrNtpq6/9zwQfzAAdNqPXjQBM6YGNMSDA01G+OiRaZyAbMBLVtmKg8wgePsWRNEFy40+QDk1q0m 4KQG63r1TNAhzY4CmB3399/Ty7F2rcmncmWyYkUThOx2ctQok75bt/S0S5eaVtWiRWbaypXm7623 msD25ZdmRy5WzLQ6LRazPm+9ZYL+Rx+ZHdxiMQE0NJR8/XXy4YfNX4uFfPxxcvhws7E0bJievkIF c3bStm16AAfIpk3JYcNMa9Dfn3ziCXNAycjhIOvXN3Wwf7+ZL2sgTZUadFLrpnhx87dWLXNgDQlJ P9CFhpIjRpj1vvlmE6gqVDAHpL/+MnWycCF5xx2mtUiaYNWliwl2UVEmqKUGTpL83//MQXjqVFMX FovZkfLalkqXJnv1Sj/YTJxI3nmnyeeHH0w+K1aYIL96dfoBMKO9e81BMlVcnEnXqZM5ePfvb4Jf 27Y5l6N/f1OGkBCz7W7fnv2gmJPPPydbtCAPHzYt96lT0z8LF5o8cjpryOj4cbJMmczjbDZyzBgT kHv2JJ95xuQZFUU++qj5/73zjkl76pQ5+4iNNWcXqS3S6tVNQwgwB8sff8y7LKn27jVnHjabc+mz iokxefz0U/q4LVvIuCt2Lv7KToD84ANTtl27rp7PhQtm+1u4MPu0Dz4w+3hwsGlUAWY/nTzZbDP+ /uaspW5dU4cNG5Lr15v9aOpUc5aZ6uhRU6epbvggnhpUS5YkO3dObwkPGmRO3994w7QEAFO5wcHk mjVmuHJlc9pfqpTZWSwWM37OHNOiK1HCbGgBASYokaZ1UbmyaZUAJmjExZn5S5Uin3zS7ORhYWY5 Dz1EPv2Mgzt2pG+xBw6QlSqZndrf3wSwgAATeF56yZxuz5xpdvSPPzYb/CuvmNP8Tz4xO/nLL5uD TqlS5lQ4MpJs3ty0ZpctM10i/fub0+vHH09vLa1YYcqwdCk5eDC5fDnZoYOZHhlppg0daubfvTt7 fa9ZQ+7YYb7PmWM2zJzMnk326EFeumQOPBMnmnp64AHzvwoZcD+fWfYMSfKzz0wrLSHB/I/69zdB gzSnphaLOTAOGJDeZbN3r/kflSxpgnx0tGkVpzp2zPxv+/c38/30U847X1YTJph5tmwxwxcvmv/L 00+bcpQvb8qa8QD45JPZ6yhrgA4JMev21Vfp8736as5lOHzYHEQGDzatt/vuy949lZNTp8z/slQp EyT69zefvn3N2Vi7dnnnYbenn43a7DYmWBP4zYoEhldP4Kp1Cdyx08r+/c2+1qMHWa9RIkPfu40t Hl7DBGsCR4xJIMTO5/o60g4GSbYktm9vzvKqVTPrBGTu9rParUywJjDBmkCbPXO0vv12s5/88APp cDbyZ9CrlznbSw1BiYlkYIWT9InwpQzxIiptYp36SQTIL764ej4DX3ewVSsTV7J2xbZvb/at8uVN oO7f3+zjpUqZ7XvxYpPuxx9NT8G4caah1LatqZcSJUydJ9mS+MknDt7bNX09b/gg3rMnef/9ZgcL CjKn0QEB5HffmdPxqlVNQLBYTEB47jmycWNzSmqxmJ2rZEmyXz9TIxaLme7nZ1rugwaZU5ugIPKb b0zeL75oxgFmA0k9kJQvn346NmmSacmHlHbw7tkPcvrW6SRJu8NOu93kExhIPvss2bWrCUhZN1C7 wzQrHQ5HjhtvcjJZsvJJlnq/Kg8dNi2Kps0yn6NZ7VaOGZfAOvWsjE9OoNVuZXxyfNp0m93GyTNj Wal6LG22nHeQ1HLk5NVVr3L8r+OzpfvnH7N+99yT+SzkyhXSLyyaiACrTaqWNTuSZGxiLBOtiWnD jRrb04J6Rtu2pRzAQ6y84+5Ytm1/jefCTnA4zA7ZooUZLlfODNeta7aXuDhy4EDTfda9e/bA3rSp OYiknsGULEl++unVl5dal5272NPODp2x/0gcxXKFq1ZlHt+hgzkYOaN6dfKPnZdYdnhNeg/xpbzr S58IX/oO82XZsWV58MJBRkc7GFo1lj4dB7HEyBDKoFL0HupDr/csLP1WM+J/oWzRbSdHbxxNiRA2 f3k8AdNASD2Ipa7Td985WHJUafoO86VlmIUNpzdk9OGzHPBiMp991uyjEyeS9RtaWW1cPe49t5fT puXcpTRtmtmXUz8//GC2Q9N16ODYsQ726EEGNF7JwBfasWq/gbS8VpOIAMPviGSzZuYsL3V3u5R4 ibGJsTwee5Ler4Xx+9/2slUrc1Y5dao56Dkc5gwuJobs0NFG+MTz8GHTOi9fnky2Zt9/Tp40MaBU KXNQuftu8va+S+jzvg/9BzZikaG+aWlv+CDerJm5YLB5szklWbPGdHUkJJgWSGr/9Pr1Jv2mTUzb mCpVMkf5bdvIS5ccDAy28Y03zIbw5ZeZW1uNGqV3X3zxBQkvK59/3rTcREzf7u9brWnBNj6enD4r mY9Omk6/EX7strAbE62JrDWlFv8+/TdXfGfnup+sHD3a9JW2e/onIiK9jqJORTFsQhhPXT7FkT+P ZM/FPXMM5KOXLyYiwB0nozj7k3jeNKEBp22Zlja984LO9B8RwOrj6jFgZADrT6tPvxF+jE2MpdVu Zcu5LVl8RHH6DC3Cz3Z8lq0VlGBNYOUJlbnx6EaS5IX4C2nlsNqtDPkghJ0XdOapy6dYcXxFfr/P XFmz2W388UcHP5xykYcOZ96In5z3DvsuH0C/EX48d+VcWnqb3caPfv+IlmEWlv+wPOOSzF56y0d3 cdT6CTwTd4aXky6n5ZNoTeKydadYf1JzFokoyrtm9kqb5nA4eO7KOadabja7zal0bduSD/YyB4oN G0yfe3S02REjIswpsMViuvGyXlj9/XcTdBwOct068tffbJkuUmcsS7ItmS3mtOCojaPYfuYD7DV1 hFNdD+sOrqPvMF/6vl+My/d8zzNxZ3gm7gwdDgf37jVnMQ6HI9PB1ma3MT45PtOBvVMXK7uOH8Ii Dz7GKVPMGVfqxd2xm8bSd5gvm89uQbxdlMXeqMG/Tv3NysNuYaXaJ1mnro2tp9/LW8c/yOLDAxk+ MZwbjmyg35AQosxO7tpl9juA/HjhOZ6JO8PbOhyn5V3T+e9wOPjkt0+yyBA/ln61A6dNM/tsQgLZ 7rnVRAT4zrohtFjMWWlGx4+bM+2pU80+/L+BNhbxi2fnnme49pcLLNl1FPHg/XxvzBn+7+vR9Lvv Zfo2/IaIAKuMaM7nl7zHMVPOsEJ4HLdtI+f8OYeWYRYWH1GcgSOD6fVGWTaf3ZwDXrDy3q42AuYM 78QJsw04HGTXuU/SO8KH/yTEMi6OXL7xIMuOLcs1B9YwNjGWdoc9bVtbuTL94vqBAw5aBlVinyEr 6d2vGREBno83d2Lc8EG8dGlTiRlZ7Vba7DZu2JjM4BIOJtvSW2gOh2lpLF9u+linzzKX1T/b8RnL 9XuMi5emX2ZPC+JeyRw/3sGmTc34NRv+IV4P4eJl//BC/AXeefcVTphoY5tP2/DVVa/SZrfR7rCz 34p+LPdhOf6w7wciAgwYGUBEgIgAW3/Sms1nN+cnn5hlNH/3tUxB/I01b7DCuAq894t7WWNyDYZ8 EMK1B80VtnNXzjEmNob/JPzDV1a+kpZn+8/bs/UnrVlqTCnuObuHMbExDB4dzOlbp/Oxbx7jp9s/ ZZ+lfdhiTgtWGl+JjWY0YvvP29PusHP61umsOL4i602rl2mH/nrX1wz5IIQ3z7yZaw6soddQL/Zd 0ZcxsTFcuX8lq0+uzhKjS/CVla+w/eftWWFcBZ67co5vrHmDjWc0ZpH3i/DBrx5M23DPx59nhXEV uO3ENvZY1IPlPyzP1QdWs+L4irx55s30H+nP9YfX885P72TgqEBO+X0Kg0cHs8rEKgz5IIRBo4L4 6//9yosJF9llQRcGjw5mryW9+Nux39hkZpO0ci/fs5yIAN9c+yaTbEmMiY1hTGwMz105l2k4JjaG Hed35HPLn2NMbExaOWMTY9OmX0q8RJJ8ZWACQ96rw6hT5laL03GnabWbg7mXlzllrlTJNAAycjgc PHXZ3NIUlxTH7ou6s9XHrbJtyxHrI9hjUQ/Oj5rPZrOasfQHpRk4KpDFhhfLdGZyNX2W9uFHv3/E VftXsdyH5RjyQQiLjyjOET+P4Om407TZbbz/y/v57k/v8nTcaW4+tpkVx1dk6LhQlv+wPKPPRHPv ub0MHFKZ8nZxtn9sS47LiT4TzVvn3Momrc5x7tzUdTTXjry9M9/Nk+r+4XOJfg2ZZEtih/tP0q/p YhaJKMagUUH0eq0i5fn6vO02pn38w3ez0tjqmeqwyYS7WK7vEywzOpRSaj9vb5veFD92zJwRPf20 Gf7zxJ8MHRdKr9cqMXB4CP1G+NH73eL0eqEeg0cHExHgXW/OYsf7zvL2j2/nsj3L0vZRvyGlWbnW Wfq/0oK1u37P+3va2WLcA2zx8Dq2/7w9i79fkuhfj7Vrm/93/frpXVX1p9UnIsBtJ7aRJB//5nF2 mt+JZceWZfERxYkIMGJ9BEnTdZLq8MXDLDG8HMXLwX79yHafteN3e78jmXsQL/BvMYyPB0qVMg+X eKXc9X7wwkFU/6g6GpVrhMtJl9GsdBuUDvbD5E6TkWRLgq+PL06eBOzFTuLQyVh0X34bNj21CdP/ mI55UfMBITY8sQHl/MvhykV/wPcyui7uiFdavISmpdoiMMiBeVuXY8jmV/Bx65/Qf1MntAq9E/2a DsCIX9/D2StncfzycQy7cxgW/LUAX9z3BRqXb4x60+qhQdkGqBRYCR/8+gEAILhoML5ocBGdOwNN J92NPy6uBYcQZ6+cRf3p9bHqkVV4fe3rEAg6VOuAbae24fXbXkerj1sh0DcQNocN1UtWR4OyDbA4 ejEuJl7EukfXYc+5Pfh85+doVqEZku3JmHXvrEz1NnDNQEz/YzpuLn8zFty3AJWCKmHn6Z1oOKMh yhYvi0EtB2FAswHw9fHFQ0sewp3hd2LohqEIDw5H15pd8e3eb3HgwgEk2hIxou0ITNs6DecTzmNZ r2X4evfX+L/Y/8Ovx35F1RJVMbLdSDy57EksvH8hbgm9BUMjhyLmUgxmd50NAKg8oTISbAnwFm/Y acfN5W/G9w9/j2/3fIthPw/DnnN78EyTZzCl8xQAwOdRn+OtH9/C5eTL8BIvnHztJIr6FMWpuFNo ML0Bzrx+BgAwNHIojl8+jhX7ViDINwgXEy/Cx8sHsYmxqBRUCRcSLsDHy7xSv2HZhriQcAF7zu3B a7e+hnfveBfhE8ORZE9K+z8tuG8BOs3vjDPxpzGp4yS0rdIW9afXxz0178Hi7ssRHS24+WYg5nQC KpYthivWOCTbk1GyWEn0/64/5myfgw/v+hDf7PkGvx77Fb4+vrg8+DIA05hac3ANHvv2MSTZknBX tbvQqlIrVAiogM0xm7HgrwWI6heFcv7lctwPSGLria3otKATdg3YhbL+ZdOm/XHiD7T+pDVsDhtq lKqBy0mXcS7+HGwOG4p4F0F4cDh61+sNHy8ffLTlIwBANa922LjlH3zXZxm6dMnx5XkAgBMn0u85 B4DTp4Fz58w951klJRHdFnXDsSsHse/8PojDgjsvz8awZ25H8y8ro02FLhhe57u09F5+sbhrZSji 3opDki0JU7ZMwfwdX+LIe5tw+7tDsPbMZ0hOFqzsswo1wopj0mTgyGFg5EigWDHgg00f4Of/+xld wh/AmE4R2Hk6Ct0mvYuwzcuw7kcbGsxogIXdl6BqQF0EBgL/JP6DetPq4a/+f6HXkt74+chGVPGv h2lNN+J/L1vg42Pu/X9u4DHc8WkbHP7nEJIGO7B5azJ84IvwcKBMOSsCRwfijrA78HTjp9H1pq6o PbU2vnv4O9QpXQerD6xGxwUdcW/NezGp4yQ0mdUEC+5bgM41OmPmHzOx9tBaDK62BHXqAGO3vI+L CRcxoeOEXN9iWOBb4n//bS5qpVr89+JMrV1EgMGjg1lnah2SZMPpDTn+1/E8d+UcEQH6DvNl+MRw Np3VlLd/fLvpF5sYzioTq9BvhB+rTKzCgJEBbDqrKYsOL8qSY0qmTfd5pRYf+eoJBo4yp4yvr3md 70e+z7UH1xIRYNeFXRkwMoBWe/Z+2rNXzqaVb8WmA0Tx0wwdF0pEgA6Hg90XdeegtYMyzXP80nHW mlKLvsN8OXD1QJJkmbFl6PO+D8/Hn+f5+PPssahH2llAn6V92GxWM569kv1m+A1HNvD1Na9nGmez 29hhXgcuiV5CRIB+I/x4Oekyg0YF8dyVcxy7aSwbTm/I03Hmpu3LSZd5zxf38MSlExy8bjAtwyxM sCYwPjme7T5rxwcWP5CW94DvBnDcr+NIZm5hkGSvJb0YNiGMS6KXpPWtpzoff56d5nfihfgL2dbh y7+/5Ls/vZs2bHfYaRlmSTuL6Lm4J7/Y+QW/3/c9H/360bQuhDUH1rD3kt459vNvPb6V1SZV48EL BxkwMiCt6yFoVBDfXPsmEQFahln44FcPcuqWqXzk60fYeEZjjv91PHef3c1tJ7ax/IflOXXLVNaf Vp9Bo4I4YfMEhk0I458n/mTQqCAWH1GclxIvsdSYUvzl6C/cfXY3n//+eZYZW4bf7v6Wj379KBEB bj2e3glea0otRp+JzlbeVN/v+57FRxTnnD/nZJvmcDjYc3FPbonZws4LOjPqVBQf+uohbj62md0W duOhC4eyzXPokLlwf623213Nqcun2O6zdtx+cjubjOvI5rdfYvUaDvq8E8h+K/plK7ffCD/+k/AP W3/SmjUm1+Dus7sZFma6rD78kGw28H0GR4QzfGI4fV4LZ4Ux5nv4xHDWnlKb+8/vz5Tn5Mnm4nJe VuxdwddWv5Y2nHpXzfLl6WnCJoRx0NpBrDO1DuOT43kl+QpX7l/JGpNr8LXVr3HwusFp+3jGbe3o P0dZ+oPSbP1Ja/Ze0psVxlXgsA3DGDQqiPOi0m/+jz4TzdBxobQ77Dd2d8rCheQ9D5h+oxOXTrDM 2DL8PeZ3vvPjO0QEWPOjmvz5yM/0H+nPDUc2sOzYsgwaFcRfjv7CulPr8ullT/OP43+w4/yORAT4 6NeP8tf/+5X9VvTjd3u/44DvBnD5nuVMsCaw28JuaafEJDnu13FpXQu+w3zZdFZT/njoR5LkL0d/ ofdQb3aY1+GqZX946cMs/UFpeg/1ZoVxFVhseDF6D/XmjK0zWH9a/RxPn212Gx/5+pG0HbrtZ21Z YVwFd1YprXYr7/r8LiIC/GT7J+y8oHOe8+w5u4fPLn/2qtMX7FzADvM6cMfJHQwYGZDW10eSS6KX cNJvk646779RZWIVrju4jlGnolh9cnXuPLXzX83vcDjYdWFXFhtejC3mtEgb32FeBxYfUZztP2/P 4RuGs9SYUmzzaRvO+XMOo89Es9GMRrzpo5t400c3sf93/Rk0KojhE8M5d9tc1p1al5GHI0mSneZ3 YuMZjUmSr6x8JW2elnNbpl0bOHX5FBvNaMRkW3q33q1zbk27JpFVXFIcB64emHaK7i7XcBPIvxIX Zy42tm9P3jrnNo74eUS2NNUmVeMzy55h609ap12rSUw0ty86HObhsBo1zK2stWs7V+ZrXa+sF1Gf W/4cfd73YfXJ1fnKylfYeUFnhk0I4+trXuf0rdMZOCqQoeNC0+7AyqjDvA586KuHaLPbOGzDMDaa 0Yi7z2a/FazZrGacsHnCjR3Enx78F4MiKtHhcPDNtW/y5ZUvkyQ/3f4pEYG0VkbLuS3ZfVF39lvR jx3nd+Rj3zzGu+fdnZbP8UvH2Wdpn391+9KfJ/5kw+kNue7gOpYcU5KIQNpFt4sJF4kI5Ngyyqjd Z+1Y/sPyLDmmJJvMbMJSY0qxzNgy/PnIz7nOl+qlH17KtB7u1HhGY1YcX5Gf77jKjeD/wolLJ9hk ZhPWn1afD371oBtKlzOf932ICLD+tPpsObelU/3IWTkcDt700U2ZDkqfbv+UTWY24fFL5kmZaVum sfGMxjxy8UiOeXy+4/O0u5Ey+n7f95y4eeK/LlOXBV24fM/yHKf1WNSDiEDa9ZKCZMgQc3FvwuYJ aQe6jBrPaJxpP87K4TDPCoSFZb/I+V87e+UsH1j8AI9fOs7QcaEMHBXIK8nmftsdJ3ew0YxGaY26 axV1KorYLHQrAAAZgElEQVRNZzW9MYO4zUYuWRHLKvfPJSLAX//vV7ac2zJtQ954dCOLvF8krSuj 5+KerDqpKkf8PIIzts6gZZiFj3/zuNvKgwiw6PCimcY9+e2TOXYDZE3Tc3FPdlnQhY998xjDJoQR EUjrssjL6gOrOfvP2ddc7txM3DyRd31+F2MTc7iF4jo1auMoLvzLiZvB8zB321wu27PMDSVyj0e/ fpSfbv80bdjusPP3mN958vJJBo4KZId5HTLdtXOjSO2OuN79eOjHHM8k3CW3IO7UDyVfj/78E+gz 5z1YG5rfa77t49sAAM1DmwMA6pepj35N+6VduCrjVwaHLh5CmeJlUL9MfSTbk1Hev7zbyjOi7QjU CqmVadzH3T7Oc77ONTrD4m1Bsj0ZPl4+2HZyGwCgZLGSTi337mp3//vCOunlFi/j5RYv/2f5/xfe bPWmW/J5qvFTbsnHXUoULYELCRew8/ROlChaAmsOrsGLK19EgG8Aut7UFfN6zMs7kwJo3N3jULZ4 2bwTeljbKm3Rtkpbjyy7wAbxw4eBYrU2IskrEffUvCctMAf4BgAAgooGYXKnyWnpyxQvk/a3Tuk6 AIDyAe4L4m/dnsur83LRs07PTMNjNo1BcNHgtIOPUoA5qC/dvRTDNw6Hr7cvKgZWxOx7Z2PD0Q0Y 0XaEp4v3n/nfrf/zdBGuewU2Uuw7Eoe4ontQxKsIXrrlJdxV7a5c02cM4gG+AQgPDndrS9xdAiwB CPEL8XQx1HWmRLES2HRsExb3XIyTcSfxW8xvuK/2fejToI+ni6Y8zKkgLiIdAUyEef/4XJJjskwv BWA+gPIAvAGMI/mpe4ua2faTO1AhpC6ebd0VN1e4Oc/0qUE89dTs1RavonnF5v9lEa9JgG8AShUr 5eliqOtMXLL5NY1utbrB4m3BS81f8nCJ1PUizyAuIl4ApgBoB+AEgK0isozkngzJXgCwg2QnEQkB sFdE5pO0/SelBrDvn79xU/UGeKf1O06lz9gSB3Dd7gT+Fn9tiatsetbpCYu3BRZvi6eLoq4zzvyy zy0A9pM8StIKYBGAblnSnAIQkPI9AMB5VwP4rl3mF0gefBA4fx7o2dP8ekyjRuaXumOS/0aj0HpO 51emeBn4FfFDcUtxV4r1nwuwBKCUn7bEVWY1S9XEwNsGeroY6jrkTBAPBXAsw3BMyriMZgOoKyIn AEQBcPmWhuho4PffzW9NRkYCP/wALF5sfuNx1iwgMfBvtK/vfBCvUqJKgbgA5G/xR0gxbYkrpZzj rgubgwFEkbxTRKoBWCsiDUhm+1nciIiItO9t2rRBmzZtcsww9RfVK1YEFiwwvx1Yr55pnY+ZcBl4 eTuahebdF57K4m3BKy1e+Rer5Bk9avUAob9Sq1RhFhkZicjISKfSOhPEjwOonGG4Ysq4jFoCGAEA JA+KyGEAtQD8kTWzjEE8N6dPA2+/bX749okngCefNOMbNQLiKy1Hm9DbUaJYCafyKkiux4utSqn8 lbWBO3To0KumdaY7ZSuA6iISJiIWAL0ALM+SZjeA9gAgImUB1ARw6F+VOotTp8wvf99+u/mF9Xvv BXad3YU9wRNRtfMK9G7S1ZXslVLqhpBnS5ykXUReALAG6bcY7haRvmYyZwEYBeATEYkCIADeIHnB lYKdPg20aQNUrQps3WrGdZj/Kn6L+Q2Xil1Cy0rvupK9UkrdEJzqEye5CsBNWcbNzPD9HIB73Vmw 1JZ4qrNXzuL3mN8xsu1IvLP+HdQuXdudi1NKqQLpunti88IFYP160xIvm/LKhM3HNmPFvhVoHdYa TzZ+EuHB4fASZ3qClFLqxnbdBfHVq4H33wdiYoDQlBsZO8zvgMvJlzG63Wj4FfFDl5pdPFtIpZS6 TlwXQXz+fMDhAM6cMT/ttHev+cm14inP5dQuXRtbjm9By8otPVtQpZS6zng8iDscwODBwPHjgI8P 0LCh+Wni8PD0NJeSLmFa52m4teKtHiunUkpdjzwaxK1W4LbbgDJlTDCvUQPYsMH0hYeFmTRD1g/B nnN70KdBH3h7eXuyuEopdd3xaBBftcq0vtevN38BIDYWePppwL/KLkzdsh7v//w+ACDQN9CDJVVK qeuTR4P4118DjzwCFC2aPu60YxcONH0L0fZl+Gyl58qmlFIFgUfv09u+HWie5Snzp5Y9hZ6tGmHp g0sBAOX8y2HvC3s9UDqllLr+eawlnpxs7kKpWzd9XJItCdtPbcfGJzfCx8sHRX2Korx/edQsVdNT xVRKqeuax1riu3ebO1CKFUsZPrsbj337GCoFVkIR7yIQEZT3L5/2Iw5KKaWy81gQP3ECqJzh3Yhz t8/F4ujFqFayWtq48gEaxJVSKjceC+JWK2BJ+aUpkvhq11cIsASgWokMQVxb4koplSuPBfGDl6Lx S51m6LygMyKPRCLZnowH6jyA2iHpL7YKDw5HxcCKniqiUkpd94TMv1+RERGmLm/g7OUYd6Ibapaq idNxp9GuajvM7zEfPl4+KOJdBACQaEuEt3inDSulVGEkIiApOU3zWEvcZgPKx9+N6AHRaFSuEdpV aYdiRYplCthFfYpqAFdKqVx47hZDuw1FUBw+Xj748bEfIZLjQUYppVQuPBfErTb4iFm8vhNFKaWu jce6U5LtNniLx1+iqJRSBZrngrjNCh8vDeJKKeUKz90nbrfBx0svWiqllCs82BK3aUtcKaVc5Llb DO0axJVSylUe7k7RIK6UUq5wKoiLSEcR2SMi+0RkUA7TB4rIdhHZJiJ/iYhNRIJzy9PqsKGIBnGl lHJJnkFcRLwATAHQAUBdAL1FpFbGNCQ/JNmYZBMAgwFEkvwnt3ytdhuKeGsQV0opVzjTEr8FwH6S R0laASwC0C2X9L0BLMwrU5vDBh8N4kop5RJngngogGMZhmNSxmUjIsUAdASwNK9MbdoSV0opl7k7 it4L4JfculIiIiIAADGbf0Jxa3U3L14ppQq+yMhIREZGOpU2z1fRikgLABEkO6YMvwmAJMfkkPZr AItJLrpKXmmvoq394ptoWCsIi54f7FRBlVKqsHL1VbRbAVQXkTARsQDoBWB5DgsJAnAHgGXOFMpO Gyz6mlmllHJJnt0pJO0i8gKANTBBfy7J3SLS10zmrJSk3QGsJpngzIJtDu0TV0opVzkVRUmuAnBT lnEzswx/BuAzZxdspw0WHw3iSinlCs89du/QIK6UUq7yWBDXlrhSSrnOc0EcNliKaBBXSilXeCyI O2iDr7bElVLKJR7tTvHVlrhSSrnEg90pVu1OUUopF3muOwXanaKUUq7yaBAvatEnNpVSyhWeDeLa naKUUi7xbHeKRYO4Ukq5wmNBnKItcaWUcpXngrg+7KOUUi7zXBD30sfulVLKVR7tTtFbDJVSyjUe C+IQ7U5RSilXeSSIkwC8rbDoj0IopZRLPBLE7XYAXvrLPkop5SoPB3F9YlMppVzhkSDucADwssHH S1viSinlCo+1xMVbg7hSSrnKo90pGsSVUso1GsSVUqoA82gQ9xZvTyxeKaVuGE4FcRHpKCJ7RGSf iAy6Spo2IrJdRP4WkfW55We3AxS7tsSVUspFeUZREfECMAVAOwAnAGwVkWUk92RIEwRgKoC7SR4X kZDc8rTbAYgdXuK5B0aVUupG4EwUvQXAfpJHSVoBLALQLUuahwEsJXkcAEieyy1D051ih7eXdqco pZQrnAnioQCOZRiOSRmXUU0AJUVkvYhsFZFHc8vQbgcAh7bElVLKRe7qlPYB0ARAWwDFAWwWkc0k D2RNGBERgfPnCfzlwMYNG3HnnXe6qQhKKXVjiIyMRGRkpFNphWTuCURaAIgg2TFl+E0AJDkmQ5pB AIqSHJoyPAfASpJLs+RFkti9x4E6i3zACMe/WC2llCqcRAQkJadpzvRnbAVQXUTCRMQCoBeA5VnS LAPQSkS8RcQPQHMAu6+WYbLNDlC7UpRSylV5dqeQtIvICwDWwAT9uSR3i0hfM5mzSO4RkdUAdgKw A5hFctfV8rTa7BDqRU2llHJVnt0pbl1YSnfK5j/i0XJZCBzD4vNt2UopVVC52p3idla7HeLBHxVS SqkbhWeCuHanKKWUW3gkiNvsDkCDuFJKuUy7U5RSqgDzWEtcoC1xpZRylQf7xLUlrpRSrvJgd4q2 xJVSylWe607RC5tKKeUyz3Wn6IVNpZRymYda4tqdopRS7qB3pyilVAGm94krpVQB5rHuFC9tiSul lMs8E8Qd2p2ilFLu4MGWuHanKKWUq/TCplJKFWCea4nrL90rpZTLPNQnrveJK6WUO3isO0XvTlFK Kdd5rCWu3SlKKeU6j0RSu0PvE1dKKXfw2H3iXqJBXCmlXOWZlrjenaKUUm7hVCQVkY4iskdE9onI oBym3yEi/4jItpTPO7nlZ9PuFKWUcgufvBKIiBeAKQDaATgBYKuILCO5J0vSn0l2dWahdodDW+JK KeUGzkTSWwDsJ3mUpBXAIgDdckgnzi7U3J2iLXGllHKVM0E8FMCxDMMxKeOyulVEdojI9yJSJ7cM 7XphUyml3CLP7hQn/QmgMsl4EekE4FsANXNKGBERgZ3rd+G87EFkZCTatGnjpiIopdSNITIyEpGR kU6lFZK5JxBpASCCZMeU4TcBkOSYXOY5DOBmkheyjCdJ9Hj3S+wvshR/v7fYqUIqpVRhJiIgmWOX tTPdKVsBVBeRMBGxAOgFYHmWBZTN8P0WmIPDBVyF3eGAt3anKKWUy/LsTiFpF5EXAKyBCfpzSe4W kb5mMmcB6Cki/QFYASQAeCi3PO362L1SSrmFU33iJFcBuCnLuJkZvk8FMNXZhdocdm2JK6WUG3ik OezQ7hSllHILzzx2T+1OUUopd/DQWwwd8PbSlrhSSrlKW+JKKVWAeex94toSV0op13nmwib1wqZS SrmDx7pTvL20O0UppVzloZa4dqcopZQ7eO7uFO1OUUopl3mwJa7dKUop5SoP9olrS1wppVzlsbtT fDSIK6WUy7Q7RSmlCjDP3SeuLXGllHKZ3ieulFIFmGda4rBrn7hSSrmBdqcopVQB5rELmz7anaKU Ui7zXHeKt7bElVLKVXqfuFJKFWAeCeKE3p2ilFLu4LmWuHanKKWUyzzWJ+7trS1xpZRylVORVEQ6 isgeEdknIoNySddMRKwicl9u+RF2FNE+caWUclmeQVxEvABMAdABQF0AvUWk1lXSjQawOq88HbCh iI/Pvy+tUkqpTJxpid8CYD/JoyStABYB6JZDuhcBLAFwJq8MHWKFxbvIvyqoUkqp7JwJ4qEAjmUY jkkZl0ZEKgDoTnI6AMkrQ4oVFh8N4kop5Sp39WlMBJCxr/yqgTwiIgJJ2//CGvqgvldptGnTxk1F UEqpG0NkZCQiIyOdSiskc08g0gJABMmOKcNvAiDJMRnSHEr9CiAEwBUAz5FcniUvkkSxZzpj+lPP 44nbuji5SkopVXiJCEjm2Dh2piW+FUB1EQkDcBJALwC9MyYgWTXDwj4BsCJrAM/IIVb4aneKUkq5 LM8gTtIuIi8AWAPThz6X5G4R6Wsmc1bWWfLMU/vElVLKLZzqEye5CsBNWcbNvErap/LMT1viSinl Fp55d4qXFb5FNIgrpZSrPBfEtSWulFIu80wQF22JK6WUO3jmLVTaEldKKbfQPnGllCrAPNYSL6pB XCmlXJbvQZwE4K3dKUop5Q75HsTtdqT0iVvye9FKKXXDyfcg7nAA8LaiiL6KVimlXOaxlngRLw3i SinlKs8EcW2JK6WUW+R7ELfZCIgD3pL+G5vh4eEQkRviEx4ent9VqpQqxPL9hy4TrVbA4QOR9Ffj Hj16FHm917ygyLheSin1X8v3lrgJ4tqVopRS7pDvQTzJaoVoEFdKKbfQIK6UUgVY/gdxm3anKKWU u3imJU4N4kop5Q4eaYkXtO6UixcvokePHvD390eVKlWwcOFCTxdJKaUAeOAWwySrFV4FrCU+YMAA FC1aFGfPnsW2bdvQpUsXNGrUCLVr1/Z00ZRShZxnWuIFKIjHx8fj66+/xvDhw1GsWDG0bNkS3bp1 w7x58zxdNKWUyv8gnlzAgvi+fftQpEgRVKtWLW1cw4YNER0d7cFSKaWUkf/dKbZr605xx4OQ1/JQ aFxcHAIDAzONCwwMxOXLl10vkFJKuciplriIdBSRPSKyT0QG5TC9q4hEich2EflDRNpeLa9rbYmT rn+uhb+/Py5dupRpXGxsLAICAq4tQ6WUcqM8g7iIeAGYAqADgLoAeotIrSzJ1pFsSLIxgCcBzLpa fkm25AJ1YbNmzZqw2Ww4ePBg2rioqCjUrVvXg6VSSinDmZb4LQD2kzxK0gpgEYBuGROQjM8w6A/g 3NUyu2KLK1BB3M/PD/fddx/ee+89xMfH45dffsGKFSvw6KOPerpoSinlVBAPBXAsw3BMyrhMRKS7 iOwG8AOAl66W2fnEM/B2FP+35fSoqVOnIj4+HmXKlMEjjzyCGTNm6O2FSqnrgtsubJL8FsC3ItIK wDwAN+WUbtUX85F0LA4RERFo06YN2rRp464i/GdKlCiBb775xtPFUEoVEpGRkYiMjHQqreT1Hm8R aQEggmTHlOE3AZDkmFzmOQjgFpLns4xnh+lPYPeW8jj68ciM42+o94nfKOuilLo+pMSVHO/Rc6Y7 ZSuA6iISJiIWAL0ALM+ygGoZvjcBgKwBPNWZxGPwtYc4W3allFK5yLM7haRdRF4AsAYm6M8luVtE +prJnAXgfhF5DEAygCsAHrpafmeTYhBkL+We0iulVCGXZ3eKWxcmQt/3/VB/z2JsXdAl4/gbpgvi RloXpdT1wdXuFLdKcsSjVDFtiSullDvkexAHgHKB2ieulFLu4JEgXiFYg7hSSrlDvgfxBjvWoWJI cH4vVimlbkj5HsTjdrZDyZL5vVSllLox5XsQP3YMKFXArmtOnToVzZo1Q9GiRfHUU095ujhKKZUm 398nbrUWvCAeGhqKd999F6tXr0ZCQoKni6OUUmnyPYgDBS+Id+/eHQCwdetWHD9+3MOlUUqpdB65 O6V0aU8sVSmlbjz53hK/dAnw8/v388lQ13+fjUP0SUql1I0l34P4tf6qmQZgpZTKziPdKUoppdxD g7gT7HY7EhMTYbfbYbPZkJSUBLvd7uliKaWUBnFnDB8+HH5+fhgzZgwWLFgAPz8/jBgxwtPFUkqp /H8VbU7Lu5Fe33ojrYtS6vpwXb2KVimllPtoEFdKqQJMg7hSShVgGsSVUqoA0yCulFIFmAZxpZQq wDzyFsOswsLCIOL6u1GuB2FhYZ4uglKqEHHqPnER6QhgIkzLfS7JMVmmPwxgUMrgZQD9Sf6VQz45 3ieulFLq6ly6T1xEvABMAdABQF0AvUWkVpZkhwC0JtkQwHAAs10r8o0vMjLS00W4bmhdpNO6yEzr I2/O9InfAmA/yaMkrQAWAeiWMQHJ30jGpgz+BiDUvcW88ejGmU7rIp3WRWZaH3lzJoiHAjiWYTgG uQfpZwCsdKVQSimlnOPWC5sicieAJwG0cme+SimlcpbnhU0RaQEggmTHlOE3ATCHi5sNACwF0JHk wavkpVc1lVLqGlztwqYzLfGtAKqLSBiAkwB6AeidMYGIVIYJ4I9eLYDnVgillFLXJs8gTtIuIi8A WIP0Wwx3i0hfM5mzALwLoCSAaWJu+LaSvOW/LLhSSql8fp+4Ukop98q3x+5FpKOI7BGRfSIyKO85 CjYRmSsip0VkZ4ZxJURkjYjsFZHVIhKUYdpgEdkvIrtF5G7PlPq/ISIVReQnEYkWkb9E5KWU8YWu PkTEV0R+F5HtKfUxMmV8oasLwDyHIiLbRGR5ynChrAeXkPzPPzAHiwMAwgAUAbADQK38WLanPjB3 6DQCsDPDuDEA3kj5PgjA6JTvdQBsh+neCk+pK/H0OrixLsoBaJTy3R/AXgC1CnF9+KX89YZ5rqJl Ia6LVwHMB7A8ZbhQ1oMrn/xqief5wNCNhuQvAC5mGd0NwGcp3z8D0D3le1cAi0jaSB4BsB+mzm4I JE+R3JHyPQ7AbgAVUXjrIz7lqy9MA+ciCmFdiEhFAJ0BzMkwutDVg6vyK4j/2weGblRlSJ4GTGAD UCZlfNb6OY4btH5EJBzmDOU3AGULY32kdCFsB3AKQCTJXSicdTEBwOsAMl6YK4z14BJ9Fa1nFaqr yiLiD2AJgJdTWuRZ179Q1AdJB8nGMGcjt4tIGxSyuhCRLgBOp5yh5Xbr8Q1dD+6QX0H8OIDKGYYr powrbE6LSFkAEJFyAM6kjD8OoFKGdDdc/YiID0wAn0dyWcroQlsfAEDyEoAfADRF4auLlgC6isgh AAsBtBWReQBOFbJ6cFl+BfG0B4ZExALzwNDyfFq2JwkytzKWA3gi5fvjAJZlGN9LRCwiUgVAdQBb 8quQ+eRjALtITsowrtDVh4iEpN5xISLFANwFc8GuUNUFybdIViZZFSYe/ETyUQArUIjqwS3y6woq gI4wdyXsB/Cmp6/o5sP6fgHgBIAkAP8H806ZEgDWpdTDGgDBGdIPhrnivhvA3Z4uv5vroiUAO8xd SdsBbEvZHkoWtvoAUD9l/bcDiAIwMGV8oauLDOt3B9LvTim09XCtH33YRymlCjC9sKmUUgWYBnGl lCrANIgrpVQBpkFcKaUKMA3iSilVgGkQV0qpAkyDuFJKFWAaxJVSqgD7f3LWS+xdI6UNAAAAAElF TkSuQmCC ", "text/plain": [ "<matplotlib.figure.Figure at 0x7fc251f4ddd0>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEACAYAAABF+UbAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz AAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VMX6B/Dvm4RAgACh9xYQEJEiAsJFAihNBREsSLFx RRRF/F0FriLhSlexAAIBVHoRpJcgJVJEaaETeif0AIGEJLv7/f0x6dkkC7tkCbyf59knOXPmzJkz e/bd2TlNSEIppVT25OHuCiillLp7GsSVUiob0yCulFLZmAZxpZTKxjSIK6VUNqZBXCmlsrFMg7iI TBaRCyKyO4M8P4rIYRHZKSK1XFtFpZRS6XGkJ/4LgJbpzRSR1gD8SVYG0APAeBfVTSmlVCYyDeIk NwKIyCBLOwBT4/P+AyC/iBRzTfWUUkplxBVj4qUAnE42fTY+TSml1D2mBzaVUiob83JBGWcBlEk2 XTo+LQ0R0Ru1KKXUXSAp9tId7YlL/MuexQC6AYCINABwjeSFDCqiLxIDBw50ex3ul5e2hbaFtkfG r4xk2hMXkZkAAgAUEpFTAAYC8DbxmEEkl4tIGxE5AuAWgLcyK1MppZRrZBrESb7uQJ5erqmOUkqp O6EHNt0kICDA3VW4b2hbJNG2SEnbI3OS2XiLS1cmwqxcn1JKPQhEBHTywKZSSqn7kAZxpZTKxjSI K6VUNqZBXCmlsjEN4koplY1pEFdKqWxMg7hSSmVjGsSVUiob0yCulFLZmAZxpZTKxjSIK6VUNqZB XCmlsjEN4koplY1pEFdKqWxMg7hSSmVjGsSVUiob0yCulFLZmENBXERaiUiYiBwSkb525hcQkd9F ZJeI/C0ij7q+qkoppVLLNIiLiAeAMQBaAqgOoJOIVE2V7b8AQknWBPAGgB9dXVGV9cLCgEuX3F0L pez76y/AZnN3LdzPkZ54PQCHSZ4kGQdgNoB2qfI8CmAtAJA8CKC8iBRxaU1VlhswAJgxw921UMq+ 9u2BXbvcXQv3cySIlwJwOtn0mfi05HYBeAkARKQegLIASruigsp9jhwBzp51dy2USstmAy5fBo4e dXdN3M/LReUMB/CDiOwAsAdAKACrvYyBgYGJ/wcEBCAgIMBFVVCOsNmAW7cAX9+ktMhIIE8ewCPZ Vzppgni1avbLIc2HqIj+3kohKgqwWIB8+dxdk5RIMzRWtKiZvnABKFbMvXVyxtWrZl8+ciTtPBLY vRvw9AQeeyzr6+YKISEhCAkJcSwzyQxfABoAWJlsuh+AvpkscxxAXjvpVO41eTLZoEHKtHbtyCFD UqadP08CZJMm9ssZP97MVynVqEE+8YS7a5HWpk1kiRJkTIyZBsg5c9xbJ2fs22e24Z130s7bvZvM nZssVIhctCjr63YvxMdOu/HWkZ74VgCVRKQcgHAArwHolDyDiOQHEEUyTkT+DeBPkjcd+xrJXhYt AqpXB/z9gS+/BMLDAT8/oGFD4JFHzLxz54C1a4EuXYAVK4D589OW88QT5m+xYkDJkkCDBsD33wN7 9yblad8eCA4GOnQAmjQBoqOBKVNMj3nLFiBHDuDFF4HffkvK/9xzQGws8PnnQESEKbt6dVN+uXLm YNDff5u65coFFC5s0v76Czh2LGndV64ABQua4ZQVK0wPLqHOq1YBQUH22+fKFWDgQFN+gwYmbcsW 0ztt2BAYO9ZsR48eZsz95k2gQgVTXwCYPBnYvNls48CBpl4NGwKlSgGHDwMHDwLPP5/5+2SzAT/+ CHzwgWmnJUvMe5eeBg2AmBjgzTdNHQ8dSpr3738D9esnTY8aZern6WnGZHPmBF54AZg3D9izx7Q3 YHrlX3wBtGwJlChh9otWreyv/+BB4Ntvgf79gfLlgU8/BW7cAD77DKhUKfPtBYCVK837/fjj9ssP DwcWLADatjVpX34JbNgAfPUVUKCAY+tIMH262ScWLDDbWCrVAOvMmeYzIGK2qWLFlPMT3p9y5Ux9 /f1N+qJF5r1K7sMPgZo1gcGDgRMnTHs//7xp/+Bgs3/Vq5eU/+RJ4Omngc6dTfutWgUMGgQUKmTm T5gAbN0KeHsD7dolfX4SvPQS0KZN0rTVCowbZ/YlkbRtQZr37pNPUv6adca33wJeXkDv3g5kTi+6 M2UPuhWAgwAOA+gXn9YDwLtM6q0fBHAAwDwA+dMpJ0u+tSwW0mYz/yf/a7ORVqt52ctvsZBxcUn5 4+JSviwWsmVLcuJEMjiYrFLF/F+3LunpaXq0cXFk795kzpzkxYtkq1Zknz4mX8IrKIgsUMD0JACy fn0yLIwsUiQpz4ABpswqVcjHHjP1WbPG5M+Xj5wwgXzpJZPno4/I7t3JLl1M3adNI5980pTzyCMm T/fupm41apjeeMJ6Hn+cLF6cXLw4ZR0nTiRXryZ9fJLqabWaMipWTEpL3VaBgabO9esntXPXrmSt WuTRo2TBgmZ9PXqQAQGmLXLnJiMjyXPnTLtMmGB+AQQFkeXLm+0jyf/+1ywbFZX2vUn9WrkyqbcZ FWV6od9+m3YbJ0406/P1Nfl79iRLlkya99lnZMOGSdsYG0vmyUP6+ZmeXlAQ+dxzpo0//ZT86SfT PqT5tVK1KlmhAtmiBVm2rNmH7O1zL79s1j9jBnnokNnOt94ybZdawnIJ4uLI27dN+a1apd1nSbJ/ f7J2bbJRI9NTrVDB7CfPPksOH555eyZ8juLiyPBws397eprt+/DDlHmvXjXtM3Ys2bQpOW5c0jYn 5Fmxwmyvpyf55ZdJ5TdpYto8of0/+sh85q5fN/tJUBBZrZp5n9q0MftEw4Yp1z9+vOmhx8WZ9mzT xuyXcXHkqVOmbkFB5IsvmvX37p20vpEjyTJlyOjopFiwe7epa3BwytiRsL5Ll8z8Awfsx6PU71dy 9uLR/v3mc+Lrm7QcMuiJOxTEXfXKiiC+ezeZKxf5+eem8Ro3Jjt0IF94gaxenXzqKfMm3bpl8p84 YYJimzZk/vykiNnB2rYlPTzMm5zwypePrFzZ7PgJHziSXL7cLF+unMlXsKBZp6+v+cCfO5e2nv/9 L/n666acWrXMckOHJs23Wsmnnyb/+cd8UNq2NR/s0qXNTk6SR46QdeqYHW7JElOH8eNJb2+zDaT5 oL74ovmC8PQ0fxN+UpPkggXku++m357585vtAkwAKFvWfNDq1UsK5C1amHbz9DTbvHOn+XKoUcPs hFWqmOU8PcmBA8lvvjEfyM2bzTrq1TPb5uFBfvKJSRszxnwp5slj2jMyknzmGfPeJX9P0nt5eZkA 6O1tptu2zXi/+c9/zJegjw/5/fdJ6XFxZp1t25ptLF7cbM/QoeSgQSbP3r1mG+LiTNt6e5MjRphA FxJi6l2xohlmWbgw7T7n6UmWKmXWX7u2adOOHckrV8yX2oULKevarZtZ/tQpctkys62enmSzZqS/ f8p2yJPHBIWXXyanTjWfAYBs3dqUtWMHmTdvxm0pYj5PQUFJ73OHDqauBw+aL7PUy7z9til/+HDy //7PdGiS50t4f8qXN188b75pyvf1NdudIDrabFPx4uazS5Iff2z2px49TJs/9ljKuvr5mS+GBHv3 mvZKyNOvn0k/fNi8J7dvp2zf1q2T6rhkCTlpknl/vLzM5+fqVXL+fLMuDw+yUiXTplOm2N+3unc3 23X8eMr06Giz/fXrJ32JkeQHH5hOnL+/GTYiH7Ig3r27+fZv0IAcNsw0PGD+enmZBm/TxgSu0aNN b/btt82O/OGHJsi0a2d2muTBjkx6s/z87I/FpfbZZyboZmTtWlNm+/bp5xkzJqnXMmuW/TybNpmd wd+f/OuvzOvmqDp1zLoPHzaB6LnnkuaVLZtUr/DwlMvZbOYXSp8+JpAk9Grs6dXLBMbkO/KWLabs Z54x79HYsfYDWlYYOtR8WE+eNL9wunXLOH+FCubLYNeulOkJPd9+/VLucwkGDDCBHyC//tqkvfOO OV5x7Zrp5X/7rflSe+stE0jr1El/n0gos00bEyy2bDFtDNzZuP3CheTzz5Pvv0/+8IPjy5HkvHmm M9KlS1JgT+7cObN/+PiY97dy5bR5rFbz2evd20zPnGm2YcCAtHkXLTLzJky4s3raM2eO+aJq2pT8 8UeT1rmz+cLp1s302o8fN+sTMfvq6NEpX999Z7br7bdNZyr5vPffN/tD1armS3L0aLMePz/yzBmy UyfzPo8e7fyYeLZBmvG04GCgVi0zJrx0KXDmjDn7IuFofLFiwE8/mYtZypQB+vY1Y2ANGpgxzkGD zHiht3fK8itVMkfDIyKSjvJn5P/+L+VYqj0JY4kZjXu+8Qbg42Ne6Y2pFixoxtN9fZPGol2hUiVg xw6gdGlg4sSUZzQULQrcvg189x1QvHjK5USAMWOAadOA4cPN+F563nsPePnllOONtWqZceGmTc0Y 6EsvmbFiR9rd1Xr2NNtftqwZL89s3POLL4Dr19OOTb/8stkntmwxY7IJ+1yCggXNuHy9ekCn+KNO H3xgxrCvXgX++ceMDY8fDzRqBIwcCVStatomPR99BAwdavI99php4z//NPuSoxL2+9hYc8zlTlSq BKxfDzRrZo53pFaihBm3rlrVnC5YtmzaPB4ewKRJSe99ixZmu9qlvloFwJNPmr+px+jvRvv25hjH tWtJ6xo0CHjnHdOGISFmTL9IEXPco0ABE1NSGzcOCAgwn4Pk80WAb74x5c+da/4C5n0tVQp4/31g 9mz7ZaaQXnS/Fy/cw574yZPmm65YMdPbqFHDDBXcqYsXTQ/pzJm083r1ShpCGDXK+TqT5M2bruk5 XLhgynnySdfUK0H//uZnsD2tW5thqnvNZjM/mSdNuvfrutcSesb2TJli3sPx41OmN25shmgOHbr3 9bMnKsoMUZYrZ4ZP7kRkpNmmkyfvSdXsKl/eDKHcK0eOmBhx44aZbtuWnD793q2PfEh64mPGAAsX mrMERMwZDnny3Hk5RYoA58/bX9bf3/QKbDbX9Qjz5AHy5086On+3/PzMX1f0QJKrVCn9MosWNb3H e82Z9/N+M3Cg6W3bk9CWqfetZcvMrz97vdSs4ONj6nbypPk1dCfy5k060ymr7NiR9Hm4F/z9U8aI adOA3Lnv3foy88AE8QULzClICRenOPOBT2/ZgABz6tzUqa79Wf/OO2b4wBk5cpihFFcH8caNzQ5r T8uWSadt3Wt582bNeu41T8/0P/DpBXFf35QXZ7lDly5mP0g9xOiIrAzgwL0N4AmSxwh3X9glpqee RSsT4b1YX1yc2cmvXzfjp/dSQm8kNNT5wOtq5cub86/793d3TdTdCAsznZCDB801B0olEBGQtHOW +gNyP/FTp8wBknsdwIGknqc7DrBlpmBB1/fEVdZJryeuVEYeiCB+5IjjV7U5K08ecwS8cOGsWd+d qFUr6WpBlf34+Zl9K39+d9dEZScPxHDK2LHm9Lpx41xetFIPDavNCg/xgNi7tly51QM/nLJnD/Co PktIOclqs2Lz6c24GftA3vYnU31X90XBkQVhtdm9Aam6Tz0QQXzLlqST/FXGImMiceDSAafKOBZx DJejLrukPqHhoTh69ShOXDvhkvLu1OErhxEeGY6jV4/irUVvod3sdmg5vSUm75iM8zfTOS0nA2dv nMXRq9nzJtcR0RG4dvsatp7b6u6qqDuQ7YN4dLQ5qp/emSI3Y29i+u7pWHJwCSKiI9Itx0YbBq8f jOWHlwMAYq2x+Dn0Z2TlcFNG9l7ci61nnf9wjds2Du3ntE+xXRabBRO2TUCsNTZF3g0nN+BYxLHU ReCNhW9g+MbhidNbz27F/kv776o+dYLqoNLoSuj8e+e7Wv5OXI66jPn752PU5lHot7of9lzYgzcX vYkW01ug8++dEWuNxf4P9uPZis9i1t5Z+CT4E/x1+i/subDH4XVUGVMFTX5tAsC065SdU+6bfSgz l6IuIadnTrvvuUpfyIkQHLlq58bmWSTbB/HgYKBuXXNbVRttCAwJxMVbF3Eu8hxen/86Gv/SGF0X dMXLv72Mn7b+BMBcpTp4/WCcvZH02JqDlw9i9JbReGPhG9hzYQ++XPcl3ln8Dv46/RcOXTmEKTun 2F1/dFw0/rPqPxl+QbjChG0TMGnHJLvzvtv8HU5fNw9f2np2KzrO7Zhub3D1sdU4FnEMq46uwo// /IjNpzfj8zWf4+Pgj9FnZZ/EfCTx9uK3MTBkYIrlD105hC1nt2DN8TWJae8vfx9vLXoLr857FV0X dMXV6Ktp1jt843AcvXoUX6z9InH+1eiryOGRAz2e6AGLzYLX57+OjnM74uS1k4nLXYm6gi6/d8Gs PbMcbKmUdZ2wbULi9K87f0XH3zpi9t7ZsNGGZ6Y9g+MRx1G7eG0cv3YcU9tPReHchREYEIi5L8/F 8sPL0ejnRvhk1SeYu28uOs3vlKJu3//9PS7cvIAzN86g3+p+OHX9FG7F3UKRPOZJGXsv7sWbi97E 1399fcd1P3j5IMZsGXPHy2XEYrOg/+r+OHPjjN354TfD0ahsIw3id6jNjDaoPLoyLDaLW9afbYP4 //4HvPKKuRfFe++ZtAnbJmDQn4Pw277f0HFuRxTNUxSDAgbh4/of45FCj2DKLhOI5+2fhwHrBmD1 sdUAgBm7Z6D7ku5oUq4J+jTogx//+REz9szAO7XfwaTQSfht32/ovbI3Gk5uiDhrXIp69F/THzP3 zETvlY7c+Det/wv+P8zZOwcAsP3cdtSZUAdTd01Nk297+HaE3wxPk37p1iX0Xd038SfwkkNLMP/A fKw4siJFPhtt6LGkBzae2oip7afilXmvYNjGYWg9ozVm75uNvT334o9jf6D+pPqIiovCwrCFAIDF BxfjVuytxHKWH16OLjW64HjEcYRHhmPd8XU4f/M8Dl85jCqFquBq9FU8N/M5PBH0BELDQwEAR68e xZfrvkTtCbUxZMMQ/H3mbwBmKOWpMk/h04afYsvZLdh9YTdirDFYELYgcX3vLXsPq4+txtz9c2Gj De8ueTfx15I9ty230WFuB/RY0gM9l/XE/9b/L7EnvP7kegxrPgzBXYIx8tmR+P2V37H2jbWY+MJE bHhrA7w9k65kKehTEGvfWIs5Hedg27lt6LW8Fwr7FEaXBV0AALdib+GzPz5D29ltUWdCHUzbPQ2P /fQY3qj5Bq7fvg4ACLschkZlGuG7v7/DjvAdiWV3mt8Ja46tQUbm7Z+HD1d8mLhvOOt4xHE8OvZR /LrrV/RY2sNunvDIcDQq0wjHI47jk+BPcPjKYbv5fg79GQPWDgBgvoj/9fO/UGt8rcRt/PPEn6g5 viaWHlrqkrqnp93sdui+uDvqTKiD8Mi0n4309P2jL8Iup7whyS+hv+D7v78HYN7bbgu6ORyUS/qW RA6PHCne4yyV3vX49+IFF907Zc8ec3/oOXPMfbDNvZltrDK6Ct9c+CZ9Bvuw7ay2tNrMjXrjrHG8 GXOTPoN9GBkTyU7zOrHIyCIcFDKIq4+uZuGRhekxyIPDNgzjuRvniEAQgeCFmxdYYHgBNp/SnEW/ LkoEgrvO76LNZmOMJYbnbpyj33A/7ji3gwWGF2DwkWA2/rkxj1w5wsiYSJLk2Rtnuf7EeuYdmpfe X3nT+ytv5huWj2uPrWW1MdWIQLDj3I4cun4oc36Vk/3+6MeKP1Tk8YjjjLHE8NjVY6w1vhYRCNYN qkuL1cIYSwyj46IZHRfNrzd9TQSCY/4ZQ5J8ee7LbPJLE7618C2S5KVbl3jq2in+Gvornwx6kscj jpMkT147yYjoiMS/JHn99nXWm1iPCw8sZJGRRbjx5EY+Pu5xbju7jSQZY4lhi2ktOGfvHL698G0O 3zCc/j/4c+nBpbx++zpJcvPpzawyugp//PtHen/lzRbTWjD3kNz8Ys0XPHT5ELst6MaxW8byeMRx 5h6Sm/1X92esJZYegzz4wbIPOHvPbLaY1oLBR4JZdUxV+g3346ojq9hgUgNO3D6Rj/30GPMOzcun f3mahUcWZs6vcvKbTd/wRMQJnog4wXFbx7HgiIIsPLIwEQhKoHDvhb1sO6stfQb78OLNi3e0r9ls NtYeX5sLDyykxWph2e/KctWRVZyxewbLjCpD/x/8uf3cdt6Ou82wS2G8HXeb3l95MzImkgPXDeQX a77gsA3D+M6ipNteJuxfXX7vkpg2Z+8c+gz2Yc+lPdlmRhu+MPMF9v2jLwsML8DouOg7/YikMWvP LLac1pL7Lu5jhe8rpJlvtVmZ4385uPzQcj4x4Ql6DvJkjyU9ePbG2RT5WkxrwSIji7DqmKos+11Z frLyE744+0V+ufZLdp7fmSQ5fMNwNpvSjEVGFmHOr3Lyj6N/3HF9T0ScYNnvyrJuUF3W+KlG4n6b wGK1EIFg2e/K8pmpzxCB4H+C/2O3rBhL0u1IrTYr8wzJw7cXvp2YfjziOP2G+7HA8AL0G+7HehPr EYFgxR8qMvhIMC/cvMA6E+okfqaTi7PG0fsrb/ZY0oP9V/fnD3//wIBfA3j06lHejLmZ6XZO2j6J 1cZUS7NtDSY1YPCR4MQ0PGj3Thk7Fnj3XdMTT7AjPBRWWjG46WCcv3keU1+cCg8xPzS8PLzg5e2F yoUq44+jf2DN8TXoXqc7hm0chtw5cuOXdr9gzbE1aOnfEiV8S2BUi1E4ce0EiuYpiucqP4cZe2bg YK+DCAwJxI7wHdh5fifeWPgG8uXMh66Pd0XtErVROl9pvLf0PRTIVQDNpjYDSXzx9Bf4YPkH8PLw wvDmw/FeXfOTYdnhZfj0j09xNOIoZnWYhaDtQfjhnx8Q2iMUVQtXRdiVMDwR9ATqlKiDDSc3oF3V drh++zrORZ7Dq/Nexc7zO3Hh1gXk9c6La7evoYV/C5yLPAcAOHD5AD6s9yFGbR6Fjac2ovWM1sjh kQPRlmj89vJvKF+gPACgbH5zI44CuZIe6ZIvZz608m+FPsF9UK9UPTQq2wjVCldD2OUwPFHyCby5 8E0cvHwQzSo0Q0nfkug0vxNuxd5Cm8ptEk9La1C6AQ58cAAigm41u+G1+a9hRecVaFy2MUQEjxZ+ FDvP78SNmBt4seqLGNJsCEQEZfOXRZ0SdfBMxWcwMGQg3lv6HpqWb4ryBcrDv6A/wiPDMX7beHzz 7DdoWqEp3lr0FnrW7Ym6Jeuiw9wO+HHLjwAAD/HArA6z0LhsY7wy7xUUyV0EL8x6AeULlEdE3wjk 9LqzK8JEBNvf3Z64fZ83/hzdl3QHAPT7Vz/0rNszcV6VwlUAmOMpvsN8UbdkXXxc/2M0r9gcNcbV QK/zvRLbO4dHDvxx9I/E9YzaPAr1S9fHuG3j4JfLDxG3I/Bti2+x4sgK7LmwB0+WehKnr5/GwSsH AQB+ufzwRMknMqz71eirOHDpABqWaYiwy2F4suSTKJG3hN3hrstRl5EvZz7UKl4L28O3I5dXLmw4 tQGPjn0UA5sMRJ+n+mDn+Z04cOkAznxyBl4eXvhp60/4/u/vMbPDTFT0q4jy35cHSZy+cRrtqrRD t8e74c1Fb6Y7PLMjfAeK5TG3xSyVL+kqtZ3nd6L74u74sN6HOH39NNYcX4OfQ3/G/5r+LzHP2ciz KOlbEid6n0DQ9iCsPrYaG05tSLMOq82K6j9Vx7T209CgdAMcvnIYPjl8sOn0JjSd0hSDAgZh7r65 6Pp4V0TFRaFyocrou7ovqhSqgrzeeTF843DUKFoDO8J3YMTGEWhXtR3qlqybWP6ZG2dQNE9RdHqs E95Y+AZ8c/qiepHqCPg1AF4eXhj33Dh4eniiQekGyOudN03d+gT3QWRsJK7dvpa4b6w+thqnrp/C O4vfwYrOKzI/wJ5edL8XL9xlT3zfPvOwh2++IQcPNvfnPZuyg8ARG0ew17JeGZbTYU4HIhDs+ntX /nH0DyIQnLdvXobLXIm6wncWvUOrzcpvNn3DFtNasPX01ok9sgQTtk1gx7kdE7+tP1/zOREITto+ iR8s+yCxt0uSF25eYM6vcjLfsHzcf3E/JVDYYFLKB1/+c+YfIhB8f+n7JE1vAoFghe8r8JOVn3Do +qEMXBfI3it6M2hbEFtNb8Xd53cz1+BcvBp1lc/PfJ4SKOyzsg8v3brE95e+zzhrBjf1jrf3wl62 mNaCm0+bJzYk9CbPR55ngeEFEnvccdY45huWj82nNM+0zOTm7p2b2BOdvGNyYvqQ9UN48pr9W91F xUZRAoVFRhZJ/HXlqBu3b/Dfi//NCzez7kbkQ9YP4cB1A9liWovEHuTsPbPpO9SXCASLfV2M0XHR 9Bnsw+i4aO4+v5ulvi3FrWe3EoHg5tOb+eHyD2m1WfnWwrc4bqt5NM6zU59l3aC6bD6lOQsML8DQ 8FCuPbaWtuQ3Yk+mzYw2zD8sP7/e9DVf+e0VTt81nVablZ6DPBP3hRhLDNcdX8fFYYv5r5//RZKc unMqf9//O0nTSy32dTGuO76OHyz7gAPXDUx3u4t+XZTnbpxj21ltE5f/bNVnHLp+aJq88/bNY4Hh BVhmVBl6DPLgzvCdJMmlB5eyyMgi/HTVp4nbtf3cdj4y+pEUy687vi6xvuGR4Wwzow2fmJB0k/QT ESc4dstYfrrq08RfPWO3jGWPJT3YYU4HWm1W9l7Rm82nNGer6a145MoRkuaXV/FvijNoWxBvxd7i y3NfZotpLfhL6C98ZuozzDU4F0OOh/Bq1FWS5Oqjq9n458Z22+PrTV+z+ZTmrDOhDhv/3Jghx0NS zN9yZgurj63OZ6c+y4+Wf8SxW8Zy7JaxfHTso5y+azrrT6yf+BlDdn8oxGuvmSfBNGhgbo06c2bK +TabjU1/bZq446TnhZkvEIGmDkeuHKEECq9EXclwmeSOXj3K9rPbE4Fg2KWwDPNarBZ+v/l7uz+F rTYrvb/yZpXRVRgVG0UEgl+u/TLN8vmH5ef8/fMT0xAIvjbvtTTlLT24lAgE60yow3LflUtMn7pz Kk9fP+3w9tkza88sPj/zebaZ0Yafrfosxby2s9ry01Wf3lF5m09vJgLBkRtHJn4QHFFgeAG2nt76 jtZ1v5nADY7YAAAbOklEQVS8YzLLjCrDpyaZR9TUHFeTG05u4HtL3uOAtQNotVk56q9RKYLy6H9G 84kJTzA0PJR5h+ZN7AwErgtk5R8rE4Hgwcvm/rBrj61laHgoVx5eyd/2/Ua/4X48cOkAi31djAVH FOT2c9tJkoVGFEocVvo19FciEKz0Y6UUX6rJBR8JZvFvitNvuF+6X7QkWX9ifW48uZG1x9fm1rNb SZpA9snKTxLzxFpiGbgukIVHFubWs1tZZXQV5h+Wn40mN+JHyz9i0a+LctOpTSnKtdqsLDyycIp9 +ecdP7PbgqSnc0RERzDPkDyJX/IvzHyBz898nj2X9uTAdQMTA3nPpT255tiajN4mztw9k+du2Hkc F8l6E+sx1+Bc/GnLT5y7dy5rjqvJrzd9nWF5cdY4Bq4LZJGRRfjBsg/Ye0XvxC+Qj5Z/xNVHV7Pn 0p6Jr+83f0+bzcaNJzfyzxN/kszGwymjRpmbwV++bB4q8N139h94MHHHRFy4dQEtK7XMsLwxbcZg cLPBAICKfhWx7PVlKOjj+C3WKvpVxPxX5mPlkZV4pFDGdyjy9PBE7wb2D3Z6iAdK5yuNEr4l4JPD B6V8S6F5xeZplp//ynw0KtsoRfpTpZ9KU14J3xIAzM/Tlv5JbdC1ZleHtisjLfxb4LM/PkMFvwqJ bZdgaLOhyON9Z7eLrFuyLlZ0XoFWldJ5ukU6SuQtgTol6tzRMvebt2u/jTM3zuDQFfMU5p51e6LT /E4gie3vboeHeKDPU31SLPNq9Vdx5sYZPP3L03i0yKOJP7n7PNUHhXMXxpRdU7D93HZULlgZPZf1 xNXoq7DSiojoCIx4ZgSqFq6K4C7B2HR6Ex4vZp5SUdCnIK5GX0WRPEUwKXQShjUfBr9cfuhcw/5p ni38W+CXdr8gxhKTOAxnT0W/ijh+7TjO3DiDMvnKAAAK5y6MPRf3wGqzotvCbjh05RDy5cyH+a/M R92SdTG742z4evti+eHlsNKKWR1moWGZhinK9RAPNKvQDC/NeSnxzJ+jV4+i02NJz2svkKuAGQ6c 3gqvVH8FG05twOk+p5HXOy8sNgsalmmIFv4tHHqfOtXolO68OsXrYMvZLZi4YyLCb4ZjaLOheKPW GxmW5+XhhYEBA/HcI89h46mNienlC5RHuyrtUMGvQprPP4A0n/10pRfdmbIH3QpAGIBDAPramV8I wAoAOwHsAfBmOuVk+I2V2tNPm2c15stnnkdnz+Erh1l4ZOFMe8b3mya/NGGneZ1IkmGXwtL9SZzc ocuHaLGmfeLq+cjziUMUH6/42OV1PX39NK9FX3N5uXei9fTWXBy22K11cIUbt28kHiy02Wz888Sf PBFxItPl/jr1Fw9dTvtUiCHrh/A/wf/hnyf+ZLUx1bjlzBbuv7if+y7uS3efajCpATed2sT9F/ez +DfFGWuJdW6j4vX7ox8RiBQ94iUHl7DNjDbccmYLK/1YicsOLXPogF9qp6+f5tKDS1O8Lt+6nCJP aHgoB6wdwFyDc7Hj3I4u2abUfg39lWVGlSECwdH/jL4n67AHzvTERcQDwBgAzQGcA7BVRBaRTH6O Ti8AO0m2FpHCAA6KyHSSd33ipNVqbu6+cSOwdq05Dzy125bb+G7zd3iz5puJB5WyizL5y6BobnO7 OkfrXrlQZbvpxfIWw41+N/DYuMdQtXBVl9UxQel8pV1e5p2a+/Jc5MmR/Z8K4ZvTF745zc3BRQRP l3vaoeWeKpP2Fxhgfpn1WNoDRyOOonud7niyVOaXLhf0KYgrUVfwwz8/4J3a7yCHZw7HNyADjxZ5 FMXzFseOd3cknlRQOHdhXLp1CQvCFqB1pdZoU7nNXZVdOl/pTPfDWsVroZRvKXy1/is0r5C2Z+sK XR7vgucfeR7NpzZP95dLVnNkOKUegMMkTwKAiMwG0A6mZ57gPIAa8f/7ArjiTAAHzP1QSpQwzxSs WTPt/IOXD2LKrilYengp1nZb68yq3KJp+abIn9N1t6vzzemLjtU6Ov4TLJtJfWRfGQHlA/D8I89j w6kN6Fazm0PLFPQpiOGbhiM6Lhq/tvvVZXXpWrNrmiG8wrkLY+u5rTh+7TjmvTzPZetKT5E8RdDl 8S53/WWRGU8PTxTKXQg739t5T8q/G5nexVBEOgBoSfLd+OkuAOqR/ChZHg8AawBUAZAXwKskV9gp i5mtL8HHH5vHQg0blnYeSRT/tjg8xANjWo9Bh0c7OFSmUgrovaI3pu+Zjm3/3oYKfhXu6bqu3b4G vxF+CHkjBE3KN7mn63qQZXQXQ1cd2OwPYBfJpiLiD+APEXmcZJrbwQUGBib+HxAQgICAALsFzp5t hlLsORt5FhdvXQQAVCtSzcmqK/Vw6VazGzo/3vmeB3AAyJ8zP35q85PDw0bKCAkJQUhIiEN5HemJ NwAQSLJV/HQ/mEH2EcnyLAcwhOSm+Ok1MAdAt6Uqy6Ge+PXrQMmSwM2b5iG5qS0KW4T2c9rDQzxw 67+37vgCDqWUyk6cvZ/4VgCVRKSciHgDeA3A4lR5DgB4Jn5lxQA8AuCu76Jz9Kh5Uo+9AB52OQw9 l/VE2yptUa1INQ3gSqmHWqbDKSStItILwCqYoD+Z5AER6WFmMwjAMAC/iMguAALgM5Jpr+11UEaP W/tp60/oXKMzhjYf6ra7himl1P3CoTFxkithDlomT5uQ7P/LAF5wpiJxcea2srlyAYcPpwzi4ZHh IIibsTcxb/88rH9rPXJ45nDZqVFKKZVd3TdXbI4bZ25sFRkJkMCPPybN676ke+LtRwv5FIK/n7+b aqmUUveX++J+4lOnAl99BUycCAwaZNLatTN/T18/jb/P/I3xz41HQZ+CqFOijj7IVSml4rm1Jx4T Y67M/PRTYMoU4OmngUaNgNatAe/4+/P/svMXvFb9NfSo2wPbzm1LvHeCUkopB04xdOnKUp1iWK4c cOMG8PjjwJ9/JuXrtbwXCvkUwkf1P8Lj4x/H0k5LUbtEbVy7fQ2e4pl42bJSSj0MsuJin7ty6pT5 +3Sq6wAmh07GbcttbD6zGZ1rdEbtErUBpHyAgVJKKTcH8fLlgRMngHr1UqYXzVMURfMURQnfEhja fKg7qqaUUtmCW4N46dJpg3hUXBQu3rqIYx8dg6eHp9vqppRS2YFbz06Jjga2bAGKFUtKO3DpAPz9 /DWAK6WUA9waxG/eBHxTHaOct39eiqfTKKWUSp9bh1Nu3gTWXJiN9/8JwvWY6yiRtwRCToRg27vb Ml9YKaWUe3vikbE38MXm95E/V35ULlgZFpsFZz85e0+eTqOUUg8it/XESSCy3Gy0LReABa/+7q5q KKVUtua2nnhMDCBl/sZzj7R2VxWUUirbc1sQv3kT8PKJ0qsvlVLKCW4N4p65ouDj5eOuKiilVLbn 1iDukTMauXPkdlcVlFIq23NrEBfvKPjk0J64UkrdLbcGcXhpT1wppZzhtiAeHQ3QS8fElVLKGQ4F cRFpJSJhInJIRPramf8fEQkVkR0iskdELCKS4X1jY2IAm2eU9sSVUsoJmQZxEfEAMAZASwDVAXQS kRSXVJL8hmRtknUA9AcQQvJaRuXGxAA2Dx1OUUopZzjSE68H4DDJkyTjAMwG0C6D/J0AzMqs0JgY wOqhBzaVUsoZjgTxUgBOJ5s+E5+Whoj4AGgFYH5mhd6+TVgkWsfElVLKCa6+d8oLADZmNJQSGBgI ANi02QKPEp5633CllEolJCQEISEhDuXN9EHJItIAQCDJVvHT/QCQ5Ag7eX8HMJfk7HTKSnxQ8pfD rmJkjD9uB0Y4VFGllHpYZfSgZEeGU7YCqCQi5UTEG8BrABbbWUl+AE0ALHKkUrdio+ENPaiplFLO yHQ4haRVRHoBWAUT9CeTPCAiPcxsBsVnfRFAMMloR1Z8KzYKObx1PFwppZzh0Jg4yZUAqqRKm5Bq egqAKY6uOCo2Gt45tSeulFLOcNsVm7dio5DTU3viSinlDPdddm+JQk4P7YkrpZQz3BbEb1tikNMz p7tWr5RSDwT3PZ7NEgtvDeJKKeUUtwXxWEssvD293bV6pZR6ILivJ26NRU4vDeJKKeUMt/bENYgr pZRz3BfEbbHIpUFcKaWc4rYgHmeNRc4cGsSVUsoZ7gvitljk0iCulFJOcV8QpwZxpZRyllt74j7e Ody1eqWUeiC4LYhbGItc3toTV0opZ7g1iOfWIK6UUk5xWxC3SZyOiSullJPcFsQperGPUko5y31B 3EPPTlFKKWe5JYiTJohrT1wppZzjliBuswHw1J64Uko5y6EgLiKtRCRMRA6JSN908gSISKiI7BWR dRmVZ7UC4qW3olVKKWdl+qBkEfEAMAZAcwDnAGwVkUUkw5LlyQ9gLIAWJM+KSOGMytQgrpRSruFI T7wegMMkT5KMAzAbQLtUeV4HMJ/kWQAgeTmjAi0WABrElVLKaY4E8VIATiebPhOfltwjAAqKyDoR 2SoiXTMq0GoFxFODuFJKOSvT4ZQ7KKcOgGYA8gDYLCKbSR5JnTEwMBBRUYAt9Cj2btmLgPIBLqqC Uko9GEJCQhASEuJQXiGZcQaRBgACSbaKn+4HgCRHJMvTF0AukoPipycBWEFyfqqySBIXLwKlBtXF 5s/Ho27JunewaUop9fAREZAUe/McGU7ZCqCSiJQTEW8ArwFYnCrPIgD/EhFPEckNoD6AA+kVaLEA 0OEUpZRyWqbDKSStItILwCqYoD+Z5AER6WFmM4hkmIgEA9gNwAogiOT+9Mq0WgF4xiKHh96KViml nOHQmDjJlQCqpEqbkGr6GwDfOFKe1QpQe+JKKeU0t1yxabUC8IjTIK6UUk5ySxC3WAB4aE9cKaWc 5baeuA6nKKWU89w6nOLl4arT1JVS6uHktuEUikWDuFJKOcl9wylihaeHpztWr5RSDwz3DaeIFZ6i QVwppZzhpuEUAkJ4iNueDqeUUg8Et0TRmDgrQA+I2L0VgFJKKQe5JYjHWa0Q6lCKUko5yz1B3GKF UM9MUUopZ7kliMdaLBBoT1wppZzlxp64BnGllHKW+8bEtSeulFJO0564UkplY27riXtoT1wppZzm vp64BnGllHKaG3vieoqhUko5y01BXE8xVEopV3AoiItIKxEJE5FDItLXzvwmInJNRHbEv77IqDwd E1dKKdfIdExDRDwAjAHQHMA5AFtFZBHJsFRZ15Ns68hKdUxcKaVcw5GeeD0Ah0meJBkHYDaAdnby OXw3K4v2xJVSyiUcCeKlAJxONn0mPi21p0Rkp4gsE5FHMyrQYtMgrpRSruCqU0S2AyhLMkpEWgNY COARexkDAwPx51/nEH37IkJCQhAQEOCiKiil1IMhJCQEISEhDuUVkhlnEGkAIJBkq/jpfgBIckQG yxwH8ATJq6nSSRK9v/4Hc258iPNfbXGokkop9TATEZC0O2TtyHDKVgCVRKSciHgDeA3A4lQrKJbs /3owXw5XkQ6L1QoPfTSbUko5LdPhFJJWEekFYBVM0J9M8oCI9DCzGQSgo4j0BBAHIBrAqxmVqWPi SinlGg6NiZNcCaBKqrQJyf4fC2CsoyvVnrhSSrmGex6UbNMn3SullCu4J4hrT1wppVzCLUHcarPC U/QGWEop5Sz33ADLZtGeuFJKuYCOiSulVDbmxuEUDeJKKeUsDeJKKZWNuW04RcfElVLKee7riXto EFdKKWe5LYh76SmGSinlNDcNp1i0J66UUi7gnp449cCmUkq5gvuCuPbElVLKae4bE9cgrpRSTtOz U5RSKhvT4RSllMrG3BPEYUEODz3FUCmlnOWWIG7TnrhSSrmEHthUSqlszKEgLiKtRCRMRA6JSN8M 8j0pInEi8lJG5WlPXCmlXCPTIC4iHgDGAGgJoDqATiJSNZ18wwEEZ1amFVbk8NQgrpRSznKkJ14P wGGSJ0nGAZgNoJ2dfB8CmAfgYmYFak9cKaVcw5EgXgrA6WTTZ+LTEolISQAvkhwHQDIr0EYrcnjq 2SlKKeUsV0XS7wEkHytPN5AHBgbi+s712H4rD0JKNUBAQICLqqCUUg+GkJAQhISEOJRXSGacQaQB gECSreKn+wEgyRHJ8hxL+BdAYQC3ALxLcnGqskgSxbr1wesvlMF3L3/i4CYppdTDS0RA0m7n2JGe +FYAlUSkHIBwAK8B6JQ8A8mKyVb2C4AlqQN4clZakUPHxJVSymmZBnGSVhHpBWAVzBj6ZJIHRKSH mc2g1ItkVqYNVnjp2SlKKeU0h8bESa4EUCVV2oR08r6daXl6iqFSSrmEey671564Ukq5hNvunaJB XCmlnOeeIC6xyOWV0x2rVkqpB4pbgjg9YpErh3fidPny5SEiD8SrfPny7mhSpdRDyi2XTdokFjmT BfGTJ08is/PVswuRTC9YVUopl3HjcIp35hmVUkpl6L4YTlFKKXV3NIgrpVQ2pkFcKaWyMTcF8RgN 4kop5QLuCeKesfDxzj5BPCIiAu3bt0fevHlRoUIFzJo1y91VUkopAG46xRAescjtnX0u9nn//feR K1cuXLp0CTt27MBzzz2HWrVqoVq1au6umlLqIZflPXGbDYBn9hkTj4qKwu+//47BgwfDx8cHjRo1 Qrt27TBt2jR3V00ppbI+iFutADxj4e2ZPYL4oUOHkCNHDvj7+yem1axZE/v27XNjrZRSysjy4RSr FYDXnQdxV1wIeTcXhd68eRP58uVLkZYvXz5ERkY6XyGllHKSe4L4XfTE3XVVft68eXHjxo0Uadev X4evr697KqSUUslk+XCKxQLAI/sMpzzyyCOwWCw4evRoYtquXbtQvXp1N9ZKKaUMNwRxAl6xyOGZ I6tXfVdy586Nl156CV9++SWioqKwceNGLFmyBF27dnV31ZRSyrEgLiKtRCRMRA6JSF8789uKyC4R CRWRbSLSLL2ybsfFAVYveIhbTlG/K2PHjkVUVBSKFi2KLl26YPz48Xp6oVLqviCZ3QJWRDwAHALQ HMA5AFsBvEYyLFme3CSj4v+vAWAByUp2yuKRU5GoNKEYOPhW8vQH6la0D8q2KKXuD/Fxxe7pHY50 h+sBOEzyJMk4ALMBtEueISGAx8sL4HJ6hUXFxkJs2WM8XCml7neOBPFSAE4nmz4Tn5aCiLwoIgcA LAfwUXqF3Y6NhVizz9WaSil1P3PZwDTJhSSrAXgBQLqXM8ZYtCeulFKu4sh54mcBlE02XTo+zS6S G0XES0QKkbySen7QmG/APTcRGBiIgIAABAQE3HGllVLqQRYSEoKQkBCH8jpyYNMTwEGYA5vhALYA 6ETyQLI8/iSPxv9fB8BvJP3tlMXFm/eh49yOiBm1P3n6A3Mw8EHaFqXU/SGjA5uZ9sRJWkWkF4BV MMMvk0keEJEeZjaDAHQQkW4AYgHcAvBqeuXFWGLhQR1OUUopV3DosnuSKwFUSZU2Idn/IwGMdKSs 2zomrpRSLpPlV9zExGlPXCmlXCXLg/jtuBgN4kop5SJZHsTHHfoCHsxe54mPHTsWTz75JHLlyoW3 337b3dVRSqlEWX4r2tfL9cW8FVUyz3gfKVWqFAYMGIDg4GBER0e7uzpKKZUoy4N4Q78XEXw7q9fq nBdffBEAsHXrVpw9m+4p8kopleXc8ng2T8+sXqtSSj2Y3PJkH6+7WKsMcv75bByoF+EopR4sWR7E hw0DfHzufDkNwEoplVaWB/Hu3QF9splSSrlGlgfxzp2zeo3Os1qtiIuLg9VqhcViQUxMDLy8vOCp g/tKKTfLPs9Ic6PBgwcjd+7cGDFiBGbMmIHcuXNjyJAh7q6WUkplfhdDl65MhPbW9yDd+e9B2hal 1P3B2cezKaWUuk9pEFdKqWxMg7hSSmVjGsSVUiob0yCulFLZmAZxpZTKxrL8Yh97ypUrBxHn741y PyhXrpy7q6CUeog4dJ64iLQC8D2SHpQ8ItX81wH0jZ+MBNCT5B475dg9T1wppVT6nDpPXEQ8AIwB 0BJAdQCdRKRqqmzHADxNsiaAwQAmOlflB19ISIi7q3Df0LZIom2RkrZH5hwZE68H4DDJkyTjAMwG 0C55BpJ/k7weP/k3gFKureaDR3fOJNoWSbQtUtL2yJwjQbwUgNPJps8g4yDdHcAKZyqllFLKMS49 sCkiTQG8BeBfrixXKaWUfZke2BSRBgACSbaKn+4HgHYObj4OYD6AViSPplOWHtVUSqm7kN6BTUd6 4lsBVBKRcgDCAbwGoFPyDCJSFiaAd00vgGdUCaWUUncn0yBO0ioivQCsQtIphgdEpIeZzSAAAwAU BPCTmBO+40jWu5cVV0oplcX3E1dKKeVaWXbZvYi0EpEwETkkIn0zXyJ7E5HJInJBRHYnS/MTkVUi clBEgkUkf7J5/UXksIgcEJEW7qn1vSEipUVkrYjsE5E9IvJRfPpD1x4iklNE/hGR0Pj2GBqf/tC1 BWCuQxGRHSKyOH76oWwHp5C85y+YL4sjAMoByAFgJ4CqWbFud71gztCpBWB3srQRAD6L/78vgOHx /z8KIBRmeKt8fFuJu7fBhW1RHECt+P/zAjgIoOpD3B654/96wlxX0eghbos+AKYDWBw//VC2gzOv rOqJZ3rB0IOG5EYAEamS2wGYEv//FAAvxv/fFsBskhaSJwAchmmzBwLJ8yR3xv9/E8ABAKXx8LZH VPy/OWE6OBF4CNtCREoDaANgUrLkh64dnJVVQfxOLxh6UBUleQEwgQ1A0fj01O1zFg9o+4hIeZhf KH8DKPYwtkf8EEIogPMAQkjux8PZFt8B+BRA8gNzD2M7OEVvReteD9VRZRHJC2AegN7xPfLU2/9Q tAdJG8naML9GGotIAB6ythCR5wBciP+FltGpxw90O7hCVgXxswDKJpsuHZ/2sLkgIsUAQESKA7gY n34WQJlk+R649hERL5gAPo3kovjkh7Y9AIDkDQDLAdTFw9cWjQC0FZFjAGYBaCYi0wCcf8jawWlZ FcQTLxgSEW+YC4YWZ9G63UmQspexGMCb8f+/AWBRsvTXRMRbRCoAqARgS1ZVMov8DGA/yR+SpT10 7SEihRPOuBARHwDPwhywe6jaguR/SZYlWREmHqwl2RXAEjxE7eASWXUEFUArmLMSDgPo5+4julmw vTMBnAMQA+AUzD1l/ACsjm+HVQAKJMvfH+aI+wEALdxdfxe3RSMAVpizkkIB7IjfHwo+bO0BoEb8 9ocC2AXgP/HpD11bJNu+Jkg6O+WhbYe7fenFPkoplY3pgU2llMrGNIgrpVQ2pkFcKaWyMQ3iSimV jWkQV0qpbEyDuFJKZWMaxJVSKhvTIK6UUtnY/wMFcHQjp/06BAAAAABJRU5ErkJggg== ", "text/plain": [ "<matplotlib.figure.Figure at 0x7fc251dff390>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEACAYAAABF+UbAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz AAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcFMf7B/DPgIAgRbGBqIi9t0RjLzGJJLHFrrHFFI2/ mBiTqPkmxovRGI0mxhpNbLH3rthRQbGiiBWwUQQpSpVyd8/vj+HgjnpwJyfwvF8vXtztzs7Ozu09 Ozc7uyuICIwxxoonM1MXgDHGWOFxEGeMsWKMgzhjjBVjHMQZY6wY4yDOGGPFGAdxxhgrxvQK4kII dyHEHSHEPSHE1BzmlxdC7BJCXBdC+AghGhu/qIwxxrLKN4gLIcwALAHQE0ATAMOEEA2zJPsfAF8i agFgNIBFxi4oY4yx7PRpibcFEEBEj4goDcAWAH2zpGkM4CQAENFdALWEEJWNWlLGGGPZ6BPEXQAE a70PSZ+m7TqA/gAghGgLoCaA6sYoIGOMsdwZ68TmbwAqCCGuAvg/AL4AVEbKmzHGWC7K6JEmFLJl rVE9fVoGIooHMFbzXgjxAMD9rBkJIfhGLYwxVghEJHKark9L/BKAukIIVyGEJYChAPZpJxBCOAgh LNJffwrgNBEl5FIQ/iPCjBkzTF6GV+WP64Lrgusj77+85NsSJyKVEOILAEfTg/4qIrothBgnZ9NK AI0ArBNCqAHcBPBxfvkyxhgznD7dKSAiDwANskxbofXaJ+t8xhhjLx9fsWki3bp1M3URXhlcF5m4 LnRxfeRP5NffYtSVCUFFuT7GtG3cCAwbBphx06VESkoC9u8HhgwxdUmMTwgByuXEJgdxViqkpADW 1sCDB4Crq6lLw16GkyeBHj2AqCigYkVTl8a48gri3CZhpUJwMEAEPHxo6pIUH6dOAXv3vtx1LFgA XLpknLyeP5f/+/YFoqONk2dxwEGclQqPHun+Z/nbsgVYt+7l5Z+WBnz7LfDvv8bJLyICGDwYiI8H rl83Tp7FgV6jUxh71X3zDdCnD9C1a/Z5p08Db70lX5siiH/+uezOMTMzXsAqCteuya4JABg1CggN BY4dM845BSKgYfpt9CwsgNRUoHt3ICQEWLoU8PUFWrUCevXSP8/wcJmnlVXJOVgHBAAKRd5puCVe ShEBarWpS2E4pTLzi3/yZM5prlyR/8uUkd0p2tutea1SAbGxMpgAsn6y0l4ut1M7mnpNSpL/iYBt 24A1a4BVqwq0aS8NUWb5c9sHVCrA3x8ICwPOnwc8PGRL18NDHpC0JSXJuouNlcvpIykJuH8f2LxZ fiaabptRo4BDh4A//wR8fAq2DRERgJOTPOdhSLdZWlre2xIXl7m9sbFyHwRk+hcvMvel2Fj5PiuV KnP/iI2V69OmVsv9MDYW+PtvYNOmvMvLQbyU2rABGDnS1KUwXP/+svXl6pr7T2hNa3LIENn/6uIC REbKoGpuLud99x1QpYpsDV65kr1Fr1IBzZsDV68CgYFAy5Y5r2vSJKBcOcDREfjyS9l6jYmR8ypV Mnx7jWHGDOD33+XrVq2Ay5ezpwkMlPXx1luAuzswcaL8tTNsGFC7NpCcLNM9fCgDZ82aQLVqwJgx +pUhOhqoXh1o1Ag4eFAG76+/Bjp3BtaulYEyr0A8fTowa5YMoE2bys8+PFyWpVYtw1ri77wj8xk7 Nvu8detkvdSsKf9cXIABA+S8Dz+U89zdZV3UrAlUrQo8fqybx9dfy/3j/fflejp0yDwgeXsDr78O NG4sl9+0CRg4MO/ycndKDkJC5A4WGio/JH1ERwM2NnIERGERyXVWL8T9H7OWNTkZSEjIPXD884+c r1LJwNa6texLjI4GHBxk60C7HETAxYuZrYaWLQFbW/lauw/ytddkHTx6JL9gderkvP6QEN0vqaUl 0KSJbOU5OmZPW726DLyVK8t84+OBu3flTh8VJb8oPXvK9CqVLKtKBdSvL8vy338yAFWvLltsp09n BjIAuHAB2LlT9ql6ewO3bsnpCQky0G/bBty8KU/Evfce4Ocny1CmjFwPkfz/8KGs+5Ej5ZDGrl2B ChWAZ8+AevVy+/Sy07TmNHWhVss8Cjrqgkh+ptr7gY+PPNA8eCC3Y80aGTi0Xb8uP+Pdu3Wnf/SR DOyLFwPt2wNbt8oAvGSJPLHo6gqcOCG7NCpXBhpkuQQwKgq4c0duW8WKmSOF/v1XBquICNl6HTNG diVcuCDr+LXXdPO5dUseUF97Dbh9W34uQUEyaNrZAcuXA4mJcjuDg+U+0LixTJOSkr1sV67I9T59 Kver4GC57548KffNKlWA8uXldu/cKQMwIJdxcZHTPDyAd98FDhyQBxR7e9mVtmABMGiQTO/gILep RQvg6FG5b3fsKIO1q6v8BeLrC7RtKw+kgNwXyuQVqYv4+n961cXGyh9qt28TWVkRpaTot9yIEUR/ /WXYun18iFxdC75cSAhRuXJESmXmtBkziAYPzjl9UBCRrS2RoyPRwoVEZmZEDRsS1akjt7l2bSIL C6LQ0Mxl1q4lcnYm6thRlnH27Mx5gwcTNWlCVL8+0YQJRElJRPb2RLVq5bz+tDSZV4cOMr+OHYmc nIgaNCAaO1Y3bXAwkaUl0alTskzh4USzZsl12dnJ8hPJbS9Xjuj5c/k51KhB9PrrRC1ayPWcPi3T rVxJ1K4dkbk5Ufv28rNOTpZ5xcQQ1a1L1KmTnB4fTzR8uKybypWJli4latqUyMFBzvf2Jho3jujD D2V5WrUieu89+T8oiMjdnahePaLJk2UeXbvq/5n+/jvRG29kvl+0SOZbUFu3ElWvnrlvqNVyW8zN 5V+NGkQVK8o60Pa//8l9KCcnTmR+bl27Et26lTlv1qzMeXZ2ct/U1q6d3M9sbIjefFNOe/NNooSE zDSffkrk5yfr2NlZ7pNZ82ndWn7e9eoRTZtG1KMHUffuRJGRRBERRM2bE40ZQ5SaSlS1qvxcu3SR +32HDkQVKsi6IJKflY1NZrlXrpTTZ87U3ZY6dYh695Z5avvzT5lm7lyi69eJ5s3LnHfzpqwjTT7l y8t6v3KFSKGQadavz5zfsyfR4sVE+/bpriM9duYcV3Ob8TL+ikMQv3tX1sqIEfL/9u3yy+3rSxQd LdOcOCE/rMBAokuX5LT27YkGDSK6fDl7nomJRGfPEnl56QZab2+ie/fkTnT+PNHy5XKd0dFEjx/L oHH0KJGnp3y9dCmRh4fMKylJ5nXiBNGZM3K5W7eINm6U6WrUkDs4kdxZz5zJXO/PP8tga20tg88v v8jlLS3lju/mJt8fOiS/XCtWyACyY4dcfuNGuTP/84/cSR0cZB09eiQDwpdfyi+mrS3Rs2fZ6+PQ Id0ARUS0aZNcZ9ZAtX+/nO7iIsv3xx9yuywtib7+WjftG2/IL0DDhkTHjxOpVPKAY24uy6axapUs W2IiUc2aRMeOyfoiIhowQK5PCKJz5+TBSAi5rZqya+aPGCEPhPb2clrz5kSNG8sARES0eXNmg8DH h6hNG6KwMPn57N2rW/boaKIbN2Q9Ll8ut9HKiui332T6hg3lNv/9N5G/P1FUlFxu7165P+zalbmP aP+1bSuXmzZNvp8/X5bZ2lpO//hjom7diHbuJLp/X+6PRPJgtGtX9s+uID75RAY2zT45d648WPv6 ynoZODD3ZdPSZJpNm2TA1nzPNBwdib77Th7YNXWhLTxcBsxvvpFB+9Qpmd+QIXJ+tWpEGzbI7f3l F7k/52XsWLmvqFQFqoJsZsyQ36+C4iBeAKdPZwY0zf/Vq4nef18GiOhoOb17d/mFbdNGLletmpzu 5CR3QG07d8ovupkZ0YEDclpkpNwBHR1l4LOxyTxwnDwpg8l778nlHByIxo8n+vzzzFbg1q1Ee/bI 1//9J/+PGyd3tM8/lzumjY1sTfr4ZAZ5tVq2KC5elIGhRg15MFi6VAbMgAB5oOjbl2jOHNkifO01 GQQ0rTV/f5mfpjU/aFDmti5aJNd/6ZJsdWlawNqGDpXr05aUJOvX2lq3pfPLL0QffCAPDOvXy7pq 0IBo9255oNP22WeyXF9/nXmwPHiQaMoU3YPnkyfyC0xE1LmzrOvhw+X748eJJk2SracvvpAHo9Wr ZT0SyV8nANHEiXI7Fy+WAX7MGBnEy5WTv+aIiF68yGzV3bgh95c//5S/DhwdZSNA45tv5K+Z776T LbIZM+Q2fv65/Js+XQbsatXkspMmyeUB+YvDykp+/pr0mr8pU+TnqT1t2TJ5MDh0SDYeVq+Wn/cX XxD16iUP3OXLy3oyxK5dclusrTPXvXs3UVxc5v6al8WL5T737rty39SIi5N5RkfLfSI3f/8t1+nt LQ+OANGvv8p5774r3zdpIv//+GPeZQkIkPVlKO19ryA4iJM8oj99mn26Uilbd2q1DHKjR8sWXeb5 b/mFeu01+VNn8mQ5zdFR/re2lgHIwkIG6YoVZVBbuzZzHT/9JNNq5v37r2yVVKwov/SWlvK1EHKn +vFHGayfPZMth3ffzcxr1CiZ199/y5/xgAxwlpZy+QULMtO+9prs6mjbVub//fdyh27YUG6vu7uc lpP//iNq1EgG+ayBOC1NBo21a2UrV/sLpm38eHkgOnZMBtZnz2RQc3DIufVEJAO0n58M5JMny/cb N8p5KpUsj3ZXjrZly+TPZs3PZH2MHCnr0MNDd7rmgDh5su50TXeEt7fu9KgomU/58jmvJyhIdi9N nSoDycSJ8kAxfrz8q1hR/tnayoNkbmbNkvueo6Nc3t1dLmdvr/82ZxUbKz+TJk3k59m7t+4+V1i+ vvJ70bx59nmOjrLLRh8ffSS/MxoKhdyHC6pmTXlQJ5KNEu3v+PbtBc+vKJX6IP78OVHZsrJVl5Wm NXP1qgzggOxqcHSUARaQ011cdD907b/9++UX9Phx2b0wfbrujtu3r/zi3rol+9Y0Lfy9e4kuXJCt ocBA2aLbtk3O0/zsCw6WP3M1wsJkq+/772VAc3CQLbuffpLLa/ctenvLwLZihWy1d+okW6ua1oiv b+7B9PlzeaDYvDnnn5AnT8oDoLe3bitXW0CA7Ie0tJT9spqD09GjuX1S8qCzfr3sM6xZU5ZB07LV lFnTKs4qOjrn7qy83LghW0ZZt3HDBvk5rVuXfZkzZ7L/2lKrZfouXXJeT3i4DP6jR8vunKgo2W2y bJn8271bbnN+XRhxcbIO9u6Vy9+/L9er6TorrOHDM4PZsmXyoGMoTes3p66K1q11Gxx5mTZNHryI ZPdH5cpy/ysoL6/MX5PBwbJbEZD7W2JiwfMrSqUiiH/7rW6/54ABcmfs1k0GvHr15J+mlTZ9ugwy J07IWvjii8y+zZkzid56S3ahlC8vWzwWFkRlysg8zM1lOgsL+aWtUUN2r2hER8u8hg2TrY0aNWRf O5FsiTdsKH8WZw0ERPJEaqVKmS2GnKxfL1tgdnZE/frl3JLMKipKpnd0zN4N8TIdPizXeeCA/KUy cmTe6WfPlp/l6tXyl4apJCTI+tL0b+sDyDzRmlVcnGwU9OyZ92dbUGq1/DXYubNh+Rw5IhsqxqRW y+/BxInZ5w0cmHdXiLaFC+Vn0aGD/KU1aZJxynfvnmxUGNrPXRRKfBBXKuWOrDnb+/Ch3LIaNeTP U0C2cOrXlyernj6VAXnbNhksqleXZ6ubNpVnsleskGe4ExJkK9neXgbz4GC57CefyP7mkBDZwvLy kvM01Gq509nYyPU3aJB58IiLk32lkZG5b09e84gyT2R26JDZpZJb61Sbi4s8i1/UNNtz9aruL4Wc HDggD6BffaV7lt8UtD9TfYSE5N6Vo1TK7q4WLQr+ayE/bm55nyTUh1pd8O3VR7Nm8mRqVpGR2UfE 5GbjRrmPb9mi25o2hqyjXl5VeQXxEjFOPCBA/v/vPzlAv0UL+T44GPj5Z3lhy/vvAzduADt2yIsB lErgp5/kmNUJE4Bly+T438REOT60ShWZR6tW8sIDF5fMcdOurnI8qmZcdtWquuURQqZxcACaNZNj lUX6/cfs7OT/smVz3578LgrRjDdu21aOTa9TJ3PMdl7atcu8MKEoabanVav807ZuDZw5A3h6AseP v9Ri5aug4/XzuqbA3FyON9ZcHGNMVasanqcQhbs+IT9Nmsjx2VkV5MInzXfxZdxiVt/rQF5lJSKI X78ur5K6e1cOlu/QQV5kMW2anP7jj/J+D82ayQsbzpwBOnUCvLzk8o0ayR24ZUt5VZrQuuGjlZUM kKFaj4Z2csr/S1OrlrziavFi49+/2slJHmzKlpV5z5ql33Lbtxu3HC+Ds7O8qEWt1u/AVJyULSsv ctEEJWPRZ380lc2bDc/jrbdKxi0iXpYScdn9nTvyaK+5cqx1a8DNTc5zdc0MorVqyftAPHwIDB+e uXyrVvKKqm7ddAO4xtKluq2AFi1k2ry8+aa8gvBlPYDAxiYz75zKnBMh9E9rSjY2JS+AA/IXHSBv +GRMnTtnv6KxpCkO+62plIiHQkyaJIP1oEGy9bt1q/zfrZu80YxmB4iJkZf69uwpu1D69pWXX3fp YvQiMZaNpssiONjUJWHFTV4PhSgR3SmxsfK+BtWryz7wLl3kPROmTtU9gleoIPukW7TI7Mfmp7yw olS3rqlLwEqaYh/EDx6UN81xcJDvp0/PnJf1PryaE44tWsg+RHPzknFigxUfHMSZsRX7IP7ZZ/Lu ad9+q1/6X3+VJzXt7eVoljzvDsaYER08KEcIMWZMevWJCyHcASyEPBG6iojmZplfEcAGAM4AzAEs IKK1OeRToD7xAweA9euBN94AJk/OPl/z8FsieSvJ1q31zpoxxooNgx6ULIQwA7AEQE8ATQAME0I0 zJLsCwDXiKglgO4AFgghDG7jbt0q7/s7c6a8z29WmoffApndKYwxVproMwCuLYAAInpERGkAtgDo myVNOID0y1hgByCaiJSGFu7hQznipE8f3fGm8+cDv/yi+/SO8uUNXRtjjBU/+gRxFwDag6JC0qdp +wdAEyFEGIDrAL4yRuEePZInIkeNko9F0gz4X7ZMXm358GHm6BNuiTPGSiNjndb7HsB1IuouhKgD 4JgQojkRJWRNqNAaMtKtWzd0y+WqmYYNZXdJ9epAjRrysWCdO8sHiGqC+fHj8iKfhw/5BCVjrOTw 9PSEp6enXmnzPbEphGgHQEFE7unvp0HejGWuVppDAGYTkXf6+xMAphLR5Sx56XViMzxcXn4NZPZ5 v3ghx3lrnrTt5iaff9i7N3DkiHxWXWl3LOgYIhIjMKL5iEIt7xPig+r21VHd/iXcRMPEroRdgZOt E1zsDR9TmpSWhAshF9DdrXuh8wiLD0NoXCjauLTJmOb50BOXw+RXpmq5qhjRfASEiS5VPHH/BDrV 7ASrMlYmWT/TZdCJTQCXANQVQrgKISwBDAWwL0ua2wDeSl9ZVQD1AdwvbIGvX5cX42jfrMnaOvNS ekC2yiMj5b1R+vcv7JqM69mLZzhx/0S+6Xbf3o00VRr2390PpVqJfXf3IUWZku9yhwMOIyE124+b DBMOTcDI3SMRlRSFRRcWwfuxt95lD40LhfsGd/TZ3AdHAo/ovVxxMfX4VGzx31KoZTff2IzZZ2bD /6k/AGDKsSkYuH0gDLn6eM7ZOXhnwzuYdWYWZp+ZjZmnZ2LgtoEIiw9DeEI4vjv2HW48vZFtufCE cMw5Owezz8zGr2d/RWhcaA65Z5eUloTDAYdznZ+iTMHeO3sBAF6PvfD2+rdxPuR84TaOFal8gzgR qSBHnxwFcBPAFiK6LYQYJ4T4LD3ZHACvCyGuAzgGYAoRxRS2UNevyyeT79ihO71FC9lCd3aWdwYE 5D0jFi0q7JqMa8etHZh8NIexkFoiEiIwcPtA/HDyB/TZ0gfXw69j5O6ROP3oNOJS4vDr2V9x9cnV bMudCz6H9ze9jw1+G3LNNzIxEp1rdsbg7YOh8FRgwfkFepfd86En3q7zNnrX753vNuTnWvi1jICn L6VaiS3+W3Dw3kE8T35eoGXD4sPg+dAzz7x9QnwQGBOYZz7xKfHYd1e3fZKmSsOn+z9FWHwYem3q hclHJmPf3X0gIoQnhBeonBoqtQrbb23H9C7T8SLtBZLSkpCiTMHG/hvxR88/MP+d+RjdYjS+O/Yd ZpyagRmnZuCP83/gSOAR9N3SF1fDryIpLQnewd749eyveq1z3919eG/Te/B67JXj/HPB59Bvaz+E xYdh9J7RcLF3wZP4J0hTpWH7zVf7zmm7b+/G6YenMevMLCQrk01dnCKnV08yEXkAaJBl2gqt11EA ehurUAEBOd/Q57PP5EnOhw/liUwzs5dz+8zC8g72xp2oO0hTpcHCPPtdjnbc2oGA6ACoSY3fz/0O ADgfch5xKXH40+dPpKpSkaZKw/LLy3Fzwk3subMHtyNvo2yZsgiICUAX1y7Y4r8F418fDyAz8I1o PgJnH59F+xrt0dqpNZZdXoZ/e/+L37x/AwCoSY1119bho1YfAQD2392P21G38U37b2BuZg4AeJLw BDXta2J61+lYcH4B5p+bjy/f+BKW5pY5buv2m9vRt2HfHOfP854HGwsb/NvnX2zx34Je9XvB1lL3 jlbbbm6De1132FvZAwD8IvwwbOcwAMDmAZsxtOnQbPnef3YfwbHB6Fqra7ay7LqzCxs+2IC/L/+N j1t/jNoVamfM94vwQ2JaIoKeBeW4LRq7bu/CmL1jcHD4QbxIe4EBjQfAN9wXdRzrYOn7S9Herz2C YoKwb9g+fH3ka/g/9Yeznez3uxFxA8nKZLRxaYOdt3birdpvwaGsA25F3kJCagLaurTNWE/QsyDY WNhgcvvcD5aT20/GyisroSZ5Amjrza24EXEDM7vPxKR2k1DGrAyCYoLQYXUH/PXuXyhjlvtX+WLo Rfxz9R+4lXfDL2d+wbjXxkGpVqKidUVUsqmEFk4tEBwnxy6M2TMGdR3romHFhniS8ATngs9h8I7B +PT+p2hRtQUcrR0R/SIa/9fm/4qkq4eIsPHGRgxtOjTHbYxMjMSg7YNAIDhaO6KyTWW0cWmD1s6t sefOHrxV+y2YC3MsOL8A79V7D62dS97FJCY/Hbh2LTBypLwEXiMiIrNPXNubb2a+9vICqlWT92g2 lZC4ECz0WYjPXvsMdR3r4uzjszATZgiMCUSjyo2ypR+0fRAAYFrHaVh6aSkGNh6Iw4GHYWluCY9A D8zsNhOT20/GB1s/wIn7JzDx8ER80/4beAR64HzIeZwZcwZ9t/RFWHwYqtlVw52oO/ho70f4oOEH +PHkj5j15iy0r94efRv2hYudC4Jj5RfzTtQdjN03Fm/XeRuJqYkYu28s3Mq7wSfEBy2dWuL7Tt9n 5FnGrAzS1Gn47th3OP3oNBb2XIg6jnV0tuNx7GMM3jEYe4bsQd+GmaNNvR97w97KHt7B3khWJmP9 9fUYf3A8lr63FGNajgEAxCbHYr3fekw5NgU/dP4B3d26o0ONDjotdzOR8w/EN/59A1FJUaAZlFH/ fhF+8H/qD/+n/th0YxM2+W+CR5AHfuz8IxpXbowGlRrA94kv2lVvh6BnQTj98DRc7F1Q17Eu1viu wZCmQ2BjYQOvx15YeXUl6jnWw+Dtg1HBugIGNB4A78fe6FC9AwDonGtoWrkp/CL8UMG6AogIv3n/ hnIW5fB3r78xes9ofNfhO8SmxOJPnz/h6uCKQx8eQlRSFLq4dsGNiBtoVrVZnvtWVduqmN418x4S 414fh9uRt3X64es41oGrgytOPTiFt+u8nWte3xz9Bl6PvbBnyB4M3D4Qpx+ehlKthIpU6FW/F/YP 24+gmCC86fYmjt8/jrX91uJJ/BM8iX8Cb6U3etfvDbfyblh6aSmeJT9DReuK8AnxQZVyVdDVtSuu PrmK+NT4jPVVtqmMKR2nZDQQAOBQwCEcv38c7au3x73oe2hSpQn6NeyXMd8j0AP1HOtl7GunHpyC s50zLoZexOg9o9GmWhs0qKTTjgQgD27v1nsX418bj403NuK7Y9/B1tIWXmO9MGTHECx7bxlsLGzw x/k/cPLBSZwcfTLPes/No+ePsOjCIjhaO+KHLj/kmu7h84e4EnYFAxoX3Y37TRrE1Wrgk09k/3Yd rTgRHp79QQtZtW0LrF6ddxrfJ76IeREDZztnPIl/gh61e+RbJpVahWWXluHzNp/rHPk9Aj1Qu0Jt 1K8o+3EO3juIgwEHsfzycpQtUxYudi6oUq4KmlVphqNBR3E94rpOa1LTl3185HG0r9EePWr3wKXQ S1hzbQ0mvD4B/Rv1zyhfp5qdsPLqSlQtVxU/df0JLZ1aYuiOoWhXvR36NuyLT/d/inX91iEoJghK tRIegR5IUaVgYOOBAAAXexeo1Co8S36GFGUKzgWfAyB/Mj978Qx9G/TF7DdnY9ONTdh9Zzcuhl5E eEI4vm73NQDg4icXYSbMMNd7LiYenoh6jvWgIhVaO7fGO3XewfgD41HJphJmeM5ADYcaaO3cGk/i n6DPlj5oU60NktKSEJUUhVF7RsFMmGGL/5aMID75yGT85/cflGolFKcVuBdzLyOIT3h9Aq5FXMux O+W/6/8hKikKdR0zbz6y/+5+TDoyCU62Toh5EYOdt3diTo85WO+3HoN3DIZbeTfM7D4T/k/90ate L8w8MxPjDoxDxxodMa3TNIzdNxb+T/2xoOcCfHP0G1wMvYgDww6g75a+CIkLwfPk5zgXcg59G2S9 LALoWqsr5p+bjwXnF6B51ebwfOiJxpUb48C9A0hMS8Sss7PQr2E//Nj5R2y7tQ1NljUBANAMgv9T fzSt3DTffVGbk60TnGyz3zR8aNOh2OK/JVsQX+izEIExgehZpyduRd7CgWEH0LNuTxz+8DDmec+D tYU1RrcYjY/2foSniU8R9CwIo5qPwvedvkenmp2w7eY2bLixAamqVMzpMQf9G/XH0KZDEZsSi/Jl y2PX7V1IVaViyI4h6OLaBe513TPWvfXmVliaW+K9eu/hcexjvF3nbYw7MA5jW47FJ/s/gZ2lHWqV r4V+DftcHcA/AAAgAElEQVTBI9AD++/ux5prazCy+Uis6C1/4M86OwutnFrh5AMZdIPjgnWCOBFh /rn5mH9+Pg4MO4A2Lm3gE+KD+NR4NKvaDF3XdoW9lT3mnZsHCzMLzH1rLqYcn4LHsY9R06Fmgeoe AOZ6z0VkUiTWXV+HEc1HYOWVlYhPjce3Hb5FTYeaCIwJhP9Tf8zzngffcF/UdKipc9L6pcrtkT8v 4w9ZHs8WGSkfu3TihO6jiGrWJHrwQJ+HFuWt9l+1CQrQjFMzyO5XO3rwLP9MjwcdJyhA87x0nw0G BQgK0Kqrq2i+93xqvaI1QQH6cOeH1H1td+q0uhMdCTxCf/n8RWVnlaX6i+vT0otLKS45jhacW0D+ Ef5U+6/aOnmuv76eoADtub0nxzKM2TOGiIjSVGl0POg4ERGFxoVSs2XNaP/d/TTfez5BAfp478fU dU3XbNtS5fcq9NXhr2jMnjFUd1Fd+vLQlzTj1Az66eRPGWkiEyOpz+Y+BAXoxH3dD+Lx88cEBWjc /nG0yGcRuSxwoQaLG9DHez+m+zH3acyeMTR+/3giIuq3pR/129KPoAAN3zmcvB55Ua9NvWjI9iFU bnY5+svnL3rw7AHZz7Gna0+u0Q8nfiAoQB1XdaSLIRfJbaEb7bm9h7498i2N2DWCjgZmPk35zMMz 5Dzfmf53/H/U6u9W9LXH17Tz1k6afnI6NVzSkKAAtVjegqAABccGU1RiFPkE+9DiC4up/uL61GNd Dzp07xAN2zGMKs2rRI5zHenHEz/Sexvfo2oLqlFQTBBVnleZjgUdI5VaRWcfnaXWK1rT2UdnyXm+ M92PuU9ZJaYmku2vthnb3H1td7KeZU19NvehHut6EBSg88HnKUWZkrHvdF4tH4TZZ3Mf2ui3Mc/9 UF+XQy9T8+W6j5MPjA6kyvMq09AdQ6nSvEo0ePtgnflBMUH0+Ll80Oq3R76lNivbkPN8Zzr76GxG mqOBRwkK0IQDEygxNfenCHs98qLnL55ny7/SvEoZ233i/glqtqwZERFdDLlIV8KukNN8J1p4fiG5 LXQjxSkFbfTbSOV/K0+f7P2EJh6aSFCA7OfYk9N8JxqxawSturpKZx3rr6+npsua6uwna3zXEBSg 0LhQWnl5Jd2Lukerr66mf678Q8lpyTTj1Azqu7mvXvV6JewK7by1k4iIklKTqPK8yhQUE0QfbPmA fjr5EznPd6YBWwdQ70296bN9n1H9xfWp7KyyVOevOrT5xmaqtbAWfbL3E/ra42tKSMnnmYTp1Go1 LTi3gKKTonWm77y189V9xuaNG7IEq7Q+H7VaPh09KUmv7c5T23/aEhSgz/Z9Rk2WNqEe6/J/wOSn +z6lD3d+SDX/rElzveaSSq2i2WdmU7UF1eh379+p4tyKBAXI/GdzggJ0NewqWf5iSVCA4pLjKDQu lIRCkNnPZgQFyH2DO0EBWnh+IXVc1VFnXYfuHSIoQMlpug8NTFWm0hrfNRQQHZBjGT/b9xktu7iM Pj/wOVWeV5mc5zvTyF3Zn0Cs+RJVnFuRfjn9C/Xa1Is+2/cZLb+0XCfdvjv7CArQrae3suVx9tFZ Uqnlk2RvPr1JG/02klIlH29/IeQClf+tPK24vIKsZ1lTbHIs2f5qS/vv7iciovsx9+nBswfUfHlz ggL07oZ3qf/W/kQkg4/Zz2bkNN+JPtv3GX205yNKTE2kWadnkfnP5jR853AiIlp8YTFV/6M67b2z lwKjA8lmtg1BAXr7v7fpk72f0IrLK8jrkRddDr1M2/y36ZRdqVKS9SxrEgpBj58/ptjkWPJ94ktd 1nQhq1+syOuRV8b6JxyYoLPs2D1jacrRKeQ034nUuTw480LIBXqR9oKq/l6VNvptJLeFbmQx04I8 H3iS1S9WlKJM0fkc3De409lHZ8llgQvFJMXkmGdBPXvxjMrNLkchsSH08d6PadTuUdRxVUeacGAC +QT7EBSgv3z+ynX55LRkWndtHa3xXZNRXiKia0+uERTIFqD1dSHkAi27uIwc5zpS46WNaZPfpox5 KrWKrH6xIihA9RbVy6jfQ/cO0crLKzP2FyhAC84toB9P/EiKUwpaeH5hRr298c8bdDjgsM46zz46 S9UWVMu1TAkpCWQ9y5rSVDk8oTydT7APrb66mtwWupHDHAfyj/CnSYcn0ZDtQ4iIaL73fBIKQcN3 DqdbT28RFKApR6fQNv9t1OrvVvTDiR+IiGj37d208vJK6rWpV8bnEZccR0ExQbT04lKddarUKpp+ cjr13tSbrH6xotdXvk6jdo/K+Ks8r/KrG8SPH5clAIicnORf5crppTKC9ze+T1CAem/qTTtu7iCn +U50J/JOtnTXw6/Trlu7iIiozl91yD/CnxotaURQIKNVbDHTgpQqJflH+NO0Y9Oo7T9tyfuxN6nV auq8ujNBkVnoq2FXqemyptT+3/ZUa2EtggI0aNsgGrhN92m2qcpUuhByocDb9cvpX+j7499TlzVd aMKBCQQF6H/H/5ct3e3I29RjXQ+yn2NPZx+dpbb/tKVem3pla/lHJUYRFKBnL54VqBypytSML1vd RXWJiOh88PmMIK8xfv94KjOzDEGBjECrUqvo3ONzVHZWWXJb6EaXQi8REdGSC0syWrYeAR5U88+a GV/WmKQYggJkPcuaav9Vm97b+B7tu7MvzzLa/mqbLRAvu7iMav5Zk1RqFfXf2p+gAJ15eEZnuaUX l1KF3yrQgK0D8q2HiyEXKUWZQl6PvOjMwzOkVqvpfPD5jPn+Ef7kEeBBnVZ3ouE7h9OSC0vyzbMg Ks6tSOP2j6N+W/rRWt+1tNZ3LUUnRVOKMoWsZ1ln1G1BqNQqnW0oDLVaTRXnVqTWK1pnOxA2WtKI 3ln/Dt18ejPbcgkpCeQf4U+XQi+RSq2ilZdXZnxOLZa3oMHbB1PleZWzBeM0VRpdDLmYZ5nqLqpL Zx+dpd/O/qYz/UrYFRq6Yyg5z3emsrPK0sd7P6aVl1eS65+u5LLAJaN1HBYXpvNL/Xzw+Yxtuxd1 j2KTY3XyjU+Jp/XX11P/rf2pzco2VG9RPbKZbUOLfBbRiF0jaOiOofTO+neozco2tNZ3LQXFBNEm v00Zn+Na37V0+uHpVzeIb9iQGcR9fYnCwojatjVeEB+0bRBBAWqwuAH5BPvQl4e+pJmeM7Ol07S8 R+0eReVmlyOVWkX3ou7R6ytfz8ij/uL6GenjU+J1Wq2JqYl0L+qeTp7DdgyjGadm0MNnD2nMnjHk PN+ZJh6aaJTtWuu7lir8VoHqLqpLwbHBBAWyta415nnNo57re1JgdCDVWliLXlvxWo4HjithVwpV Fr9wP3Jb6Eb9tvTLNU1oXChtvrGZys0ul+2neeOljUkoBKUqU4mIaMP1DQQFqNbCWlT9j+oZ3UhE MrAIhaA3171Jlr9YUrNlzfINUA+ePcjWmkxRptDdqLtERBQQHUAH7x3MFmQ0LdEF5xbkXwl6uBp2 lRouaUgOcxwoIiHCKHlqtPq7FUEB8gn2yTbvcujlXH9JFIVua7tl65okIuq9qTf9ce4PvfLwCPAg KEAdVnWg7Te30ya/TXTtybVClaffln5UbUE1ggI0fv94+mDLBzRo2yBq/297+urwV3Ty/km6EXGD ElMTSa1W04G7BzL2FY27UXcpKbVgXQWJqYm01X8r7b2zl049OEVCIeibI9/QJr9NtMlvE4XHh+e5 fF5B3KQnNsPD5VDC58/lQ4oB+SCHKVOMk39cinyo4d3ou3C2c4Z7XXf8fu53TO86HX+e/xP9GvaD Q1kHHLh3APZW9vjv+n+oZFMJZsIM9SrWQzuXdlhyaQmaV22ucxWjraWtzugTGwsb1KtYT2fdc9+a C1tLW1SwroA21dpg7bW1qGZXzSjbVcOhBp4lP8NC94Wobl8dTSo3gatDzo8oGvf6OAxqMggVrSsi MjESqapUONtmH/pT2KFXzao2QxfXLqhhXyPXNNXsqmFwk8FoXLkxbCxsdOZt7L8RL9JeZAzJLF9W 3sns4fOHaFalmc7JaDNhhvJly6OWQy0E2QbhxtMbOW6Ltlrla2WbZmlumXGCuq5jXZ2TpRpNqzSF vZU9OtbomGf++rKzskNQTBCc7ZxRpZxxn5SclJYEO0s7nWGMGq9VM+3DN//p/U+O+/1f7n+hko1+ j7zv4iqfn9i4UuOMk/eF1axKMwREB+D9eu/D85EnZr85G1efXMWeO3twYPgBOFo76qR/v/772fLQ 7DsFYWNhg8FNBme8vzb+GppWaZrrSKyCMGkQj4iQdymcOjVz2rvvyj9jiEuJQ0unlrgWfg1Otk6w s7TDpbBLSFOlYY7XHFwMuwi/CD+MbjEak9tPhp2Vnc6Vk5oA4PGhB1JVqQVadw2HzKDmVl5eajqs 6TDDNwrICJiaIVp7h+7N9Yy7vZU97K3sQURIUaUgLD4MVW3zGfpTQHPfmpvjuHhtZsIMzas2zza9 pVNLnfeaIA4gx2F4jtaOcLZzRl3HungU+8joAVHD3MwcFz65gAYVsw9rKwxbS1ukqdNQ0bqiUfLT dnrMaZSzLGeyS/TzktMBEgDcKrjlOD0n1hbWCP8mPFsDoDC+af8NJradCEtzS7xQvoCTrRM+aPgB RrcYnS2Av0w5fRcKy6RBPCoKaGCc70g2I3aNgF+EH2Z2n4lr4ddgaW4JS2tL1CpfC61WtEJkUiS2 +G/BT11+wg9dfsjxopWJb0zE8GbDMy7oKCz3uu54POmxTmA3RL2K9RA4MTDjQpms47hzIoSAUq2E jYVNrhfwFJYxDwqaIF61XNUch+FVsK4AZ1tn/NP7H0QlReV78DBEw0pZb5tfeHaW8k7N+rY+C8LY B+VXkbG20aFs5u1OHSBfCyGy/ZIuTgxvyxsgIUE+uNiYgmKC8OGuD7HxxkYkpiViYOOBeDQp88bj +4buQ0JqAmwtbWFlboWv23+da1CzNLc0OIADcicxVgDX0Cdw56Se46u9s1ayqYRKNpVQv2L9HFsr VcpVQQ2HGnCr4FZ043CNwMbCBgLipQRxVrqZtCWekADY2uafTh+RiZGYdnwaHsc9xq3IWxnTHawc dI6+bhXccG/iPbxIe4HEtESdn++lwVu13zJ1EfJU1bYqbnx+AwIClctVzjZ/bd+1qGBdwQQlM4wQ AraWti+lO4WVbiYN4omJQLlyuc9fcnEJXqS9wHcdv8s3r4uhF7H62mpUtK6Ih5MeYsnFJfj+xPew s8re1Lc0t4SluaVOcC8NYqbE5Fgfr5qcrkzUyCmwFxd2VnbcEmdGZ/LulLxa4ksuLsGU41MQlRSV b17+T/1hXcYag5sMhq2lbcZJSWOc/S0pKlhXyPNGSezlsrW0RUUbbokz43qlu1OSlcmoULYCAmMC 823B+Ef6Y9G7izC6xWgAxj0pxZgx2FlyS5wZ3yvbEo9LiUNkUiS61uqKx7GP88xnje8abPDbgNer vZ4xWqGlU0sk/S/J2EVmrNCq2lbNczw9Y4Vh8pZ41j5x/6f+mOM1BwMaDUCzKs1Qy6FWxi1Vc3Mz 8iamdpyabcyxtYW1sYvMWKHtGbKHu7OY0ZmsJU6U84lNvwg/7Lq9C5M8JmFOjzmo4VADwXHBOBZ0 LOOhAVk9T36OOhUKN+SOsaJiYW7xSl6Qw4o3kwXxlBTAvAyh7epWeBL/JGN6cGwwkpXJqGRTCd3d uqOGfQ1cj7iOMXvH5Pr8yufJz4vlsDPGGDOUyYJ4QgJgUzUU18KvYfst+Qw/IkJwXDCqlquKsa3G ApAnKL0ee2F40+GITYnFi7QX2fJ6nvy81I33ZowxwIR94gkJgGV1f1QoWwHLLi2DlbkVll9ejirl qmD5+8vxQaMPAMj7Z6RNTwMA7Ly9EyFxIfj+xPcgEHYO3gki4iDOGCu1TBrEUfUGRrUYhbiUOMzw nIHGlRvj2P1j+LVHzk/w1vSPHw06ivjUeBARzGbKHxMcxBljpZHJgnhiIkAVAtGgYkt83uZzAEDM ixj039o/1zuf1XSoicexj+Fs54z46Hj4hPhkzOMgzhgrjUzaEjezSoKtZeZAcUdrR3iO8cx1GVcH Vzx49iDj/hN77+7NmOdgVbouoWeMMUDPE5tCCHchxB0hxD0hxNQc5n8rhPAVQlwVQtwQQiiFEHk2 jRMSADPLZJQtU1bvwjap3AS3om4hPjUeAOD12Cvj8vqXeUtSxhh7VeUbxIUQZgCWAOgJoAmAYUII nWvaiWg+EbUiotYAvgfgSUTP88o3IQEws0iBVRkrvQvbtEpT+D/1R1RSFBpWaojrEdfRuHJjvZdn jLGSRp+WeFsAAUT0iIjSAGwB0DeP9MMAbM4v04QEAGUK1hJvUKkBHj5/iPCEcDSr0gwJqQkY0mRI tis1GWOstNAniLsA0L7uPSR9WjZCCGsA7gB25pdpYiIKHMQtzS0znnWpeaZku+rt4DvOV+88GGOs JDH2ic3eALzy6kpRKBQAgNOngWTXSFiZ69+dAgDdXLshMCYw4+GrL+sZi4wxZiqenp7w9PTUK60+ QTwUgPZTeKunT8vJUOTTlaIJ4lOmAHdtdxeoJQ4AUztNhYpUcLZzhoWZBY9KYYyVON26dUO3bt0y 3v/888+5ptWnO+USgLpCCFchhCVkoN6XNZEQwgFAVwB7s87LSUICoDIrWHcKIJ+evbrvajjbOqNK uSp8QyHGWKmWb0uciFRCiC8AHIUM+quI6LYQYpycTSvTk/YDcISIst/cJAeJiYAKBRudoq151eaY 0GZCoZZljLGSQhBR0a1MCNKsb8AA4GRrJ9z+6lqez1RkjLHSTggBIsqx28GkdzFMo4J3pzDGGMtk 4iCeUuDRKYwxxjKZLIjHJxDS1IXvE2eMMWbCIJ74IhVlzMrATJj0Wc2MMVasma4l/iIFVubcH84Y Y4YwXUs8lU9qMsaYoUwWxFVI5v5wxhgzkMmCuJJSYM0tccYYM4hJgjgRoBLcncIYY4YySRBXqwFh yd0pjDFmKJME8bQ0wNwyhVvijDFmIJMEcaUSMLfiljhjjBnKdEG87AtYl7E2xeoZY6zEMFkQN7N8 AWsLDuKMMWYI0wVxqyTYWNiYYvWMMVZimCyIC0vuTmGMMUOZtjuFgzhjjBnEdC1xC+4TZ4wxQ5ks iMOS+8QZY8xQpm2Jc3cKY4wZxGRXbKIMd6cwxpihTNedYsHdKYwxZiiTBXEqw90pjDFmKL2CuBDC XQhxRwhxTwgxNZc03YQQvkIIfyHEqbzyywji3J3CGGMGKZNfAiGEGYAlAHoACANwSQixl4juaKVx ALAUwDtEFCqEqJRXntwSZ4wx49CnJd4WQAARPSKiNABbAPTNkmY4gJ1EFAoARBSVV4ZKJUDm3CfO GGOG0ieIuwAI1nofkj5NW30AjkKIU0KIS0KIkXllqFQCanPuTmGMMUPl251SgHxaA3gTQDkA54UQ 54koMGtChUKBu3eB5OBg3OhwA637tTZSERhjrGTw9PSEp6enXmkFEeWdQIh2ABRE5J7+fhoAIqK5 WmmmAihLRD+nv/8XwGEi2pklLyIi7N4NfHi5Jm5/dxau5V0LsGmMMVb6CCFARCKnefp0p1wCUFcI 4SqEsAQwFMC+LGn2AugkhDAXQtgAeAPA7dwyTEsDVGbcncIYY4bKtzuFiFRCiC8AHIUM+quI6LYQ YpycTSuJ6I4Q4ggAPwAqACuJ6FZueSqVgJqfds8YYwbTq0+ciDwANMgybUWW9/MBzNcnP6USIKGC uTDXt5yMMcZyYLorNoUK5mYcxBljzBCmC+JQckucMcYMZKK7GBJIqLklzhhjBjJNEFeqARIwEyZZ PWOMlRgmiaKpShXMwK1wxhgzlIla4ioIDuKMMWYwbokzxlgxZrIgzi1xxhgznMm6U8x4eCFjjBnM dEGcW+KMMWYw0wRxFQdxxhgzBu5OYYyxYsx0LXEO4owxZjDuTmGMsWKMu1MYY6wYM81dDFV8L3HG GDMGkwRxFXFLnDHGjMF0QZz7xBljzGAmCeJq4u4UxhgzBtO0xNXcncIYY8bAfeKMMVaMcXcKY4wV Y9wSZ4yxYkyvIC6EcBdC3BFC3BNCTM1hflchxHMhxNX0vx/zyo9b4owxZhxl8ksghDADsARADwBh AC4JIfYS0Z0sSc8QUR99VsotccYYMw59WuJtAQQQ0SMiSgOwBUDfHNIJfVdK4JY4Y4wZgz5B3AVA sNb7kPRpWbUXQlwTQhwUQjTOK0MVlDAX+f4IYIwxlg9jRdIrAGoSUZIQ4l0AewDUzymhQqFAiN89 IDoInq080a1bNyMVgTHGSgZPT094enrqlVYQUd4JhGgHQEFE7unvpwEgIpqbxzIPALxGRDFZphMR ofWwvbBstwo+X+3Tq5CMMVaaCSFARDl2WevTnXIJQF0hhKsQwhLAUAA60VcIUVXrdVvIg0MMcqHi 0SmMMWYU+XanEJFKCPEFgKOQQX8VEd0WQoyTs2klgIFCiM8BpAF4AWBIXnmqoYK5GQdxxhgzlF59 4kTkAaBBlmkrtF4vBbBU35XyOHHGGDMO01x2DxXMuCXOGGMG43unMMZYMWayljj3iTPGmOFM1hIv wy1xxhgzGLfEGWOsGDNJEOd7pzDGmHGY7sQmt8QZY8xg3J3CGGPFGAdxxhgrxkzWJ86jUxhjzHDc EmeMsWLMdC1xDuKMMWYwbokzxlgxxi1xxhgrxrglzhhjxRi3xBljrBgz3WX35hzEGWPMUKYJ4oJb 4owxZgwmCuJKWJjp9WQ4xhhjeTDZic0y3J3CGGMG4xObjDFWjJmsT5xPbDLGmOG4Jc4YY8WYXkFc COEuhLgjhLgnhJiaR7o2Qog0IUT/vPIjoYKFOZ/YZIwxQ+UbxIUQZgCWAOgJoAmAYUKIhrmk+w3A kfzyJKHkIM4YY0agT0u8LYAAInpERGkAtgDom0O6iQB2AHiaX4YklNydwhhjRqBPEHcBEKz1PiR9 WgYhRDUA/YhoOQCRX4bcEmeMMeMwViRdCEC7rzzXQK5QKKC+cRN7/9mBGvGV0K1bNyMVgTHGSgZP T094enrqlVYQUd4JhGgHQEFE7unvpwEgIpqrlea+5iWASgASAXxGRPuy5EVEBPORvbBtyngMaNZL z01ijLHSSwgBIsqxcaxPS/wSgLpCCFcATwAMBTBMOwER1dZa2RoA+7MGcJ30QgnLMtydwhhjhso3 khKRSgjxBYCjkH3oq4jothBinJxNK7Muku9azbhPnDHGjEGvSEpEHgAaZJm2Ipe0Y/PNj09sMsaY UZjkik2YcXcKY4wZQ5EHcSJwdwpjjBlJkQdxtRqAmRJl+H7ijDFmMA7ijDFWjJkkiAtzDuKMMWYM 3BJnjLFizGRB3FzwDbAYY8xQJgriKm6JM8aYEZhsiCEHccYYMxz3iTPGWDHGQZwxxoox0wRxoRvE a9WqBSFEifirVatWUVcpY6wUK/LmcE4t8UePHiG/+5oXF0Lk+2AjxhgzGpO0xIm7UxhjzCi4T5wx xoqxIg/iKhXJi334afeMMWawIg/iSpUaUJvBTJjmVuaMMVaSFHkkTVUpAeKuFMYYM4YiD+JpSiUE Fa+ulGfPnuGDDz6Ara0t3NzcsHnzZlMXiTHGAJhgiGGaSgmoi1dLfMKECShbtiwiIyNx9epVvP/+ +2jZsiUaNWpk6qIxxkq5om+Jq1QQxag7JSkpCbt27cKsWbNgbW2Njh07om/fvli/fr2pi8YYY6YI 4spiFcTv3bsHCwsL1KlTJ2NaixYtcPPmTROWijHGJJN0pxQmiBvjQsjCXBSakJAAe3t7nWn29vaI j483vECMMWYgvVriQgh3IcQdIcQ9IcTUHOb3EUJcF0L4CiEuCyHezC2vwgZxIsP/CsPW1hZxcXE6 02JjY2FnZ1e4DBljzIjyDeJCCDMASwD0BNAEwDAhRMMsyY4TUQsiagXgIwArc8svrZgNMaxfvz6U SiWCgoIypl2/fh1NmjQxYakYY0zSpyXeFkAAET0iojQAWwD01U5ARElab20BROWWWXHrE7exsUH/ /v3x008/ISkpCV5eXti/fz9Gjhxp6qIxxpheQdwFQLDW+5D0aTqEEP2EELcBHALwZW6ZpamUMCtG QRwAli5diqSkJFSpUgUjRozA33//zcMLGWOvBKNFUyLaA2CPEKITgPUAGuSUbvPqxVDei4ZCoUC3 bt3QrVs3YxXhpalQoQJ2795t6mIwxkoJT09PeHp66pVW5HcfbyFEOwAKInJPfz8NABHR3DyWCQLQ loiis0yndUev4PPDnyDxj6va00vU/cRLyrYwxl4N6XElxzF6+nSnXAJQVwjhKoSwBDAUwL4sK6ij 9bo1AGQN4BrFrU+cMcZeZflGUyJSCSG+AHAUMuivIqLbQohxcjatBDBACDEKQCqARABDcstPqeYg zhhjxqJXNCUiD2Tp4yaiFVqv5wGYp09eSrUSZiheN8BijLFXVdHfT1ytgij6C0UZY6xEMsFDIbg7 hTHGjKXIg/jqBz/BjCyKerWMMVYiFXmTeEj1qTh8Ksch5IwxxgqoyFvi7Sv0g10KX+3IGGPGUORB XK0GzIrZM5KXLl2KNm3aoGzZshg7dqypi8MYYxmKvDslJaX4BXEXFxdMnz4dR44cwYsXL0xdHMYY y1DkQfzgQaBz56Jeq2H69esHALh06RJCQ0NNXBrGGMtU5EF882bA37+o18oYYyVTkQfxsDDA1rbg y4mfDX8+G83gG1MxxkqWIg/ihQngAAdgxhjLSTE7xcgYY0wbB3E9qFQqJCcnQ6VSQalUIiUlBSqV ytTFYowxDuL6mDVrFmxsbDB37lxs3LgRNjY2mD17tqmLxRhj+T/Zx6grE4JyWl9JehpOSdoWxtir wdAn+zDGGHtFcRBnjLFijIM4Y4wVYxzEGWOsGOMgzhhjxRgHccYYK8ZeiYddurq6QgjD743yKnB1 dXTDg+sAAAQxSURBVDV1ERhjpYhe48SFEO4AFkK23FcR0dws84cDmJr+Nh7A50R0I4d8chwnzhhj LHcGjRMXQpgBWAKgJ4AmAIYJIRpmSXYfQBciagFgFoB/DCtyyefp6WnqIrwyuC4ycV3o4vrInz59 4m0BBBDRIyJKA7AFQF/tBETkQ0Sx6W99ALgYt5glD++cmbguMnFd6OL6yJ8+QdwFQLDW+xDkHaQ/ AXDYkEIxxhjTj1FPbAohugP4CEAnY+bLGGMsZ/me2BRCtAOgICL39PfTAFAOJzebA9gJwJ2IgnLJ i89qMsZYIeR2YlOflvglAHWFEK4AngAYCmCYdgIhRE3IAD4ytwCeVyEYY4wVTr5BnIhUQogvABxF 5hDD20KIcXI2rQQwHYAjgGVCDvhOI6K2L7PgjDHGivh+4owxxoyryC67F0K4CyHuCCHuCSGm5r9E 8SaEWCWEiBBC+GlNqyCEOCqEuCuEOCKEcNCa970QIkAIcVsI8Y5pSv1yCCGqCyFOCiFuCiFuCCG+ TJ9e6upDCGElhLgghPBNr49f06eXuroA5HUoQoirQoh96e9LZT0YhIhe+h/kwSIQgCsACwDXADQs inWb6g9yhE5LAH5a0+YCmJL+eiqA39JfNwbgC9m9VSu9roSpt8GIdeEEoGX6a1sAdwE0LMX1YZP+ 3xzyuoqOpbguvgawAcC+9Pelsh4M+Suqlni+FwyVNETkBeBZlsl9AaxLf70OQL/0130AbCEiJRE9 BBAAWWclAhGFE9G19NcJAG4DqI7SWx9J6S+tIBs4z1AK60IIUR3AewD+1Zpc6urBUEUVxAt6wVBJ VYWIIgAZ2ABUSZ+etX5CUULrRwhRC/IXig+AqqWxPtK7EHwBhAPwJKJbKJ118SeA7wBon5grjfVg EL4VrWmVqrPKQghbADsAfJXeIs+6/aWiPohITUStIH+NdBZCdEMpqwshxPsAItJ/oeU19LhE14Mx FFUQDwVQU+t99fRppU2EEKIqAAghnAA8TZ8eCqCGVroSVz9CiDKQAXw9Ee1Nn1xq6wMAiCgOwCEA r6P01UVHAH2EEPcBbAbwphBiPYDwUlYPBiuqIJ5xwZAQwhLygqF9RbRuUxLQbWXsAzAm/fVoAHu1 pg8VQlgKIdwA1AVwsagKWURWA7hFRH9pTSt19SGEqKQZcSGEsAbwNuQJu1JVF0T0PyKqSUS1IePB SSIaCWA/SlE9GEVRnUEF4A45KiEAwDRTn9Etgu3dBCAMQAqAx5D3lKkA4Hh6PRwFUF4r/feQZ9xv A3jH1OU3cl10BKCCHJXkC+Bq+v7gWNrqA0Cz9O33BXAdwLfp00tdXWhtX1dkjk4ptfVQ2D++2Icx xooxPrHJGGPFGAdxxhgrxjiIM8ZYMcZBnDHGijEO4owxVoxxEGeMsWKMgzhjjBVjHMQZY6wY+38Z uUqAGdlr2wAAAABJRU5ErkJggg== ", "text/plain": [ "<matplotlib.figure.Figure at 0x7fc252bb85d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "data=shelve.open(\"scores/RAW_ASR_TRAIN.shelve\") ", "scores={} ", "#del scores_ordoned ", "for key,table in data.iteritems(): ", " scores[key]=round(table[1][np.argmax([x[0] for x in table[0]])][0],3) ", " print key,scores[key] ", " pandas.DataFrame(zip([x[0] for x in data[key][0] ],[x[0] for x in data[key][1] ])).plot() ", "data.close()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 } |