Blame view

Classif_with_raw_train.ipynb 168 KB
b6d0165d1   Killian   Initial commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
  {
   "cells": [
    {
     "cell_type": "code",
     "execution_count": 21,
     "metadata": {
      "collapsed": false
     },
     "outputs": [],
     "source": [
      "import itertools
  ",
      "
  ",
      "import shelve
  ",
      "
  ",
      "import pickle
  ",
      "
  ",
      "import pandas
  ",
      "
  ",
      "import numpy as np
  ",
      "
  ",
      "import nltk
  ",
      "
  ",
      "import codecs
  ",
      "
  ",
      "import gensim
  ",
      "
  ",
      "import scipy
  ",
      "
  ",
      "from scipy import sparse
  ",
      "
  ",
      "import scipy.sparse
  ",
      "
  ",
      "import scipy.io
  ",
      "
  ",
      "import sklearn
  ",
      "
  ",
      "from sklearn.feature_extraction.text import CountVectorizer
  ",
      "
  ",
      "import sklearn.metrics
  ",
      "
  ",
      "from sklearn.neighbors import NearestNeighbors
  ",
      "
  ",
      "from sklearn.metrics import confusion_matrix
  ",
      "
  ",
      "from sklearn import preprocessing
  ",
      "from keras.models import Sequential
  ",
      "from keras.layers.core import Dense, Dropout, Activation,AutoEncoder
  ",
      "from keras.optimizers import SGD,Adam
  ",
      "from keras.layers import containers
  ",
      "from mlp import *
  ",
      "import mlp
  ",
      "import sys
  ",
      "import utils
  ",
      "from sklearn.preprocessing import LabelBinarizer"
     ]
    },
    {
     "cell_type": "code",
     "execution_count": 24,
     "metadata": {
      "collapsed": true
     },
     "outputs": [],
     "source": [
      "%matplotlib inline "
     ]
    },
    {
     "cell_type": "code",
     "execution_count": 3,
     "metadata": {
      "collapsed": true
     },
     "outputs": [],
     "source": [
      "corps=shelve.open(\"models/DECODA_AE_TANH_1060_TFIDF.shelve\")"
     ]
    },
    {
     "cell_type": "code",
     "execution_count": 4,
     "metadata": {
      "collapsed": true
     },
     "outputs": [],
     "source": [
      "lb=LabelBinarizer()
  ",
      "y_train=lb.fit_transform([utils.select(ligneid) for ligneid in corps[\"LABEL\"][\"TRAIN\"]])
  ",
      "y_dev=lb.transform([utils.select(ligneid) for ligneid in corps[\"LABEL\"][\"DEV\"]])
  ",
      "y_test=lb.transform([utils.select(ligneid) for ligneid in corps[\"LABEL\"][\"TEST\"]])
  ",
      "keys = corps.keys()
  ",
      "if \"LABEL\" in keys:
  ",
      "    keys.remove(\"LABEL\")"
     ]
    },
    {
     "cell_type": "code",
     "execution_count": 10,
     "metadata": {
      "collapsed": true
     },
     "outputs": [],
     "source": [
      "keys=[\"TRS_SPARSE\",\"ASR_SPARSE\",\"ASR_H2_TRANFORMED_OUT\",\"ASR_H1_TRANFORMED_OUT\",\"TRS_AE_OUT\"]"
     ]
    },
    {
     "cell_type": "code",
     "execution_count": 5,
     "metadata": {
      "collapsed": true
     },
     "outputs": [],
     "source": [
      "out_db=shelve.open(\"scores/RAW_TRS_TRAIN.shelve\",writeback=True)"
     ]
    },
    {
     "cell_type": "code",
     "execution_count": 12,
     "metadata": {
      "collapsed": false,
      "scrolled": true
     },
     "outputs": [
      {
       "name": "stdout",
       "output_type": "stream",
       "text": [
        "TRS_SPARSE
  ",
        "Save 0
  ",
        "Save 3
  ",
        "Save 4
  ",
        "Save 5
  ",
        "Save 6
  ",
        "Save 8
  ",
        "Save 10
  ",
        "Save 11
  ",
        "Save 13
  ",
        "Save 14
  ",
        "Save 15
  ",
        "Save 16
  ",
        "Save 19
  ",
        "Save 22
  ",
        "Save 23
  ",
        "Save 24
  ",
        "Save 25
  ",
        "Save 26
  ",
        "Save 29
  ",
        "Save 32
  ",
        "Save 36
  ",
        "Save 37
  ",
        "Save 41
  ",
        "Save 42
  ",
        "Save 45
  ",
        "Save 48
  ",
        "Save 50
  ",
        "Save 51
  ",
        "Save 54
  ",
        "Save 57
  ",
        "Save 59
  ",
        "Save 62
  ",
        "Save 68
  ",
        "Save 73
  ",
        "Save 74
  ",
        "Save 78
  ",
        "Save 83
  ",
        "Save 85
  ",
        "Save 88
  ",
        "Save 91
  ",
        "Save 93
  ",
        "Save 94
  ",
        "Save 97
  ",
        "Save 104
  ",
        "Save 107
  ",
        "Save 111
  ",
        "Save 112
  ",
        "Save 120
  ",
        "Save 124
  ",
        "Save 129
  ",
        "Save 132
  ",
        "Save 134
  ",
        "Save 138
  ",
        "Save 140
  ",
        "Save 141
  ",
        "Save 144
  ",
        "Save 147
  ",
        "Save 151
  ",
        "Save 152
  ",
        "Save 153
  ",
        "Save 154
  ",
        "Save 156
  ",
        "Save 158
  ",
        "Save 161
  ",
        "Save 174
  ",
        "Save 175
  ",
        "Save 179
  ",
        "Save 183
  ",
        "Save 185
  ",
        "Save 187
  ",
        "Save 194
  ",
        "Save 199
  ",
        "Save 200
  ",
        "Save 205
  ",
        "Save 208
  ",
        "Save 212
  ",
        "Save 217
  ",
        "Save 223
  ",
        "Save 231
  ",
        "Save 233
  ",
        "Save 236
  ",
        "Save 238
  ",
        "Save 246
  ",
        "Save 249
  ",
        "Save 254
  ",
        "Save 258
  ",
        "Save 264
  ",
        "Save 267
  ",
        "Save 271
  ",
        "Save 274
  ",
        "Save 278
  ",
        "Save 281
  ",
        "Save 285
  ",
        "Save 286
  ",
        "Save 292
  ",
        "Save 299
  ",
        "Save 302
  ",
        "Save 304
  ",
        "Save 311
  ",
        "Save 312
  ",
        "Save 315
  ",
        "Save 318
  ",
        "Save 328
  ",
        "Save 330
  ",
        "Save 333
  ",
        "Save 336
  ",
        "Save 337
  ",
        "Save 338
  ",
        "Save 339
  ",
        "Save 344
  ",
        "Save 346
  ",
        "Save 350
  ",
        "Save 352
  ",
        "Save 354
  ",
        "Save 356
  ",
        "Save 358
  ",
        "Save 361
  ",
        "Save 367
  ",
        "Save 371
  ",
        "Save 373
  ",
        "Save 374
  ",
        "Save 385
  ",
        "Save 390
  ",
        "Save 394
  ",
        "Save 396
  ",
        "Save 398
  ",
        "Save 399
  ",
        "Save 403
  ",
        "Save 409
  ",
        "Save 413
  ",
        "Save 415
  ",
        "Save 418
  ",
        "Save 419
  ",
        "Save 444
  ",
        "Save 445
  ",
        "Save 465
  ",
        "Save 468
  ",
        "Save 470
  ",
        "Save 477
  ",
        "Save 484
  ",
        "Save 487
  ",
        "Save 490
  ",
        "Save 493
  ",
        "ASR_SPARSE
  ",
        "Save 0
  ",
        "Save 3
  ",
        "Save 4
  ",
        "Save 5
  ",
        "Save 6
  ",
        "Save 8
  ",
        "Save 11
  ",
        "Save 14
  ",
        "Save 16
  ",
        "Save 17
  ",
        "Save 21
  ",
        "Save 23
  ",
        "Save 24
  ",
        "Save 27
  ",
        "Save 29
  ",
        "Save 30
  ",
        "Save 32
  ",
        "Save 33
  ",
        "Save 34
  ",
        "Save 35
  ",
        "Save 38
  ",
        "Save 40
  ",
        "Save 42
  ",
        "Save 44
  ",
        "Save 46
  ",
        "Save 52
  ",
        "Save 54
  ",
        "Save 56
  ",
        "Save 61
  ",
        "Save 62
  ",
        "Save 63
  ",
        "Save 66
  ",
        "Save 68
  ",
        "Save 75
  ",
        "Save 78
  ",
        "Save 83
  ",
        "Save 86
  ",
        "Save 88
  ",
        "Save 89
  ",
        "Save 92
  ",
        "Save 95
  ",
        "Save 99
  ",
        "Save 103
  ",
        "Save 106
  ",
        "Save 107
  ",
        "Save 108
  ",
        "Save 111
  ",
        "Save 118
  ",
        "Save 120
  ",
        "Save 125
  ",
        "Save 128
  ",
        "Save 130
  ",
        "Save 136
  ",
        "Save 142
  ",
        "Save 143
  ",
        "Save 146
  ",
        "Save 147
  ",
        "Save 153
  ",
        "Save 154
  ",
        "Save 156
  ",
        "Save 157
  ",
        "Save 161
  ",
        "Save 162
  ",
        "Save 164
  ",
        "Save 166
  ",
        "Save 167
  ",
        "Save 170
  ",
        "Save 174
  ",
        "Save 177
  ",
        "Save 178
  ",
        "Save 184
  ",
        "Save 185
  ",
        "Save 188
  ",
        "Save 189
  ",
        "Save 193
  ",
        "Save 196
  ",
        "Save 197
  ",
        "Save 199
  ",
        "Save 203
  ",
        "Save 207
  ",
        "Save 211
  ",
        "Save 215
  ",
        "Save 218
  ",
        "Save 219
  ",
        "Save 221
  ",
        "Save 228
  ",
        "Save 234
  ",
        "Save 236
  ",
        "Save 242
  ",
        "Save 244
  ",
        "Save 246
  ",
        "Save 249
  ",
        "Save 252
  ",
        "Save 255
  ",
        "Save 259
  ",
        "Save 266
  ",
        "Save 273
  ",
        "Save 278
  ",
        "Save 283
  ",
        "Save 285
  ",
        "Save 293
  ",
        "Save 298
  ",
        "Save 302
  ",
        "Save 307
  ",
        "Save 309
  ",
        "Save 321
  ",
        "Save 325
  ",
        "Save 327
  ",
        "Save 331
  ",
        "Save 332
  ",
        "Save 336
  ",
        "Save 338
  ",
        "Save 349
  ",
        "Save 351
  ",
        "Save 359
  ",
        "Save 364
  ",
        "Save 365
  ",
        "Save 370
  ",
        "Save 412
  ",
        "Save 413
  ",
        "Save 415
  ",
        "Save 424
  ",
        "Save 425
  ",
        "Save 426
  ",
        "Save 428
  ",
        "Save 435
  ",
        "Save 440
  ",
        "Save 442
  ",
        "Save 457
  ",
        "Save 466
  ",
        "Save 470
  ",
        "Save 475
  ",
        "Save 485
  ",
        "Save 487
  ",
        "Save 491
  ",
        "Save 494
  ",
        "Save 496
  ",
        "ASR_H2_TRANFORMED_OUT
  ",
        "Save 0
  ",
        "Save 4
  ",
        "Save 5
  ",
        "Save 6
  ",
        "Save 10
  ",
        "Save 13
  ",
        "Save 14
  ",
        "Save 16
  ",
        "Save 19
  ",
        "Save 20
  ",
        "Save 23
  ",
        "Save 27
  ",
        "Save 29
  ",
        "Save 31
  ",
        "Save 34
  ",
        "Save 35
  ",
        "Save 39
  ",
        "Save 44
  ",
        "Save 47
  ",
        "Save 48
  ",
        "Save 51
  ",
        "Save 52
  ",
        "Save 54
  ",
        "Save 56
  ",
        "Save 57
  ",
        "Save 59
  ",
        "Save 60
  ",
        "Save 63
  ",
        "Save 64
  ",
        "Save 67
  ",
        "Save 68
  ",
        "Save 70
  ",
        "Save 71
  ",
        "Save 75
  ",
        "Save 77
  ",
        "Save 78
  ",
        "Save 80
  ",
        "Save 81
  ",
        "Save 84
  ",
        "Save 85
  ",
        "Save 90
  ",
        "Save 91
  ",
        "Save 94
  ",
        "Save 97
  ",
        "Save 100
  ",
        "Save 102
  ",
        "Save 104
  ",
        "Save 106
  ",
        "Save 108
  ",
        "Save 109
  ",
        "Save 111
  ",
        "Save 113
  ",
        "Save 116
  ",
        "Save 117
  ",
        "Save 120
  ",
        "Save 121
  ",
        "Save 123
  ",
        "Save 126
  ",
        "Save 128
  ",
        "Save 129
  ",
        "Save 130
  ",
        "Save 133
  ",
        "Save 134
  ",
        "Save 137
  ",
        "Save 138
  ",
        "Save 139
  ",
        "Save 140
  ",
        "Save 142
  ",
        "Save 143
  ",
        "Save 146
  ",
        "Save 147
  ",
        "Save 149
  ",
        "Save 152
  ",
        "Save 156
  ",
        "Save 157
  ",
        "Save 161
  ",
        "Save 163
  ",
        "Save 165
  ",
        "Save 170
  ",
        "Save 172
  ",
        "Save 175
  ",
        "Save 176
  ",
        "Save 178
  ",
        "Save 179
  ",
        "Save 183
  ",
        "Save 184
  ",
        "Save 185
  ",
        "Save 188
  ",
        "Save 189
  ",
        "Save 191
  ",
        "Save 197
  ",
        "Save 200
  ",
        "Save 205
  ",
        "Save 207
  ",
        "Save 209
  ",
        "Save 211
  ",
        "Save 213
  ",
        "Save 214
  ",
        "Save 217
  ",
        "Save 218
  ",
        "Save 219
  ",
        "Save 220
  ",
        "Save 221
  ",
        "Save 225
  ",
        "Save 226
  ",
        "Save 228
  ",
        "Save 229
  ",
        "Save 232
  ",
        "Save 237
  ",
        "Save 238
  ",
        "Save 242
  ",
        "Save 245
  ",
        "Save 246
  ",
        "Save 248
  ",
        "Save 250
  ",
        "Save 251
  ",
        "Save 252
  ",
        "Save 254
  ",
        "Save 256
  ",
        "Save 259
  ",
        "Save 262
  ",
        "Save 263
  ",
        "Save 273
  ",
        "Save 277
  ",
        "Save 279
  ",
        "Save 281
  ",
        "Save 283
  ",
        "Save 284
  ",
        "Save 295
  ",
        "Save 298
  ",
        "Save 300
  ",
        "Save 301
  ",
        "Save 302
  ",
        "Save 310
  ",
        "Save 313
  ",
        "Save 321
  ",
        "Save 324
  ",
        "Save 325
  ",
        "Save 332
  ",
        "Save 334
  ",
        "Save 343
  ",
        "Save 350
  ",
        "Save 351
  ",
        "Save 354
  ",
        "Save 361
  ",
        "Save 364
  ",
        "Save 365
  ",
        "Save 369
  ",
        "Save 376
  ",
        "Save 378
  ",
        "Save 387
  ",
        "Save 389
  ",
        "Save 399
  ",
        "Save 404
  ",
        "Save 410
  ",
        "Save 411
  ",
        "Save 412
  ",
        "Save 413
  ",
        "Save 414
  ",
        "Save 423
  ",
        "Save 424
  ",
        "Save 425
  ",
        "Save 428
  ",
        "Save 436
  ",
        "Save 438
  ",
        "Save 440
  ",
        "Save 441
  ",
        "Save 443
  ",
        "Save 446
  ",
        "Save 448
  ",
        "Save 453
  ",
        "Save 454
  ",
        "Save 456
  ",
        "Save 457
  ",
        "Save 458
  ",
        "Save 462
  ",
        "Save 466
  ",
        "Save 468
  ",
        "Save 473
  ",
        "Save 479
  ",
        "Save 480
  ",
        "Save 481
  ",
        "Save 482
  ",
        "Save 483
  ",
        "Save 486
  ",
        "Save 496
  ",
        "Save 498
  ",
        "ASR_H1_TRANFORMED_OUT
  ",
        "Save 0
  ",
        "Save 4
  ",
        "Save 5
  ",
        "Save 6
  ",
        "Save 7
  ",
        "Save 9
  ",
        "Save 12
  ",
        "Save 19
  ",
        "Save 20
  ",
        "Save 24
  ",
        "Save 27
  ",
        "Save 30
  ",
        "Save 31
  ",
        "Save 34
  ",
        "Save 38
  ",
        "Save 39
  ",
        "Save 40
  ",
        "Save 43
  ",
        "Save 45
  ",
        "Save 48
  ",
        "Save 50
  ",
        "Save 56
  ",
        "Save 57
  ",
        "Save 58
  ",
        "Save 60
  ",
        "Save 62
  ",
        "Save 64
  ",
        "Save 66
  ",
        "Save 68
  ",
        "Save 70
  ",
        "Save 72
  ",
        "Save 73
  ",
        "Save 74
  ",
        "Save 76
  ",
        "Save 77
  ",
        "Save 83
  ",
        "Save 87
  ",
        "Save 91
  ",
        "Save 93
  ",
        "Save 96
  ",
        "Save 99
  ",
        "Save 101
  ",
        "Save 103
  ",
        "Save 104
  ",
        "Save 109
  ",
        "Save 110
  ",
        "Save 113
  ",
        "Save 117
  ",
        "Save 122
  ",
        "Save 125
  ",
        "Save 128
  ",
        "Save 133
  ",
        "Save 136
  ",
        "Save 138
  ",
        "Save 139
  ",
        "Save 142
  ",
        "Save 144
  ",
        "Save 148
  ",
        "Save 150
  ",
        "Save 152
  ",
        "Save 155
  ",
        "Save 158
  ",
        "Save 161
  ",
        "Save 162
  ",
        "Save 165
  ",
        "Save 168
  ",
        "Save 169
  ",
        "Save 171
  ",
        "Save 173
  ",
        "Save 176
  ",
        "Save 178
  ",
        "Save 179
  ",
        "Save 182
  ",
        "Save 185
  ",
        "Save 189
  ",
        "Save 190
  ",
        "Save 191
  ",
        "Save 196
  ",
        "Save 197
  ",
        "Save 198
  ",
        "Save 202
  ",
        "Save 203
  ",
        "Save 208
  ",
        "Save 212
  ",
        "Save 214
  ",
        "Save 216
  ",
        "Save 218
  ",
        "Save 225
  ",
        "Save 226
  ",
        "Save 228
  ",
        "Save 229
  ",
        "Save 231
  ",
        "Save 234
  ",
        "Save 235
  ",
        "Save 238
  ",
        "Save 242
  ",
        "Save 250
  ",
        "Save 254
  ",
        "Save 257
  ",
        "Save 265
  ",
        "Save 268
  ",
        "Save 269
  ",
        "Save 271
  ",
        "Save 273
  ",
        "Save 275
  ",
        "Save 276
  ",
        "Save 278
  ",
        "Save 279
  ",
        "Save 282
  ",
        "Save 283
  ",
        "Save 284
  ",
        "Save 286
  ",
        "Save 292
  ",
        "Save 293
  ",
        "Save 296
  ",
        "Save 297
  ",
        "Save 299
  ",
        "Save 301
  ",
        "Save 307
  ",
        "Save 310
  ",
        "Save 311
  ",
        "Save 312
  ",
        "Save 313
  ",
        "Save 318
  ",
        "Save 321
  ",
        "Save 324
  ",
        "Save 325
  ",
        "Save 326
  ",
        "Save 329
  ",
        "Save 330
  ",
        "Save 332
  ",
        "Save 333
  ",
        "Save 335
  ",
        "Save 337
  ",
        "Save 340
  ",
        "Save 349
  ",
        "Save 351
  ",
        "Save 352
  ",
        "Save 353
  ",
        "Save 355
  ",
        "Save 359
  ",
        "Save 362
  ",
        "Save 365
  ",
        "Save 366
  ",
        "Save 368
  ",
        "Save 370
  ",
        "Save 372
  ",
        "Save 373
  ",
        "Save 378
  ",
        "Save 387
  ",
        "Save 395
  ",
        "Save 401
  ",
        "Save 402
  ",
        "Save 403
  ",
        "Save 407
  ",
        "Save 408
  ",
        "Save 413
  ",
        "Save 415
  ",
        "Save 418
  ",
        "Save 420
  ",
        "Save 421
  ",
        "Save 422
  ",
        "Save 423
  ",
        "Save 426
  ",
        "Save 431
  ",
        "Save 432
  ",
        "Save 433
  ",
        "Save 435
  ",
        "Save 436
  ",
        "Save 438
  ",
        "Save 440
  ",
        "Save 441
  ",
        "Save 442
  ",
        "Save 444
  ",
        "Save 445
  ",
        "Save 448
  ",
        "Save 453
  ",
        "Save 459
  ",
        "Save 460
  ",
        "Save 467
  ",
        "Save 469
  ",
        "Save 472
  ",
        "Save 474
  ",
        "Save 476
  ",
        "Save 481
  ",
        "Save 484
  ",
        "Save 488
  ",
        "Save 491
  ",
        "Save 495
  ",
        "Save 499
  ",
        "TRS_AE_OUT
  ",
        "Save 0
  ",
        "Save 3
  ",
        "Save 4
  ",
        "Save 5
  ",
        "Save 6
  ",
        "Save 7
  ",
        "Save 8
  ",
        "Save 9
  ",
        "Save 13
  ",
        "Save 15
  ",
        "Save 16
  ",
        "Save 17
  ",
        "Save 18
  ",
        "Save 23
  ",
        "Save 24
  ",
        "Save 25
  ",
        "Save 26
  ",
        "Save 29
  ",
        "Save 30
  ",
        "Save 31
  ",
        "Save 34
  ",
        "Save 37
  ",
        "Save 39
  ",
        "Save 42
  ",
        "Save 44
  ",
        "Save 45
  ",
        "Save 46
  ",
        "Save 48
  ",
        "Save 50
  ",
        "Save 51
  ",
        "Save 52
  ",
        "Save 56
  ",
        "Save 59
  ",
        "Save 60
  ",
        "Save 66
  ",
        "Save 68
  ",
        "Save 71
  ",
        "Save 72
  ",
        "Save 74
  ",
        "Save 78
  ",
        "Save 81
  ",
        "Save 82
  ",
        "Save 84
  ",
        "Save 86
  ",
        "Save 89
  ",
        "Save 91
  ",
        "Save 94
  ",
        "Save 95
  ",
        "Save 99
  ",
        "Save 102
  ",
        "Save 104
  ",
        "Save 105
  ",
        "Save 109
  ",
        "Save 111
  ",
        "Save 117
  ",
        "Save 120
  ",
        "Save 122
  ",
        "Save 124
  ",
        "Save 126
  ",
        "Save 130
  ",
        "Save 131
  ",
        "Save 135
  ",
        "Save 147
  ",
        "Save 152
  ",
        "Save 154
  ",
        "Save 163
  ",
        "Save 164
  ",
        "Save 166
  ",
        "Save 171
  ",
        "Save 173
  ",
        "Save 177
  ",
        "Save 186
  ",
        "Save 189
  ",
        "Save 193
  ",
        "Save 194
  ",
        "Save 196
  ",
        "Save 200
  ",
        "Save 207
  ",
        "Save 209
  ",
        "Save 216
  ",
        "Save 219
  ",
        "Save 221
  ",
        "Save 223
  ",
        "Save 225
  ",
        "Save 226
  ",
        "Save 236
  ",
        "Save 237
  ",
        "Save 239
  ",
        "Save 242
  ",
        "Save 249
  ",
        "Save 250
  ",
        "Save 256
  ",
        "Save 257
  ",
        "Save 260
  ",
        "Save 262
  ",
        "Save 267
  ",
        "Save 275
  ",
        "Save 277
  ",
        "Save 278
  ",
        "Save 279
  ",
        "Save 282
  ",
        "Save 284
  ",
        "Save 285
  ",
        "Save 286
  ",
        "Save 289
  ",
        "Save 301
  ",
        "Save 313
  ",
        "Save 317
  ",
        "Save 322
  ",
        "Save 326
  ",
        "Save 327
  ",
        "Save 334
  ",
        "Save 345
  ",
        "Save 350
  ",
        "Save 353
  ",
        "Save 359
  ",
        "Save 362
  ",
        "Save 364
  ",
        "Save 365
  ",
        "Save 369
  ",
        "Save 373
  ",
        "Save 376
  ",
        "Save 382
  ",
        "Save 384
  ",
        "Save 388
  ",
        "Save 401
  ",
        "Save 404
  ",
        "Save 409
  ",
        "Save 415
  ",
        "Save 418
  ",
        "Save 420
  ",
        "Save 421
  ",
        "Save 432
  ",
        "Save 436
  ",
        "Save 450
  ",
        "Save 454
  ",
        "Save 455
  ",
        "Save 459
  ",
        "Save 467
  ",
        "Save 480
  ",
        "Save 484
  ",
        "Save 496
  "
       ]
      }
     ],
     "source": [
      "nb_epochs=500
  ",
      "for key in keys:
  ",
      "    print key
  ",
      "    try:
  ",
      "        x_train=corps[\"TRS_SPARSE\"][\"TRAIN\"].todense()
  ",
      "        x_dev=corps[key][\"DEV\"].todense()
  ",
      "        x_test=corps[key][\"TEST\"].todense()
  ",
      "    except :
  ",
      "        x_train=corps[\"TRS_SPARSE\"][\"TRAIN\"].todense()
  ",
      "        x_dev=corps[key][\"DEV\"]
  ",
      "        x_test=corps[key][\"TEST\"]
  ",
      "
  ",
      "    out_db[key]=mlp.train_mlp(x_train,y_train,x_dev,y_dev,x_test,y_test,[256,128,256],dropouts=[0.5,0,0],sgd=Adam(lr=0.0001),epochs=nb_epochs,batch_size=8,save_pred=True,keep_histo=True,fit_verbose=0)
  ",
      "out_db.close()"
     ]
    },
    {
     "cell_type": "code",
     "execution_count": 13,
     "metadata": {
      "collapsed": false,
      "scrolled": true
     },
     "outputs": [
      {
       "name": "stdout",
       "output_type": "stream",
       "text": [
        "TRS_SPARSE
  ",
        "Save 0
  ",
        "Save 4
  ",
        "Save 5
  ",
        "Save 6
  ",
        "Save 7
  ",
        "Save 9
  ",
        "Save 10
  ",
        "Save 12
  ",
        "Save 16
  ",
        "Save 17
  ",
        "Save 18
  ",
        "Save 19
  ",
        "Save 22
  ",
        "Save 24
  ",
        "Save 28
  ",
        "Save 29
  ",
        "Save 33
  ",
        "Save 34
  ",
        "Save 35
  ",
        "Save 36
  ",
        "Save 38
  ",
        "Save 39
  ",
        "Save 42
  ",
        "Save 44
  ",
        "Save 46
  ",
        "Save 48
  ",
        "Save 50
  ",
        "Save 57
  ",
        "Save 60
  ",
        "Save 64
  ",
        "Save 65
  ",
        "Save 74
  ",
        "Save 76
  ",
        "Save 78
  ",
        "Save 83
  ",
        "Save 88
  ",
        "Save 92
  ",
        "Save 102
  ",
        "Save 104
  ",
        "Save 106
  ",
        "Save 108
  ",
        "Save 115
  ",
        "Save 119
  ",
        "Save 121
  ",
        "Save 123
  ",
        "Save 128
  ",
        "Save 133
  ",
        "Save 134
  ",
        "Save 136
  ",
        "Save 141
  ",
        "Save 146
  ",
        "Save 153
  ",
        "Save 162
  ",
        "Save 165
  ",
        "Save 169
  ",
        "Save 171
  ",
        "Save 173
  ",
        "Save 175
  ",
        "Save 177
  ",
        "Save 182
  ",
        "Save 189
  ",
        "Save 193
  ",
        "Save 197
  ",
        "Save 202
  ",
        "Save 205
  ",
        "Save 211
  ",
        "Save 215
  ",
        "Save 216
  ",
        "Save 233
  ",
        "Save 238
  ",
        "Save 251
  ",
        "Save 254
  ",
        "Save 262
  ",
        "Save 266
  ",
        "Save 269
  ",
        "Save 274
  ",
        "Save 277
  ",
        "Save 280
  ",
        "Save 282
  ",
        "Save 286
  ",
        "Save 290
  ",
        "Save 291
  ",
        "Save 294
  ",
        "Save 298
  ",
        "Save 301
  ",
        "Save 303
  ",
        "Save 310
  ",
        "Save 314
  ",
        "Save 319
  ",
        "Save 323
  ",
        "Save 334
  ",
        "Save 339
  ",
        "Save 359
  ",
        "Save 363
  ",
        "Save 365
  ",
        "Save 375
  ",
        "Save 380
  ",
        "Save 382
  ",
        "Save 388
  ",
        "Save 390
  ",
        "Save 393
  ",
        "Save 396
  ",
        "Save 406
  ",
        "Save 412
  ",
        "Save 422
  ",
        "Save 433
  ",
        "Save 438
  ",
        "Save 452
  ",
        "Save 459
  ",
        "Save 464
  ",
        "Save 475
  ",
        "Save 485
  ",
        "Save 493
  ",
        "Save 494
  ",
        "ASR_SPARSE
  ",
        "Save 0
  ",
        "Save 3
  ",
        "Save 4
  ",
        "Save 5
  ",
        "Save 6
  ",
        "Save 7
  ",
        "Save 8
  ",
        "Save 10
  ",
        "Save 16
  ",
        "Save 17
  ",
        "Save 19
  ",
        "Save 26
  ",
        "Save 28
  ",
        "Save 31
  ",
        "Save 32
  ",
        "Save 34
  ",
        "Save 35
  ",
        "Save 39
  ",
        "Save 41
  ",
        "Save 43
  ",
        "Save 46
  ",
        "Save 47
  ",
        "Save 51
  ",
        "Save 52
  ",
        "Save 53
  ",
        "Save 55
  ",
        "Save 57
  ",
        "Save 60
  ",
        "Save 61
  ",
        "Save 63
  ",
        "Save 66
  ",
        "Save 68
  ",
        "Save 71
  ",
        "Save 73
  ",
        "Save 75
  ",
        "Save 77
  ",
        "Save 79
  ",
        "Save 83
  ",
        "Save 85
  ",
        "Save 90
  ",
        "Save 93
  ",
        "Save 94
  ",
        "Save 96
  ",
        "Save 99
  ",
        "Save 101
  ",
        "Save 102
  ",
        "Save 104
  ",
        "Save 106
  ",
        "Save 109
  ",
        "Save 112
  ",
        "Save 113
  ",
        "Save 117
  ",
        "Save 123
  ",
        "Save 126
  ",
        "Save 127
  ",
        "Save 129
  ",
        "Save 130
  ",
        "Save 133
  ",
        "Save 137
  ",
        "Save 142
  ",
        "Save 145
  ",
        "Save 146
  ",
        "Save 147
  ",
        "Save 148
  ",
        "Save 149
  ",
        "Save 151
  ",
        "Save 152
  ",
        "Save 155
  ",
        "Save 157
  ",
        "Save 160
  ",
        "Save 164
  ",
        "Save 167
  ",
        "Save 173
  ",
        "Save 176
  ",
        "Save 177
  ",
        "Save 184
  ",
        "Save 189
  ",
        "Save 193
  ",
        "Save 195
  ",
        "Save 196
  ",
        "Save 204
  ",
        "Save 209
  ",
        "Save 212
  ",
        "Save 215
  ",
        "Save 218
  ",
        "Save 219
  ",
        "Save 221
  ",
        "Save 223
  ",
        "Save 226
  ",
        "Save 229
  ",
        "Save 231
  ",
        "Save 237
  ",
        "Save 239
  ",
        "Save 242
  ",
        "Save 244
  ",
        "Save 246
  ",
        "Save 249
  ",
        "Save 250
  ",
        "Save 255
  ",
        "Save 258
  ",
        "Save 259
  ",
        "Save 261
  ",
        "Save 263
  ",
        "Save 267
  ",
        "Save 271
  ",
        "Save 274
  ",
        "Save 276
  ",
        "Save 277
  ",
        "Save 279
  ",
        "Save 283
  ",
        "Save 284
  ",
        "Save 286
  ",
        "Save 288
  ",
        "Save 289
  ",
        "Save 298
  ",
        "Save 301
  ",
        "Save 304
  ",
        "Save 310
  ",
        "Save 314
  ",
        "Save 318
  ",
        "Save 321
  ",
        "Save 331
  ",
        "Save 338
  ",
        "Save 340
  ",
        "Save 342
  ",
        "Save 347
  ",
        "Save 351
  ",
        "Save 352
  ",
        "Save 353
  ",
        "Save 357
  ",
        "Save 367
  ",
        "Save 379
  ",
        "Save 384
  ",
        "Save 388
  ",
        "Save 390
  ",
        "Save 392
  ",
        "Save 394
  ",
        "Save 398
  ",
        "Save 399
  ",
        "Save 401
  ",
        "Save 405
  ",
        "Save 409
  ",
        "Save 411
  ",
        "Save 414
  ",
        "Save 415
  ",
        "Save 419
  ",
        "Save 427
  ",
        "Save 431
  ",
        "Save 436
  ",
        "Save 438
  ",
        "Save 440
  ",
        "Save 445
  ",
        "Save 454
  ",
        "Save 456
  ",
        "Save 466
  ",
        "Save 469
  ",
        "Save 481
  ",
        "Save 484
  ",
        "Save 492
  ",
        "Save 494
  ",
        "Save 498
  ",
        "ASR_H2_TRANFORMED_OUT
  ",
        "Save 0
  ",
        "Save 4
  ",
        "Save 5
  ",
        "Save 6
  ",
        "Save 7
  ",
        "Save 8
  ",
        "Save 9
  ",
        "Save 11
  ",
        "Save 12
  ",
        "Save 13
  ",
        "Save 15
  ",
        "Save 18
  ",
        "Save 20
  ",
        "Save 24
  ",
        "Save 27
  ",
        "Save 29
  ",
        "Save 33
  ",
        "Save 34
  ",
        "Save 36
  ",
        "Save 39
  ",
        "Save 42
  ",
        "Save 44
  ",
        "Save 46
  ",
        "Save 47
  ",
        "Save 48
  ",
        "Save 50
  ",
        "Save 55
  ",
        "Save 58
  ",
        "Save 59
  ",
        "Save 61
  ",
        "Save 63
  ",
        "Save 64
  ",
        "Save 65
  ",
        "Save 66
  ",
        "Save 70
  ",
        "Save 71
  ",
        "Save 74
  ",
        "Save 75
  ",
        "Save 77
  ",
        "Save 79
  ",
        "Save 81
  ",
        "Save 86
  ",
        "Save 90
  ",
        "Save 93
  ",
        "Save 96
  ",
        "Save 98
  ",
        "Save 100
  ",
        "Save 103
  ",
        "Save 107
  ",
        "Save 108
  ",
        "Save 109
  ",
        "Save 110
  ",
        "Save 112
  ",
        "Save 114
  ",
        "Save 117
  ",
        "Save 118
  ",
        "Save 119
  ",
        "Save 122
  ",
        "Save 123
  ",
        "Save 125
  ",
        "Save 127
  ",
        "Save 129
  ",
        "Save 131
  ",
        "Save 133
  ",
        "Save 135
  ",
        "Save 138
  ",
        "Save 139
  ",
        "Save 142
  ",
        "Save 143
  ",
        "Save 149
  ",
        "Save 151
  ",
        "Save 159
  ",
        "Save 161
  ",
        "Save 162
  ",
        "Save 164
  ",
        "Save 166
  ",
        "Save 168
  ",
        "Save 172
  ",
        "Save 174
  ",
        "Save 178
  ",
        "Save 181
  ",
        "Save 182
  ",
        "Save 184
  ",
        "Save 192
  ",
        "Save 193
  ",
        "Save 194
  ",
        "Save 196
  ",
        "Save 201
  ",
        "Save 206
  ",
        "Save 207
  ",
        "Save 211
  ",
        "Save 214
  ",
        "Save 215
  ",
        "Save 218
  ",
        "Save 220
  ",
        "Save 221
  ",
        "Save 225
  ",
        "Save 226
  ",
        "Save 230
  ",
        "Save 232
  ",
        "Save 233
  ",
        "Save 235
  ",
        "Save 236
  ",
        "Save 241
  ",
        "Save 242
  ",
        "Save 244
  ",
        "Save 245
  ",
        "Save 247
  ",
        "Save 256
  ",
        "Save 261
  ",
        "Save 262
  ",
        "Save 263
  ",
        "Save 266
  ",
        "Save 267
  ",
        "Save 269
  ",
        "Save 277
  ",
        "Save 280
  ",
        "Save 282
  ",
        "Save 287
  ",
        "Save 290
  ",
        "Save 294
  ",
        "Save 295
  ",
        "Save 296
  ",
        "Save 298
  ",
        "Save 303
  ",
        "Save 306
  ",
        "Save 308
  ",
        "Save 309
  ",
        "Save 312
  ",
        "Save 319
  ",
        "Save 323
  ",
        "Save 329
  ",
        "Save 332
  ",
        "Save 335
  ",
        "Save 345
  ",
        "Save 348
  ",
        "Save 349
  ",
        "Save 353
  ",
        "Save 355
  ",
        "Save 363
  ",
        "Save 364
  ",
        "Save 365
  ",
        "Save 371
  ",
        "Save 372
  ",
        "Save 373
  ",
        "Save 374
  ",
        "Save 375
  ",
        "Save 376
  ",
        "Save 378
  ",
        "Save 381
  ",
        "Save 385
  ",
        "Save 386
  ",
        "Save 388
  ",
        "Save 391
  ",
        "Save 396
  ",
        "Save 400
  ",
        "Save 405
  ",
        "Save 409
  ",
        "Save 411
  ",
        "Save 418
  ",
        "Save 421
  ",
        "Save 427
  ",
        "Save 428
  ",
        "Save 431
  ",
        "Save 432
  ",
        "Save 434
  ",
        "Save 437
  ",
        "Save 442
  ",
        "Save 443
  ",
        "Save 445
  ",
        "Save 447
  ",
        "Save 448
  ",
        "Save 451
  ",
        "Save 452
  ",
        "Save 453
  ",
        "Save 457
  ",
        "Save 460
  ",
        "Save 461
  ",
        "Save 465
  ",
        "Save 466
  ",
        "Save 477
  ",
        "Save 484
  ",
        "Save 486
  ",
        "Save 489
  ",
        "Save 496
  ",
        "Save 498
  ",
        "ASR_H1_TRANFORMED_OUT
  ",
        "Save 0
  ",
        "Save 4
  ",
        "Save 5
  ",
        "Save 6
  ",
        "Save 7
  ",
        "Save 9
  ",
        "Save 11
  ",
        "Save 14
  ",
        "Save 15
  ",
        "Save 24
  ",
        "Save 26
  ",
        "Save 30
  ",
        "Save 32
  ",
        "Save 35
  ",
        "Save 38
  ",
        "Save 39
  ",
        "Save 42
  ",
        "Save 46
  ",
        "Save 48
  ",
        "Save 50
  ",
        "Save 51
  ",
        "Save 54
  ",
        "Save 55
  ",
        "Save 57
  ",
        "Save 59
  ",
        "Save 62
  ",
        "Save 65
  ",
        "Save 66
  ",
        "Save 70
  ",
        "Save 71
  ",
        "Save 73
  ",
        "Save 75
  ",
        "Save 76
  ",
        "Save 79
  ",
        "Save 81
  ",
        "Save 86
  ",
        "Save 89
  ",
        "Save 91
  ",
        "Save 93
  ",
        "Save 94
  ",
        "Save 95
  ",
        "Save 99
  ",
        "Save 101
  ",
        "Save 102
  ",
        "Save 103
  ",
        "Save 106
  ",
        "Save 107
  ",
        "Save 109
  ",
        "Save 111
  ",
        "Save 113
  ",
        "Save 115
  ",
        "Save 117
  ",
        "Save 118
  ",
        "Save 120
  ",
        "Save 126
  ",
        "Save 127
  ",
        "Save 129
  ",
        "Save 133
  ",
        "Save 134
  ",
        "Save 135
  ",
        "Save 139
  ",
        "Save 140
  ",
        "Save 144
  ",
        "Save 148
  ",
        "Save 150
  ",
        "Save 153
  ",
        "Save 155
  ",
        "Save 156
  ",
        "Save 157
  ",
        "Save 159
  ",
        "Save 160
  ",
        "Save 162
  ",
        "Save 164
  ",
        "Save 168
  ",
        "Save 169
  ",
        "Save 171
  ",
        "Save 175
  ",
        "Save 177
  ",
        "Save 180
  ",
        "Save 182
  ",
        "Save 183
  ",
        "Save 186
  ",
        "Save 189
  ",
        "Save 191
  ",
        "Save 195
  ",
        "Save 198
  ",
        "Save 200
  ",
        "Save 201
  ",
        "Save 202
  ",
        "Save 206
  ",
        "Save 208
  ",
        "Save 209
  ",
        "Save 213
  ",
        "Save 214
  ",
        "Save 215
  ",
        "Save 217
  ",
        "Save 219
  ",
        "Save 220
  ",
        "Save 234
  ",
        "Save 236
  ",
        "Save 237
  ",
        "Save 239
  ",
        "Save 241
  ",
        "Save 244
  ",
        "Save 249
  ",
        "Save 250
  ",
        "Save 251
  ",
        "Save 254
  ",
        "Save 256
  ",
        "Save 257
  ",
        "Save 261
  ",
        "Save 263
  ",
        "Save 264
  ",
        "Save 265
  ",
        "Save 269
  ",
        "Save 271
  ",
        "Save 273
  ",
        "Save 276
  ",
        "Save 277
  ",
        "Save 279
  ",
        "Save 280
  ",
        "Save 287
  ",
        "Save 288
  ",
        "Save 290
  ",
        "Save 291
  ",
        "Save 294
  ",
        "Save 296
  ",
        "Save 301
  ",
        "Save 307
  ",
        "Save 309
  ",
        "Save 310
  ",
        "Save 315
  ",
        "Save 318
  ",
        "Save 322
  ",
        "Save 325
  ",
        "Save 328
  ",
        "Save 330
  ",
        "Save 331
  ",
        "Save 332
  ",
        "Save 334
  ",
        "Save 339
  ",
        "Save 341
  ",
        "Save 342
  ",
        "Save 343
  ",
        "Save 352
  ",
        "Save 357
  ",
        "Save 361
  ",
        "Save 364
  ",
        "Save 369
  ",
        "Save 371
  ",
        "Save 374
  ",
        "Save 381
  ",
        "Save 384
  ",
        "Save 385
  ",
        "Save 389
  ",
        "Save 392
  ",
        "Save 393
  ",
        "Save 397
  ",
        "Save 399
  ",
        "Save 401
  ",
        "Save 403
  ",
        "Save 407
  ",
        "Save 409
  ",
        "Save 410
  ",
        "Save 411
  ",
        "Save 413
  ",
        "Save 416
  ",
        "Save 421
  ",
        "Save 425
  ",
        "Save 427
  ",
        "Save 435
  ",
        "Save 438
  ",
        "Save 440
  ",
        "Save 441
  ",
        "Save 446
  ",
        "Save 447
  ",
        "Save 449
  ",
        "Save 450
  ",
        "Save 451
  ",
        "Save 452
  ",
        "Save 454
  ",
        "Save 458
  ",
        "Save 460
  ",
        "Save 461
  ",
        "Save 463
  ",
        "Save 470
  ",
        "Save 475
  ",
        "Save 480
  ",
        "Save 481
  ",
        "Save 482
  ",
        "Save 483
  ",
        "Save 488
  ",
        "Save 494
  ",
        "Save 497
  ",
        "Save 499
  ",
        "TRS_AE_OUT
  ",
        "Save 0
  ",
        "Save 3
  ",
        "Save 4
  ",
        "Save 5
  ",
        "Save 6
  ",
        "Save 7
  ",
        "Save 8
  ",
        "Save 10
  ",
        "Save 12
  ",
        "Save 15
  ",
        "Save 17
  ",
        "Save 18
  ",
        "Save 20
  ",
        "Save 23
  ",
        "Save 28
  ",
        "Save 29
  ",
        "Save 30
  ",
        "Save 33
  ",
        "Save 34
  ",
        "Save 37
  ",
        "Save 40
  ",
        "Save 42
  ",
        "Save 46
  ",
        "Save 47
  ",
        "Save 49
  ",
        "Save 54
  ",
        "Save 55
  ",
        "Save 57
  ",
        "Save 58
  ",
        "Save 60
  ",
        "Save 63
  ",
        "Save 67
  ",
        "Save 69
  ",
        "Save 71
  ",
        "Save 74
  ",
        "Save 76
  ",
        "Save 79
  ",
        "Save 84
  ",
        "Save 86
  ",
        "Save 88
  ",
        "Save 94
  ",
        "Save 96
  ",
        "Save 104
  ",
        "Save 105
  ",
        "Save 107
  ",
        "Save 108
  ",
        "Save 112
  ",
        "Save 116
  ",
        "Save 118
  ",
        "Save 121
  ",
        "Save 127
  ",
        "Save 130
  ",
        "Save 131
  ",
        "Save 132
  ",
        "Save 135
  ",
        "Save 136
  ",
        "Save 141
  ",
        "Save 144
  ",
        "Save 145
  ",
        "Save 147
  ",
        "Save 148
  ",
        "Save 149
  ",
        "Save 152
  ",
        "Save 154
  ",
        "Save 156
  ",
        "Save 157
  ",
        "Save 159
  ",
        "Save 163
  ",
        "Save 165
  ",
        "Save 167
  ",
        "Save 172
  ",
        "Save 176
  ",
        "Save 178
  ",
        "Save 180
  ",
        "Save 190
  ",
        "Save 192
  ",
        "Save 197
  ",
        "Save 198
  ",
        "Save 201
  ",
        "Save 203
  ",
        "Save 210
  ",
        "Save 215
  ",
        "Save 218
  ",
        "Save 220
  ",
        "Save 225
  ",
        "Save 229
  ",
        "Save 239
  ",
        "Save 241
  ",
        "Save 243
  ",
        "Save 246
  ",
        "Save 257
  ",
        "Save 259
  ",
        "Save 266
  ",
        "Save 270
  ",
        "Save 272
  ",
        "Save 276
  ",
        "Save 279
  ",
        "Save 281
  ",
        "Save 286
  ",
        "Save 288
  ",
        "Save 289
  ",
        "Save 292
  ",
        "Save 294
  ",
        "Save 299
  ",
        "Save 307
  ",
        "Save 310
  ",
        "Save 311
  ",
        "Save 312
  ",
        "Save 316
  ",
        "Save 319
  ",
        "Save 328
  ",
        "Save 336
  ",
        "Save 337
  ",
        "Save 340
  ",
        "Save 350
  ",
        "Save 353
  ",
        "Save 354
  ",
        "Save 358
  ",
        "Save 360
  ",
        "Save 367
  ",
        "Save 368
  ",
        "Save 374
  ",
        "Save 378
  ",
        "Save 384
  ",
        "Save 385
  ",
        "Save 388
  ",
        "Save 391
  ",
        "Save 393
  ",
        "Save 401
  ",
        "Save 405
  ",
        "Save 412
  ",
        "Save 418
  ",
        "Save 419
  ",
        "Save 421
  ",
        "Save 428
  ",
        "Save 429
  ",
        "Save 431
  ",
        "Save 433
  ",
        "Save 436
  ",
        "Save 439
  ",
        "Save 440
  ",
        "Save 443
  ",
        "Save 455
  ",
        "Save 456
  ",
        "Save 461
  ",
        "Save 466
  ",
        "Save 467
  ",
        "Save 471
  ",
        "Save 475
  ",
        "Save 476
  ",
        "Save 478
  ",
        "Save 482
  ",
        "Save 487
  ",
        "Save 494
  ",
        "Save 495
  ",
        "Save 496
  "
       ]
      }
     ],
     "source": [
      "out_db=shelve.open(\"scores/RAW_ASR_TRAIN.shelve\",writeback=True)
  ",
      "nb_epochs=500
  ",
      "for key in keys:
  ",
      "    print key
  ",
      "    try:
  ",
      "        x_train=corps[\"ASR_SPARSE\"][\"TRAIN\"].todense()
  ",
      "        x_dev=corps[key][\"DEV\"].todense()
  ",
      "        x_test=corps[key][\"TEST\"].todense()
  ",
      "    except :
  ",
      "        x_train=corps[\"ASR_SPARSE\"][\"TRAIN\"].todense()
  ",
      "        x_dev=corps[key][\"DEV\"]
  ",
      "        x_test=corps[key][\"TEST\"]
  ",
      "
  ",
      "    out_db[key]=mlp.train_mlp(x_train,y_train,x_dev,y_dev,x_test,y_test,[256,128,256],dropouts=[0.5,0,0],sgd=Adam(lr=0.0001),epochs=nb_epochs,batch_size=8,save_pred=True,keep_histo=True,fit_verbose=0)
  ",
      "out_db.close()"
     ]
    },
    {
     "cell_type": "code",
     "execution_count": 19,
     "metadata": {
      "collapsed": false
     },
     "outputs": [
      {
       "name": "stdout",
       "output_type": "stream",
       "text": [
        "['ASR_H1_TRANFORMED_OUT', 'ASR_H2_TRANFORMED_OUT', 'TRS_AE_OUT', 'TRS_SPARSE', 'ASR_SPARSE']
  "
       ]
      }
     ],
     "source": [
      "out_db=shelve.open(\"scores/RAW_ASR_TRAIN.shelve\")
  ",
      "print out_db.keys()
  ",
      "out_db.close()"
     ]
    },
    {
     "cell_type": "code",
     "execution_count": 22,
     "metadata": {
      "collapsed": false,
      "scrolled": true
     },
     "outputs": [
      {
       "name": "stdout",
       "output_type": "stream",
       "text": [
        "ASR_H1_TRANFORMED_OUT 0.697
  ",
        "ASR_H2_TRANFORMED_OUT 0.682
  ",
        "TRS_AE_OUT 0.838
  ",
        "TRS_SPARSE 0.841
  ",
        "ASR_SPARSE 0.78
  "
       ]
      }
     ],
     "source": [
      "data=shelve.open(\"scores/RAW_ASR_TRAIN.shelve\")
  ",
      "scores={}
  ",
      "#del scores_ordoned
  ",
      "for key,table in data.iteritems():
  ",
      "    scores[key]=round(table[1][np.argmax([x[0] for x in table[0]])][0],3)
  ",
      "    print key,scores[key]
  ",
      "    pandas.DataFrame(zip([x[0] for x in data[key][0] ],[x[0] for x in data[key][1] ])).plot()
  ",
      "data.close()"
     ]
    },
    {
     "cell_type": "code",
     "execution_count": 23,
     "metadata": {
      "collapsed": false
     },
     "outputs": [
      {
       "name": "stdout",
       "output_type": "stream",
       "text": [
        "ASR_H1_TRANFORMED_OUT 0.688
  ",
        "ASR_H2_TRANFORMED_OUT 0.654
  ",
        "TRS_AE_OUT 0.832
  ",
        "TRS_SPARSE 0.832
  ",
        "ASR_SPARSE 0.734
  "
       ]
      }
     ],
     "source": [
      "data=shelve.open(\"scores/RAW_TRS_TRAIN.shelve\")
  ",
      "scores={}
  ",
      "#del scores_ordoned
  ",
      "for key,table in data.iteritems():
  ",
      "    scores[key]=round(table[1][np.argmax([x[0] for x in table[0]])][0],3)
  ",
      "    print key,scores[key]
  ",
      "    pandas.DataFrame(zip([x[0] for x in data[key][0] ],[x[0] for x in data[key][1] ])).plot()
  ",
      "data.close()"
     ]
    },
    {
     "cell_type": "code",
     "execution_count": 25,
     "metadata": {
      "collapsed": false
     },
     "outputs": [
      {
       "name": "stdout",
       "output_type": "stream",
       "text": [
        "ASR_H1_TRANFORMED_OUT 0.697
  ",
        "ASR_H2_TRANFORMED_OUT 0.682
  ",
        "TRS_AE_OUT 0.838
  ",
        "TRS_SPARSE 0.841
  ",
        "ASR_SPARSE 0.78
  "
       ]
      },
      {
       "data": {
        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEACAYAAABF+UbAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz
  AAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VMX6x79nW5It6T2Q0BJCh0hRQLpIEwEbKqiAFbte
  9SoqWH/YvSqIDVAuiopSpCoXERG49J6Q0NJD+maz2b7n98fL7J7tGxLvgp7P8+RJsnv27Jz2ne+8
  884Mx/M8REREREQuTyShLoCIiIiIyMUjiriIiIjIZYwo4iIiIiKXMaKIi4iIiFzGiCIuIiIichkj
  iriIiIjIZUxQIs5x3BiO4/I4jsvnOO4ZL+/HcRy3keO4QxzHHeU47q5WL6mIiIiIiAdcoDxxjuMk
  APIBjARQBmAvgKk8z+cJtpkLIJzn+Wc5josHcBJAEs/z1j+t5CIiIiIiQTnx/gAKeJ4v5HneAmAF
  gOvdtqkAoLnwtwZAjSjgIiIiIn8+siC2SQNQLPi/BCTsQj4D8B+O48oAqAHc0jrFExERERHxR2t1
  bD4L4DDP86kA+gBYwHGcupX2LSIiIiLig2CceCmAdMH/bS68JmQQgNcAgOf50xzHnQWQDWCfcCOO
  48SJWkREREQuAp7nOW+vB+PE9wLoxHFcBsdxCgBTAax12yYXwCgA4DguCUAWgDM+CiL+8Dzmzp0b
  8jJcKj/iuRDPhXg+/P/4I6AT53nexnHcQwB+Bon+FzzP53Icdx+9zX8K4P8ALOE47jAADsDTPM/X
  Btq3iIiIiEjLCCacAp7nNwHo7PbaJ4K/qwFc17pFExEREREJhDhiM0QMGzYs1EW4ZBDPhRPxXLgi
  no/ABBzs06pfxnH8//L7RERERP4KcBwHvgUdmyIiIiKXLO3atQPHcX+Jn3bt2jX7+EUnLiIicllz
  waWGuhitgq9jEZ24iIiIyF8UUcRFRERELmNEERcRERG5jLlkRLyxMdQlEBEREbn8uGREXKMBzp0L
  dSlEREREWpe6ujpMnjwZarUa7du3xzfffNOq+w9qxOb/irIy4CIybEREREQuWWbPno3w8HBUVVXh
  wIEDGD9+PHr37o0uXbq0yv4viRRDiwVQKIDVq4Hr3ZebEBEREfHDpZxi2NTUhJiYGJw4cQIdO3YE
  ANx5551IS0vD66+/7rH9ZZtiqNfT71L3CW5FRERELmPy8/Mhl8sdAg4AvXr1wvHjx1vtOy6JcArr
  1BRFXERE5M+A8+phm8fFmP3GxkZERka6vBYZGQmdTtfyAl1AFHEREZG/PKGKtqjVajQ0NLi8ptVq
  odFofHyi+YQ8nHL6NDBnDv0tiriIiMhfiaysLFitVpw+fdrx2uHDh9GtW7dW+46Qi3huLvDjj0BE
  BFArLiMhIiLyF0KpVGLKlCl48cUX0dTUhB07duCnn37C9OnTW+07Qi7iTU30u00boL6ecsU/+CCk
  RRIRERFpNRYsWICmpiYkJiZi2rRpWLRoUaulFwKXQIrh0qXAjBnAsGHAkSPAiBHAypWhi2GJiIhc
  XlzKKYbN5bJMMWROPC0N0GqBLVtCWx4RERGRy4lLRsSjoykuXl9PQ/BFRERERAJzyYi4Wk1CLpMB
  dntoyyQiIiJyuXDJiLhKRSKemQkYDIDNFtpyiYiIiFwOXDIizpx4mzb0tzg1rYiIiEhgLgkRHzEC
  GDCARDwtjWLiboOcRERERES8EHIR1+uBWbOAgQOdIh4ZCbTi1AIiIiIif1lCLuJNTYBSSX9fdRVw
  5ZWiExcREREJlktKxGfPBiZMEJ24iIiISLBcUiLOEJ24iIjIX4UFCxagX79+CA8Px8yZM1t9/0GJ
  OMdxYziOy+M4Lp/juGe8vP8PjuMOchx3gOO4oxzHWTmOiw5m395EXHTiIiIifxXS0tLwwgsvYNas
  WX/K/gPOJ85xnATARwBGAigDsJfjuDU8z+exbXiefxvA2xe2nwDgMZ7n64MpgC8R12qDPQQRERGR
  S5dJkyYBAPbu3YvSP2G+7WCceH8ABTzPF/I8bwGwAoC/lTBvBRD0cs5NTTTQR0hcnDgtrYiIiEgw
  BLOyTxqAYsH/JSBh94DjuAgAYwA8GMyXf/45UFJCg3uExMcDJ04EswcRERGRwHAvtXx9Nn7upTlT
  Ymsvz3YdgB3BhlK2bwceewyIiXF9PT4eqKpq5ZKJiIj8bblUBbg1CEbESwGkC/5vc+E1b0xFgFDK
  vHnzHH+XlAzDuHHD8N3x77A6bzWWXL8EYbIwxMcD1dVBlExERETkL8i2bduwbdu2oLYNuCgEx3FS
  ACdBHZvlAPYAuJXn+Vy37aIAnAHQhud5g499uSwKMXkycMcdwGLjdViXvw4nHzqJrLgsHD4MTJ9O
  i0SIiIiI+ONSXxTCZrPBYrHg5ZdfRklJCT777DPIZDJIpVKPbf+URSF4nrcBeAjAzwCOA1jB83wu
  x3H3cRx3r2DTSQA2+xJwbxiNQHg4kF+Tj9iIWJTryvF74e+Ij+dFJy4iIvKX4NVXX4VSqcQbb7yB
  5cuXQ6lU4rXXXmu1/Yd0ebYRI4Bn51hx3S41ru10LW7tfivuW3cfdt65D30yMmEyAVzL+yNERET+
  wlzqTrw5XHbLs5lMQK39HFI0KWgX1Q5F2iI0mBpQYShCeLg44EdEREQkECEVcaMR2KfdgD7JfZCi
  ScHxquMAgCJtEdLSgKKiUJZORERE5NIn5E78y9PzMXfoXKRqUnGs8hgAEvHsbCAvL8AORERERP7m
  hNaJm3jUmM6jW2I3pGpSkVtFCS/zfpsHdP1eFHERERGRAIRUxA3WJoRJwyGTyNAhpgMMVgPkEjkA
  QBu3Fbm5AXYgIiIi8jentUdsNgsj3wC1XAMAyIjKgFwix209bkOyOhl55+px5kwoSyciIiJy6RPa
  mDgaEBkWCQCQSqToGNsR8cp49E3ti0Z7FfT6UJZORETkciAjIwMcx/0lfjIyMpp9/CF14iZeh6jw
  SMf/WXFZiI2IRYIyAVprJZqaQlg4ERGRy4Jz586FugghJWQizvOAVdrgIuLTe05HmiYN0eHRqDNX
  iSIuIiIiEoCQibjJBMiUOmjCNI7Xbux6IwCguqkaNcZK8KKIi4iIiPgltCKucsbEhcRGxKLRogOM
  FgDy/33hRERERC4TQtax6RBxhaeISzgJYiNiYQ+vhsUSgsKJiIiIXCaETMSNRkAS4RpOEaJWqBER
  2QhD0HMiioiIiPz9CKkTl0R4D6cAgEquQphGL6YZinhlxQrgb56UICICIMQxcRLxVK/vqxQqhKmb
  xAwVEa988QVgswHt2oW6JCIioSWk4RRObkCELMLr+yq5CmFqvSjilyD79wOnToW2DDqduIQfACxa
  BPz0U6hLIRJKQhpO4eQmhMnCvL6vUqggV4kifinyxRfA6tWhLUNDg7iYNgA88ADw1FOhLoVIKAmt
  iMvMUEgVXt9XypWQRYgifiliNod+wQ7RidMzBNC8+zZbaMsiEjpCJuJmMwCpbxFXyVWQiiJ+SWI2
  A42NoS1DQ4Mo4jodEBsLxMeLC6j8nQmZiNtsCCzi4WLHZksxGIDz51t3n6F24jwvOnGAzoFGA2Rn
  Q5y2+W9MyETcbgd4iR8RV6jAhYlOvKW8/DKQnNy6+zSZQuvE9XoS8r97TLyhAYiMBNq3BwoLQ10a
  kVARUidu5/w7cU4hinhLBztFR9PvmpqWl4URaieu0wFSKWXIGI3/m+9s7UFn7L42m+nvs2fR7DER
  zIlHRPzvzoPIpUdIRdyfE1fKleAU+pB3oIWSwkKgX7+W7cNup9+//97y8jBCHRNvaADS0ykWPHXq
  n/99v/wCKJWtt7/qaiAtjdaQTUsDhg8H+vYF7rmnefvR6ciJh4eLIv535pIVcZVCBUmEvlUd5OVG
  VVXLQwZMbIuLW14eRqhFXKcDwjIO4d11P2HrVqC+nsIr7Ke1OX364j7nq0wnTlCZ77+fBD0vD9i4
  ETh6NLj9sb8bGsiJiyLeOvwZ987/gpDGxAOFUySKpr9151VDQ8vFUq8HEhKA0tLWKRMQ+nBKcU0N
  Tg8cjenrbsC46/WIiQEkEvqRSoFVq3x/9h//AL7+unnfdzEC+cknzjK98ILre7m55MB37gTuvReY
  Ng3o3p3CQ75SBTduBGQyct46HZCSQq2QyMi/bzjl+HFgzJjW2dfixZdvvv0l7cQh1/+tO690OoqX
  spDIxdDYCGRlta6Im8w26BpbUKgW8lvZesTpB6NzfGc8+9YpF8f75Zf044tdu4C9e5v3fSwfuzks
  WQL8/DP9dm8F5eUBjz1GleEnnwALFlC4JimJYuPe+Oor4OOPgQ4dgP/8x5lx9Hd24vv3A4cOtc6+
  li6lc3w55ttf0h2bNpn+b+/EAbSoc1evJxEvK2udMgFAcdYc1GYs9vn+0qXAN9+03ve5U9fYBLUk
  AZmxmcivyXd5b/x4YOtWz05CqxWYNIlCFsGm402YAGRk0AjV5lBaCuTnA8OGOZ2zkLw8Sgt0p3Nn
  +pw7PE9OfOJE+tyqVbRvgJz+5STiPE99GU8/3bL9LFgAvPUWUFmJFk9XXVkJHDkCtG0LXH118z//
  4ovAr7+2rAwt4ZIVcbVCDQt0ooij+VkLQv4MJ26RaGGS1PqMIR45Auzb13rf5055lQFxkRHIisvy
  EPHYWKB/f3LBQv74A1izhs5lXl5w3/P77yScBQXNK9/atcC4cUB+3XG8Xnyt4zoycnO9i3hsLMXK
  3ampIbFOTga6dCER79aN3isvv7xEXK+n4/nvfy9+HzwPfPABcOwY/V1e3rIy/fQTcO21wPbtFKJp
  Tj+c2Uxl+fzzlpWhJVyyMfFEVSLqLOf/tiK+eDHwf/9Hf7O4+EsvNV+M9XpyeBcj4kuWkPi5Y4MF
  vNToM+2uqenPG4jz1FPA3kNGJMWFIzs+G/vKPWuLyZNJSBm5ucB99wFduwIDBlAoIlDrhqX+9e7t
  +vqaNcCPPzr/37DBNQa/ZQvl5k+ezOPhjQ/jsPZXNOictV1TE31/+/ae36lSAevXe8ZmS0sphg6Q
  iOt09BugePilIuK7d1OrZc8e4JprSBAZL7xAbpVVUu59PZ98Qlk63lz1ww+ToTlyhPoQ8vPp8xoN
  EBUF/PYbcNddzu0ff5xaKv76Rhi//gr885/AlCl0/rOzg6/kLRbgxhupcl27FnjvveA+19oEJeIc
  x43hOC6P47h8juOe8bHNMI7jDnIcd4zjuICNi0BOPEWTgsqmCjTo+L/l6j5PP+0UXubElywBDh5s
  3n4aG6kTzGCgkEJzWLWKmvHu2HgrIDX57HRtavrzBuK8/TZQrzMiNSECN3S5AXtK92BX8S6XbQYM
  cI2Vfv45CcT+/cB331FzPpDbqqkB4uKoU1jIjz+6PqyrV1MKIuOdd6jzVN5tHaqbqiGXyFHf5DxR
  +flAp07UAeuOWk2drm+/7fq6UMQnTybRmjGDwgAffnjpiPiHH1IF9uGH1En72WfO9159FXjwQRLx
  sDCgrs71s6tXA9u2AbW1rq83NgIffQSsWwfMm0f7PHQIuOoqCo2NGEHnW9gP8t13dM8Hk1a7Ywcw
  aBBw8830f3NEfPt2SgPevp3ugVdfbXlo52IIKOIcx0kAfATgWgDdANzKcVy22zZRABYAmMDzfHcA
  NwXabyARV8qVCJeFIzq5zuPC/h2Ii3P+3dhILZeysubHthsbSRzUas/Y7I8/+g8VlJZSJ9rSpa6v
  23gr5EqjzwwVb05cq6VmZ6sgNyA1KRyaMA3eGPUGHtn0CHhBbIfFlgsKaKrW1avJiYeHA23a0AAo
  b2ELIdXVJPbx8c7XeJ4e8J07SUABcvnsWHU6arnccw9wrOooJmRNQEx4HBosVGOYzRQ/9RZKAega
  Cb+LUVoKpF6Ydl+hAIYMoY7QhAT6fTEi/sYbdG/U1wOzZ3tvcTWHr74iobVYgG+/pfO+fLlrqyU3
  l8S7fXvP819RQb+FoafycuCRR+jvV15xOmsWjsrIoMqNXQuAzlt1NcW2A11jgMzG8OEAx9H/zZnC
  YM0a4JZbgMRE4MorgY4dSdBbm0AtimCceH8ABTzPF/I8bwGwAsD1btvcBuAHnudLAYDn+YCNaauV
  hw1myCW+F0JO0aQgKq38bxlSEYq4Xk83psVyceEUtdp7B9uSJdT890VpKTWR33zT9XU7LAhX+Xfi
  7tds1SrguedalotrtVKa3ZSbjYiMCAcA3N7jdhTWF6JMV4Y6Qx0Olh+ERkPx5Wefpalaq6qAXr2c
  +4mO9nSC7lRVkUgKnbjFQg94jx5Op5+X5zzWo0cpzBEZCTSYGqBRaBCnjIPOSi7k5En63Msve/9O
  lcr5t1CYhE7cG80V8cpKCiHs3w98/z39vPRS8J93x2KhEMby5cDmzRQSGj2aWhT/+Add83C6XCgu
  JvHVal2zrkpLyT0L71GW3XP99RSOWbSInou8PGc46fHHyXlLpXQOdDqq6JKTA19jwFlZMxITg4+J
  79vn2hE6eXJwIZzmsmGD//eDWdknDYAwSaoEJOxCsgDIL4RR1AA+4Hl+mb+dWu02cJBAKvHSrrxA
  ijoFVUnlqK7uFkQx/1oIRby2Fvj0U/pbKOI2G900N97oez/MiWs08Ohgq6/3XSksW0ZCxnHkaC0W
  QH6hvrXBCoXSGFDET5ygz1ss5ML1eqCkhB40kwno08f/OXCnooIeuNhEAyLktJgIx3HIScnB/vL9
  KNYW46f8n7Bp2iZkZzuPNzvb6bQA30585UrKYJHJvDvxwkISo0GDSMzr62k7JuLCDssGUwPaRrZF
  gioOx7ga2O0kPn37OgXIHaETf/55cnldu1Kcec4c3+clkIgfOECC+csvdN5ZuKC6mlop8+eTGM6d
  6zxPY8ZQvNhkoo7xhARym5oLS+JarRTmqK+n69KxI2XzAFTJAcAdd1AIZNs2CqEkJlKYJT6eWhCN
  jVThmUy0n/79Xe/RyAsrN/bqBdx2G4UEH32UzjPrN+jQgX4efZTE12Si/QfT2mLnQHiNIyKCm2KB
  5z07qCdPBoYOpd9nz1Lrady4wPsCKIyWn08V0JNP0vliBGoZtNbybDIAOQBGAFAB2MVx3C6e5z3W
  f5k3bx4AYMcuC7gU3wIOkBNviC/7W+aKsxs4IYGc0g8/0P9C0T19Grj7bv8irteTw/Mm4nV13kVc
  r6cHEKBUwWefBc6coTAFzwM8rJBH+A6n6PUk1E88QQ9r+/Z0cw4YQAKyeDE9LIt9Zyl6hTlSo82I
  cFm44/UrUq7AgfIDKNYWo7yRUhXS06kVAXiGL7w94DYbcPvt1OfQtavz4Y6KIpdns1HHWnY2ifCe
  PU4BfP992ofQIerMOkSGRSJeFQdFVA30et9ZKQzmxG+4gUT31VdJyNPSnALpjUAiPnQoCWbfvpSC
  mZ0NjBpF5f39d7rG0dHOEaN799Lrx4/TqNLZs+n433yTWjYAxeUXLKBzlpxMcXB3OI4EbcECOoaI
  CBLx6GjnNYiMpLBJcjK9JrynDAZafm/6dOdx2mx032dkuH5XQgKZDrOZ/m6OiAtbW8GKeGUl3RfC
  z2Zn07Ny44303VdcEZyIV1XReX38cergHTkSMBi2Ydu2bQCoEvZHMCJeCiBd8H+bC68JKQFQzfO8
  EYCR47jtAHoB8Cnir7xVjx36BX6/OFWdilPRZaiuppr/8GE6MX8HzGb6nZLiuvyWUHRLS+mm53lX
  p8mwWskFh4fTw7J7N7kk5qa8OfGdO51NX4BGBf773yRAnTvTPjmZBdIw/+EUgJrWkZGUKfDII9SJ
  tHw5Nbe7uTWudu2iYx461Ps+eZ5aBykpgMHiuqzf1RlX4+lfKPG4opGCq9HRzjm23Z2vtwf83Dn6
  /tJSVxGXSKhVxHKJu3Shh/XRRymW+thj5JJXriTn+vzztL8GEy0CHhcRh7CYGuh0JJpjx3o/PsDp
  xKdMofOQk0OfuflmiuX7ItCIzQ4dqOxPPumca+b118nhDx5M1+iGG+gHoGv01FN0nPPmkZivW0eV
  1v330+/Fi4GZM0m0/DF5MsXwR4ygltypU/Q3C2mlpzsrZ3ejYTTSvdOpE/3PcbSNVgvExLh+T3w8
  XTOz2dOJ79lDrULGyJGUEw4E58R5nsJgERFUXqWSjJW3CvnRR4GFC6kls26d72fTbKZ7xmymsMzo
  0XSuT5+mZy0zcxjGjh0GvZ5MgsHgO94VTEx8L4BOHMdlcBynADAVwFq3bdYAGMxxnJTjOCWAAQD8
  NgLMNjOk8L40GyM9Kh1WVTGqq+lAZ84MorR/EYxGqsX79aML/e9/U+zv3DlnXLm0lBybr3Q5rZYe
  UHbzP/kkCSjDXcRLSihUsHUrfe+SJfR6RoZTEM1mgJNawcn9d2zedx/dfJ07U2wzLY2axABlKeTl
  ucbHZ80iUfQVxzx0iI7/rrsAo9XViV/b8VqkRaahSFuEOmMdLDYLoqPJfQ4aRDFVId5EnDVZ2fk4
  eJDCCADFY6OjnU68Xz+6F+fNo2avzUYtot696fuACzHxMA3iIuIgj6yBVkuVmD8TwkT8i9q70OZz
  Dk1mE3bu9O/egeBi4vfc4+rm09KodTVpkue28fHkjpm4PfsssGIFVbTr1wMPPUTOWZjW54uBAyku
  fs89tL9Tp0iAY2Kc12DvXqo43fttDAYSTiGRkdTf4Z7dw0SciTK7xhYLCerWrRTW+fprSllkBCPi
  R49ShTpyJI2azcuj0NPs2Z7Hy3HUFzBvHl3PkhLv52X5cuqs3baN7tN//pNez84m5z12LJV78mSn
  MfBFQBHned4G4CEAPwM4DmAFz/O5HMfdx3HcvRe2yQOwGcARALsBfMrz/Alf+wQAi90MKbxnpjDS
  o9JhDCtEdTXV0E1N1DHChli3dFKnQPnMBw607iCZ5mA0kstLTaVm8O23AzfdRDcZy1BhZXMX09JS
  cszCpiILz7DjtVgo7FFWRi7TaHSum7lqFd1E7CEVPlwmEyCRWcHJ/Dvxl14iV9K1K+07LY1c39Kl
  lP8ulTqHjlssFEO85hrXSkbIqlXAnXeSW3QXcY7jsOG2Dah7pg4JygSc1593TME7fTqVQUhMDAmY
  MA2RxYnLymgQydatFHoASLRiYqgl2KULhVg++4yOhzF1KqUysvOtM1E4JU4ZB6mmBsuWkdj6iocD
  znBKnY1qzPQrjmHfvpaLeGkphWaEMfe0NBIc9woOcIoa+52TQ9sNHUoCeM89dPwpKf7LBdB1fust
  Oj/x8RQ6YOGUmhpnOGfSJKcTLyyk+7SmxlPENRpX0RWWefduct0sDNbQQK23rCzKnlm6lDJntm6l
  fbMBYcIZKr2J+KpV1CKrqKCyLlhAx8NMiTsTJ5J56dLFd7riqlUkzkuX0g+r3LOz6T7q35/+zsmh
  StAfQeWJ8zy/ief5zjzPZ/I8P//Ca5/wPP+pYJu3eZ7vxvN8T57nvUTIXDHbTAFFPCM6AzpJEaqq
  nPOIjBhBvfxbt1LTpiUsW+a7w8hgoBP70EMt+46LxWh0dqIJL6LwxvAl4lOnUlNO6DJYCIX1L2i1
  5GgsFpqz49ln6cZq04Ycl3CQi1DEmRPnZf6dOHswmACxFDmGcCGDM2dIVMaOdcax3dm61TnZkcHq
  7NhkcBwHjuOQoklBua7cIeLsuIVER1NecZ8+JMwAjSC84go6p8OGUWshNtb5GYWCKhpvg3Tuuovi
  /0KE4ZSk9jXYuZMeWm9NawYTWQOvRdeErug++gCuv94z/uuOPxFnGRvuwtezJ91XSUmen3EXccYT
  TwCZmVSZXgysgmvblp7dOXPInLRtSzH6yEhqiXXpQtvOnevdiXsT8ZEjqVI+doyun1RKrdR773Ud
  4h8TQwJ59dVUIbkLsTcR37qVXPO//kXX/8QJamkGondv7/dzYyM5cGYShFx5pbP18swzgQUcaL2O
  zWZjDtKJ19qKXJy4xeK63JivmFMw1NX5no2PNfVaMucIz9ND5H4jemsmusNE3H0uh+xsEtk+fZwi
  XllJcUOOo+88fpx+und33vDuTrysjG7oqChni2PfPrpxXnmFYnQMjcbZ6jGbKSYOid2rE+d5uk7s
  +Lp0IdF0n49bo3EOYmIdfiwE4o28PDoewNOJC0lRp2DbuW3QS6oBjHUctxDZhbt+5kwKU2VlUebG
  m2+SK+J54LXXXD+jUDjL7Q4LOwlhKYaxEbFI61SDjXO9HxcArDi2AnnVeZiaPA8A0GTTYmK7sbDY
  92PR04EnGQ8Pp3tKWHkyysrIMUvc7FpiomfqKIOJrbtYDh9OPxcLm1yqTc/TSKo9ibwF47BypTMW
  r9FQZSoUUW9O3Nvc7lOm0I87M2Z4vj55MpmzgwddzcrXR79GpuRaGAxxLtvn5ZEDT01tnqmbOJFC
  mM88Q6aJnddNm2iwEjMaQtLS/Kf9eiN0CyXbzJBx/kU8JjwGdlhRXquFTkcPfWMjCRF7EIPpgfYF
  26c36uroZmlJOGXPHu8xx169AlcOTMTdGT6cerB79qSyhYVRGOJCRzaqqqjsLH/Z3YlXV9PD3qsX
  hVyYU87NpRvrmmuouSzMWfZw4hIr7FLvKYYmE10bdn369vWeWaFWOwX79GlyeCqVdxGvqiIBSEyk
  /907NoVMyp6Ep7c8jZdOjXM5biGZmfTwPvIINbPHjqX/Bwyga+aekgg40yuFIQkAOFN3xmP+FkDg
  xJVxqGlyTTz+vfB3nKw+iQPllHbwzq538NJvL8Emp5tZb9ViUPognKjyG5EEQMKzvfg/sFi8d5rm
  5lLHZnNQKkk8vTnelnDFFeS4e3yahRdPjsfEiTRnCSMyks6/sLUTrBP3RteuzmwaIVOmUGhSOHbg
  UMUhTF81HQfqfnWpRGpr6VkMJnTkzuDB1Jd0zTVUAZw5Q6+vWkUVSWsRMhG38oGdOMdxSFAmorS+
  Gg0N5MINBhIi1nxsicgyd++N+npykZWVFz89JRNUITxPFzbQKFRfIn7LLdS5WVlJv7Oy6JwcOULv
  5+XRQ8hGEgpFXCql19hMeYWFzhjt2bMUSunXz3NkpTBrwGwGILXCzpm8tmLc3WBaGoWt3BEKdlUV
  NeuFwi58Tp3eAAAgAElEQVSEpe4xYfXnxGf0noGp3aeiV+xVAODViV91FbmwXr0oRvrbb/RQ9ejh
  nGTKHebEhZUbACw7vAyf7f/M5TWr3QqzzQylXIm4iDjUGFxF/LHNj2HI0iEYt3wcGkwNyK/JR0ZU
  BiosBQB4NJi16JvaFwW1/mfe4nket/94Ox7YcD8AcrHug6nWrPHebA+Ee458azB+PLD5ZzvsvB1t
  IttgzRrXSlGjoftz0iTnPRhsTNwbx49TTNmdlBTqJGf3E8/zeGTjI0hWJ6PKVOQi4mzGyYtp7ctk
  wHXXUYf2+PHU52Q20+Adb30RF0vIRNwShBMHAHVYBBqaDC6jqIQi3qMHxcgvBhZn90Z9PTm/2Fjf
  q8Vv3+4/Y6ax0TNWqdc7Fxo+edL5gL3/PsXcGL5EHCAxTkqicrEMCpZdUVBAoZCTJ6lnnDXhMjIo
  vl5V5Yypd+vmXP5Nr/f9cHjGxC2wceTE+/en+PEnn9D73pr03lCrna2gqir6bpXK+Vp9PTkpNkpS
  2LlntBo9YuKOcyOR4h9X/QM2jk68NycuZPBgcoiTJ1PIYdo0OiZ3FAq6Hu5ZEXqLHgaraxBVZ9JB
  rVCD4zgPJ87zPPJr8lGpr0RMRAz+tftfkEvkuLLNlSg15qNLDyM4jkOHmA5oMDWgweSW3C/AYDVA
  wklQ2lAKyJtgsTjDZQcOUJx47VrvrcFAdO/uPf7fUgwWA6ScFJX6Stjsru6IpVH27eu8bu4i3qED
  taRak5KGEpysOYnHBjyGCoOriB865NkxLuRc/TmcqDrhMu2DkOnT6d56/HEKrTzxBA2Muhhn74vQ
  ibg9OBFXKpSITTS4zLMsFHHg4leZCeTEo6PJSfpy+ydOeJ//maHXe4o461jU60lomfiePOnaCeIt
  li4kLY0EmgkvE+aGBhLsXr2ckz0BVFl8/bVzObDnn6dOoGuvdc5v4T7ZE0PoxE0mABIrrDCitJTS
  w5YudU4tGqyIC504azEInXhhIZ2b335zHUQDkHj5cuIATWNstNOOvDlxITIZHQPrJJ8/nzrD3FEo
  PEMpAKA362GwuIp4vbEe0eEU8IwOj0ajuRFWO80+VtFYASknxfSe0zHn6jl4/7/vIysui+ZGr83F
  1p1aRIVFQcJJ0Cm2EwpqfLvxOkMdklRJ6JLQBbvOHMGVVzrvp337qEMuMZFEo7ls2EAZFq2NwWpA
  VHgU4iLiHDn9jIEDqTPyttuc1839GZgzh+LcrUmlvhJpmjS0j2mPMn0RzGZn65tNK+wNnUmHLgu6
  YOjSofjswGdetxk+nHLKhw6lDta9e/3n/F8MIRVxKXzPm8KIkEUgLqXJZeipu4h7G2FVV+fa86zT
  OWcqE74WSMRTUz3j13v2UK1aWkrbTZhAHRfuCJ34Rx/RqEvmlBobnZ8HSNzXr3fW+v6cOEAizgZI
  JCaS2L3zjnOY/dSpFHIR1vhs9r533nF2EgLODpZgnPi0aQAvscLKmxwpek1NJB6LFlH6lTexc0fo
  xJmIC504qzhXrfLuxP2JuEqhQpNVj/j4wCIOBNdUlss9QykA0GRtQpPV9SYqbyxHioZOvISTIDo8
  GnWGOpTpypD6birilHH4avJXGJc5DhGyCAxIG4B+af3w2u+v4cfcHx0VQGZspt+QCqsseib1xNHz
  R9GlC+UfP/QQVXxqNYXfLiUMFqqA06PSUagt9HifXQtfTvzPoKqpComqRKRHpaNIW4TwcLrvnn2W
  Br/5WgLuUMUh9ErqhYXjFmJ13mqf+2fHFBNDIVBvHZotIWTZKTbeBikX+OuVciViEgzYKZgSlYn4
  jBkUy/Um4uXlNGKQUVXluVBAME5cq/V0+seOkWBNnEi5o8eP05St7iuvC534xo00hJh18un1ThG3
  2+mYdDqnk9Jf9Sye3qbDwgkfeS1fWhq54shIivsNHUpx3rQ0KveDD1L52Mg0gDpBi4rofAnTMwOJ
  uEZDZauvp/OakGRBtcEImdSZ9ZCXR3HM3FzKDw+ESuWs+Lw58dJSCv+sXk1umYk4z/MBRVytUKPR
  3IiKIv8VYXPw58TNNrPLa2W6MqSonbWn1qTFlV9ciacG0oQfaRqazSo2IhYlTzhHg9za/Vbk1+Qj
  KjwKANAuuh2KtEU+y1RnrENMRAziI+JRa6jFNdfQPSiVUojoyy8vLpRysfA8jztX34lbu9+KsZne
  h6YarUZEyCKQEZ2Bs3VnMbDtQK/b+XLiwfLk5ichl8oxf9T8gNtW6iuRoEpA++j2OFV7CuGROrz3
  ngY7d1IL1ldI7kD5AeSk5GB0x9G4+6e7UdFYgWR1ss/viY4mY9XaIh66jk27FVLO/9wpABAhj0B0
  glNpFQoSZIOBTm5kpHcRb2x0Dknfto2a/Ho9bTtkCN3g/px4XZ0zNa6piYbSfvUVOU2W4bFmjXPG
  MzZ72bJl1JHBysBEPDeXflg4hTlxnqdyVFc7a+zGRoC/4mN8vN/3tATp6STQMTH0OzOTysRmLeQ4
  2sbdZSYlUWUiTDkLxok3NFDIJzsbsMMKk9WEseN4DBtGoQ6plDpro6K8p3q5EygmXlpKYwKiouhv
  Fp81WA1QSBWQcL5vXZVcBb1Zj/Dw1lu+XKHw7sS9xcTLdeUuIm61W3Gm7gze/ONNLJ+yHFvv3Or1
  O5RyJcp0ZYgKIxFnztAXdYY6xITHICo8ClqTFuPGUaWVlUWtxZ49PVML/0w2n96MX878gltW3oKF
  exd63Ybl+PdM7InD5w87Xl+4dyHGLR/nqBBb6sTf3f0ulhzykvvphUp9JRKViUhQJeD67Oth6vM+
  du6kMJS/e/lgxUHkpOQgKjwK911xH4YsGYJt57b53J5NFdBcEf/8gP9lg0K3PJs9OCceIYtAx2x6
  SFQq6tgoL3eGG3xNWKPXU6eYyUSx5p9+opS6s2dplNi2bYHDKTExThFfupTyPVetIsFt29b5vSkp
  5PqNRhpkw6aOZE7cYKAYr3DaUubE2XdVV1PTrV07SkXirBRYXrDHu5Dffz/w4ktmNPX8F/7v/5wC
  yMIpjCPnj2DZYb8TSjpuLl8xcZWKjuH4cRJxq90KHjz+9aEFq1bR8W7fTnHxkyepkgwEi4lbrVRB
  xMQ4X+N553wav/xCnXQsZbFIW4S2kW397lsulUMqkcJku4gVjn3gz4k3WXyHUwCg6qkqPH7l4+A4
  DlO6TIFM4v2+V8qVKG8sdzjxgCJ+wYlHhUVBa9RCo6Hm+h9/0L3E5hzxx4f//dBv5ynj30f+7bUs
  erMe83fMx+KDi/HV4a/wUL+H8I+B/8DGU15WE4EzPTQnJQcrjq3Al4doNYevDn+Fjac2Or6jOU68
  Ul+Jj/Z4tlg7xASXW1mlr0KCim7+Ee1GwBBxGnI5nUN/UwsUagvRPprcxWsjXsMzg57BtB+nYcaa
  GZixZgaWHlrqsj0T7+aK+B/F/id7D52I81a/09AylHIlMrvSQxIbSzdmVRU97OHhzoEO7rBmuU5H
  7zMHzOYAMRhIPIxG76vJ19eTC1QqnesyVlTQfqqrnZ0rcjkJW48e1JEkzP5obKSK5ORJckcNDdQC
  kMnovZIS+nxdHTn6nBwSrueeA3gzifjrO173el7UasCkKMPrO+ciLs4ZimCzFjLmbJ2DO1bf4fcc
  s/lVhE681lCLrWfJMUoktM/duy9MgnWhk04dZUJkJDn+rl2pQzUpCTheeRx51f6XR2FOvKaGbmqp
  lM6FXE4Vb0kJ9UekpZGjZOTX5CMrLsvvvgEKqZTpyrDt3Db8mPsj7LyXiyxgX9k+vL3zbcexuePX
  ibt1bJY3ujrxeGU85lw9B5unbfYbBlLKlTjfeB6RYaRgvuLGAAnPmpNrXJw4QOc/JobSKANRb6zH
  45sfx76ywAuiTl81HWOXU4jkdO1pvLr9Vby6/VXcsfoOPPef5zBr7Sx8c+wbXJF6BYa1G4Y6g/dJ
  cJgTz0nJQXFDMe5ddy+OVR7D0cqjyEnJQWE9HS9z4t7CYWvy1jiu07HKY7hv3X14eKNzQpSvj34N
  AIiLiPP8sBvn6s9h46mNSFTRIASlXAnIm9CuHfU1+WvJlOuclbVcKsesnFlYNGERhqQPQaIysdVE
  3F/nNhBSEQ/eifNSA/74g1KPoqNpVjk2t7M/Jw6QcApFnA31Zq41LMy7G2fLcymVNGkPi4uzSXZy
  cihskp5O4nf11ZQRUF0tiGtfKMO5c+Tcf/yR5kN54AEa4FJeTvs5d44EQqGg71u/HoCFLIjO5Dv1
  ptHciEZzI3ie9+nE45WBk2olEnIdwk7ADQUbHDMDAjQYZtkyctkWmwVyiRxGq/ex3jmf5qD7wu5e
  32Mw1332LLU+hK/X1NCoVJb+CJBwGCwGFNQUBC3iSw4uwfAvh+OG727AyhMroTPpcLbuLLRGz17o
  j/d+jKd+eQqnaj0m3gRAlYs3J95kaXJx4pX6Smws2OjixAEgThmHTrH+rbFSrkSlvhJqOX1RRlSG
  w5keqzyG/Jp8fHP0G3xz9BvcteYuRydoVJhTxIPFYrPg7Z1vw8bbvA5WckfCSXCi6gRsdhtu//F2
  nKo9BaPViB6JPbBj5g68OORFAEBOSg7iIuJQa/A+EII58SR1ElbcsAIze8/Eu7veRZvINuie2N1x
  vOxce3PiM9bMwM+nf0Z1UzWe+89zLp2KPM9j9vrZuKv3Xag3UtZAXnUebHYbbHabxwCq+Tvm42jl
  UWgUVGuQiOtd7klflOnKkKpxnU9iQtYEzOgzAzd1uwk6s+uzy8TbfQbGQAS6PiHr2LTarZAEERNX
  ypUwWAwYOJgurEpF7uz0aRJAJuLffUdNc5aRwgSUOXE2tWtREX2+qsrp5BcvppS8Hj0olnjmjGvG
  xIED5DRPnKDXWQx30CC6MPHx5MY3bXK+b7E4WwPl5bQdG8qu11Pe6E030d8FBU4XfPbshQO3kBPX
  mXWw83avMWCdSQcbb4PZZoZaHebVicdHBDcy4sorXf8vqClAfk0+eJ4Hx3GYPJkqp8GDAesOK6LC
  o9BobnQ0Q4VoFBqPAS7uqNU0QOm771zTB8PDKZe2WzcaeMN4YP0D6BLfBUarEb2Se3nu0A2VXIU6
  Yx3UCjWuTr8at6y8BbP7zsam05swtdtUvDbSdVx9VRPV8uW6cmTHe8445S+cwl3oeOB5Hrf+cCt6
  JvVEToqXUSYBUMqV0Jq00ISRoMRGxMJsM6NKX4UeH/eARqHB6I6jIZfKHSGl0oZSjGw/0mvF5I/d
  Jbvx+YHPMSl7Eg5XHEaTpYkEDIDWqHWEdAASXrlEjjhlHLYXbkdJQwl2ztrpck/2Te0LqUSKRFUi
  bHabz+svnPfmlu63oKqpCs9vfR7jMschPdIZPpJK6T52F3GLzYI6Yx3Gf00DLDQKDV4c8iJe3v4y
  DBYDynRliAyLxBNXPoGpP0yFzW7DoMWD8Pl1n6OgtgDPbHkG9hft4DgOPM9jfcF6PNL/EQxtN9Rx
  DZgT94ferIfFbnH0X7gTGRbpEaby58R5nseR8zRir2dST8c9lVuV69Hn4k5Inbiv2KCQCHmEw+ko
  la4iHhHhFPFbbqHJdBhMQJkTZxQVUbO/ooKabLW1lE0xaRLNzDZ3LmV2lJY6VyApKKAKY/lycmRn
  zzrjxzEx9HeXLs5RkrGx9HlWhooK1wunUlGFM3w4vc5WOwHIre/eDXTv7FTiRrP3CUVYTd9obvTp
  xOVSSuNs7kOeX5sPnVmHSj2tEzZjBs0fIZVSBRyvjHc4HXe8Cbv7wA6Vis7Re++5pg+WlZGws4UW
  GI3mRizctxBr89eiX2o/BEKtUKNQW4hH+j+CN0a9gTRNGpYdWQar3Yr1BZ5TJVY1VaFtZFuU6Zz5
  pMIQjLdwip23Q29xxsRP151GblUuNty+wW+Wgi+YiKoVdAE5jkN6VLojJvpw/4ex8uaV+OaGb7Bo
  wiI8NuAxTO4y2SWcEiz5NfkY02kM7ux1JxbtX4Sbvr8JRqsRu0t2o9OHnWC1Wx3HX95YjmR1MjrH
  dcaWM1vQMbajh6lQSBV4cSi58TglOXH3ATB23u7ITmFkxWVBa9IiJyUH6VHpKKgtcNzvS5YACYmu
  YbDqJue0ox1jOmJWn1l4afhLaBPZBlVNVdhfvh85KTmIiYhBnaEOu0t2o9ZQi/UF67FgL/UvsQom
  vyYfEk6C98e87xJO6dyjCfMDJLWwkBnnIz9Vo9AELeJaoxYf/PcDjFk+Bld9cZXDedt5O0b/ezRu
  6eY/TzS0MfFgnfiFmkipJIFii6MKwykeI+kETlyYU15URCGQigrX8IHBQJ2WLOxSW+sUcYOBxPq2
  20iwz593ii5z4p070+guhYI6X3/7zemqmRNnMDHo0oX2KxTxHj1oDo+UJGcF5yukwm52vUXvMyau
  N9OJ8NdB5o38mnwo5UrHDRUdTfNe8DwPi92CBGUC6oze457uIRye59Hj4x4uTVm2/JRC4TnV6pQp
  rqEUgBzcA30fwMSsieiXFljEVQoVirRFiFPGoUdSD/w8/WfozDo8N/g5nKo95VEBVeor0Tu5t2Nl
  oFpDLdr/qz1yq3Id5XR34gO/GIjqpmpHTLy0oRQdYzsGZU68wUScNe0Biov/Xvg7hrUb5tF6eG/M
  e5iQNQFRYVE+K1RfsL6F3sm9oVFooDVqkflhJpYdXobqpmp8f/x7SF+WotZQ6wgbZMZmYsvZLUiP
  8j99qEKqQLgs3EXE9GY9Ut9Jhc6kcxHxzFgafnlFyhXoldwLm05tQtybcag31kPRYw3kr7o+2MxU
  yCQyHJ99HO+NeQ8AkKBMQJW+CrtLdqNfaj9Eh0ej3liPdfnrMLX7VKw4tgJSTop+qf0c9/SB8gPo
  l9rPRYiVciXkyiaXGSy9IYyHeyMyLNLjuQ0LI70SasF3x79D8jvJeGvnW/h52s8YlD4I5+rP4aeT
  PyHrwyzozXp8dp33gUSMkIm4vRkxceZ0Jk6kxHu2aKxQxNkIK1b5+3Pi6enUecY6TxISaDTjoUPk
  Dnv1ovfCwpyjD9mJZ/sVzlc9ciRVCFIpiWhaGsW9i4qc8xB7E/HsbIq75+Z6pvcJm1DsYZi6cqpL
  fIzdJEInrtO5io3eQiK+t2yvv9Pswena0xjZfiRyq13X9mChnThlnE/hYINVWLpYXnUecqtzcfT8
  Ucc2nTrRxPnvveeazbJwIfDuu577bLI0YXa/2fjkuk+CKr9aoSYRv9C51TmuM1LUKbiu83Vey16l
  r0KvpF4o15GIv7D1BVQ3VWPNyTUAaNSe+8g9Fj9n96d7h2ZzcYh4mFPEM6IysKN4h1/hjAqPanZL
  q6C2AJmxmWgX3Q4NzzZgx8wdmJA5AZ8e+BSjO452jEBs+15bXL3kakSFRyE7Pht7SvcgIyrA3LiA
  x5wxR84fwXn9eRRqC12mTEiPSkeKOgV9Uvqgf1p/VD9djQ4xHVDSUOK4RoMWD3LE2KuaqhCvjEff
  1L4IkzkXlUlUJaL/5/3x7yP/xrWdroVKroLFbsGPeT/i4f4PY1afWbip603oGNsRgxYPwvRV03Hb
  j7d5hL2UcqVHtpE7pQ2lGLVslN9ropQrYbKZYLFZXF5/5RXntMyN5kY8sfkJbJm+BSVPlKBHUg+k
  R1Jn9tNbnkaZrgw5KTk+3T4jhBNgBZedEiGPcDidYcModusu4jU1zvg2c93uMXEGC6cATic+ejS5
  vw4dSLQzM52i6i7i1dUUq2W91hMnOkdZskUC0tKc3xkT4ynirCKIj6dty8s90/vYMTNHw/M8Np/e
  7NJTzZx4o7kRUilVOtXVriLeZGnC/Vfcj5d+C345c5vdBp1Zh2HthuFQxSGX96x2K2QSGWLCY3xm
  IAjFGwA2ntoIDpxLBRQR4VwdRXjsDzzgff5sfzMXekOj0KDeWI84JYm4VCJF8ePFSNWkergkg8UA
  k82EzvGdUd5YjsMVh7EydyU+u+4zrC9Yj9t/vB3fNMx2yfhwj/tabBaP/PDm4h5OAUjk9pTuQXqk
  b8GIDIt09J0E4kTVCQz8YiB+Pv2zR+x/4fiFqH26FtN6TMPukt24ocsNKHm8BCnqFJhtZozsMBIA
  AqZ4AhRS+fbYt3hvFzllNmPjmbozLhk6UokUJU+UOCp+AEjVpKJcV+4I2ews3uloxVXqKzGqwyj8
  MdM17a7eWA87b4dcKncIn9VuRX5NPgakDcD7Y97H/436P0crZ+WJlQCAXkmu/SuBRHx3yW4MWjwI
  jw14DF9N+srndhzHOa6LkCefBHiJGZO/nYzei3pjePvhGJQ+yPF+elQ6fjnzCxrNjbiz151BhQ5D
  58TtwcXElXKlx7BmdxFnc2OzQSkACSVb3UMo4na7UyQ0Gpp2lY0wzM52Dmf3JeLz5nmfPxqg+Zkf
  ecRZvpwhFYgY/KmHiPfr5xxEwLb15sS33rEVA9sOhM6sQ3VTNeqN9Y4OOMAZE2chE5WKOlRdwikW
  PUZ3HI2ShhKf6XPuNJoboZKr0De1r+PhY1jsFsgkMhpK7iOcYrAYMCFrAuZuo0m0j1Uew1Vtr0J+
  bT4qGivw/u73vX7OH94WgvBH5zia+EOYZsZMA4tXFmmL8Nr21/DUL09BLpEjRZ2CMl0Znvj5Cbw8
  7GVM6TIFhysO4+ujX+OnfOdCp+/uehdn6s44/mchP/f88ObiLZzCXK8/1yeTyKCUK/1mMgHA2pNr
  MfnbyRjbaSz+mPkHuie6ZhBxHAdNmAbpUekwWA1IUacgJiIGhY8VYu3UteiR2MOlnP6ICovCc1uf
  w1s738KxymP4cA+tE3O67rRHZeweX09Rp6C8sdwlHMPMS6W+EgnKBI/PNJgaoFaoceyBYy7vze47
  G1KJFBzHQcJJ8MHYD9D0XBNKHi9B3TN1GJfp2rwKJOKfH/gct/e4Ha+PfN3R3+QLbyEVgDKhDBYD
  Vty4Ap9f5zqQJyM6AytPrMS4TuPw1ui38PyQAGuzIZTD7mGFLBgnLovwyMNlzREm4izmbDY7R2lq
  tTQIx92JA85Z0LjYM5jxwnn0a0sWq0sXZzjEXcRZWtBcP5P79+9PP8uX0z7eWHIMN3y0FIYN97qI
  eIcOztXrfYm40WpEelS6o5ebzaHBYoKAqxMHnHNeywX3lt6sh1qhdgxFFzqerWe3IisuC20iaUae
  X8/+ivYx7SGTyBAZFok+yX1wtPIothduR5omDR1jOwblxJssTXhl+Cu47pvrUG+sR35NPsZnjscn
  +z/BNcuuwbHKY3jsysd8n0gf+wxGPBismcycuBB2TtfkrcHzvzofkuz4bBw5fwRGqxEbbtuAMFkY
  hrcfjlpDLYq1tCoGz/N4ZfsrMFmdA4ki5BE4UH4Aa0+uxbODA6wc7AeVnGpfoROflD0J3974La7t
  eK2vjwEAOsV2wsmak+if5mUKRlCM/+61d+Pda9/Frd1v9dsKZhWGMAeaCdaR+4+gc3zgmbE+GPsB
  zjeex+wNs/Hiry+ie2J39E7ujV/O/BKwMk5R0+pMdt6Oqd2nIkmVhPyafHyy7xP8kPuD13Ox5Y4t
  kHASxEQ48/dOPnTSMRiHwVoBvsrgT8TX5a/DmpNrsGvWrqCiCN46NwFqmc7uNxt9U/t6vMdacrP7
  zXa5D/wR0ph4sCmG7ifV3YkzEddogP37Sbx/+IHEsrDQU8TZsPPquLX4ZL8zxjp0KP307UszqgGe
  TjwYevWibBej1QjITLBYfOeG+nTiFnKekWGR2HJmi2NkW5Ve4MQv1PIs7l1XB0BZ7RK20Fv0UClU
  UCvULq5gZ/FOzN8xHxsLnCPrHt/8OJYfWe5Y5FcTpkGSKglDlw7FrLWzAFA4RS6RIyYixmdM3GA1
  IF4Zj8Hpg/Hz6Z+RX5OPW7vfigf7PYhpPaYB8MxWAaiCOld/zuN1nuebHU5xiLiXAR9MxFmFlh2f
  jd/u+g2pmlTIpXJ0SejiiLfOHzkf80fOd+TEsxbRptObMCBtAH669Sco5UrM2ToHJ2tOBpWX7wtv
  MXFNmAY3d7vZJeXP6/Em53i0mgC6zvk1+Vi4dyGGthuKaT2nBRSgtMg0cOA8cqABoEdSDyikgWcf
  7Z7YHSM7jMT4zPFYlbcKN3W9CVlxWag11Aa8jikapxPvmdgTV7W5CsuOLMObO9/EmI5jvGZrpGpS
  PTKCsuKyArpld9j2wlg2z/P44cQPuHP1nZg/cn7AfH+Gt3AKz/M4UH4AV6R4XzF7aLuh2HT7pqDS
  aBkhzU6RB5li6J4nyUZSMhGvrSWRjYykQSss73jKFBoS7r7QABtUg4g6hwACFBt/7jlK/Xv+eRIV
  Fppojoh3706zFhqtRkBq8vv56Gg6Dm/hlAhZBFRyFT7e9zGMNiNu63EbKptcnbiEkzicuMkEaKbN
  ROePnE5Jb9ZDJVdBo9A4ttOZdBi0eBCOVh51ZGOUNJTg8PnDOFBxwLEqDQBkxlGzhYmTixP3EU5p
  sjQhQh6BCVkTsPzocjRZmtAuuh2eHvQ0nhn8DOKV8R55xDzPI/ntZAxdOtRjfyabyTGUPlhSNal4
  YcgLLs6MwR4uVgmNaDcCQzKGgOM45KTkICfZ2dnVJaELuiV2c9yDrILcXrgdbSLbYELWBNh5O3YW
  78TcoXNd4pvNxVs4JVhyUnKwv2y/y2t7S/di8OLB6PNJH7zw6wuYmDUxqH0ppAqkaFJaFN9nTMia
  4Cgf218gJ56qSUWZrgw6sw6aMA2GZAzB2E5j8fWUrzFnyBzHPfln4W4cj1cdx/3r78fCcQsxK2dW
  0PuJDItEraHW0Vleb6zH6brT4DjvFSRALYVrO/lvdbkT2lkMg3goY8JjPJa34jiapS0+3jmSMjqa
  3PWePTRTYG4uOeKkJJp1UCaj3GyGUgnYFXU+m05GqxFJbydhw+TdAAZc1MxjRqsRdgmJuK/JpTiO
  nL/7os9syk7WofPlpC+xoWCDyxwROrMOiapER0w8NhZo11GGA4I6j4UhNGE0AIfneUe6YUVjheMG
  2xJjU+0AACAASURBVFu6F1lxWdhXts9l6HdWbBZ+Pv2zI4/WYgsuJq6UKzE+czwe2vAQRrQf4dLD
  nqBMoEmHLuwToOHPPHivaafNdeEAxXdfHv6y1/dYM7fR3IiMqAzc0PUGx3t39LzDIwQTLgt3OPGC
  2gKM6jAKW85scczNcku3W1BvrMe8YfOaVUZ3vHVsBktOSg4WH1rs+N/O2/HQxofwzKBnYLVbYbKZ
  MD4r+CV+ZvaeiZ5JPQNvGIDB6YNxd5+70TG2o6M/h4P/bIs2kW1Q3FCMcFk4IsMikaJJwWcT/afZ
  tSZMxKPCo8DzPL4//j1u6XYLbunevHl91Qo1Htv0GPQWPXbM2IFOH3ZCTkoOeiT2CJhx0hxCJuJ2
  WCGTBv76jrEdcbb+LE2YJRD97dvpd8WFeeVZuGLjRprUn6UaZmaSiMfHO7cFSMSt8jqHALrDYlmf
  HX8HwHfNHioLkIgbLfTw+5pcCqAJuYTYeTvMNjPCZeEYlznOMcyciR9DZ9YhWZ3scNg1NcAD65Jw
  QGDIhOGUSSsm4YuJX7g0h5kTbzA1oF9qPxysOIhJ307ClC7U88q+m2U+WO1WyKVyxCvjXUI7Qlgr
  IlmdjJu73YxnBj3j8n6iKtHjs4XaQlzV5iocOX/EY8Rgc+PhgWDhFK1Ri0cGPIIR7Uc43ru1x60e
  24dJw2CxWWCz21BQU4DBbQejS3wXtItuBwB48xofKw43E2/hlGDpldwLuVW5MNvMUEgV+PLQl5Bw
  Erw28jW/Mz764pURrzT7M95QSBUOAR7YdiD6p/VHRrT/FMXM2EwU1BQgSZXkMBP/S4RO/MVfX8TH
  +z7GutvWNXs/vZN7Y0fRDlzb6VoMWUp5tCUNJR4dyi0ldCLO2yALMiYer4xHcUOx46EREnXhWU9I
  IKdtt7sO42Yx5/R0cqps6lilErBI6l3CKUKYiJ+qz0NMTOBlvrzBYuLCleOD/VyYLAwcx+HpQc75
  S9Ii03C2/ix0Jmpm1hnqkKxOxvO/Po9rOl6D/mn9ERtBoxQsNgvkUrlLOKXGUIP5f8zH7hJaQkjC
  SRwjFBvNjYgMi8T3N32Pbgu7OZr0fVL6uJwPFk7pFNsJp2pPOYblC2HhFABYceMKj+NLVCVixFcj
  cPC+g+idTMuNF9YXokNMB1jtVhyvOu4yz3RzM1MCERkWiVJdKeqMdUG5TY7jECYLg8lmQlFDEUa1
  H4W5w/z0cF8kKoUKnWI7IUwaFnhjN5RyJWIiYhD2ahhqn67F3G1zsfLmlRcl4H8m/737vwG3SVQl
  wmK34Fz9uZCJuN6iR01TDT7a+xGOzz7uM/zhj+eHPO+SXbL00FLMWDOjVcJUQkLasRmMEweoZv7h
  xA8Y+IXnBPKZmZT7/eyzzvTCKwR9BkzEt2wBDh92ToClVAImiX8nzoSqqNjuMSLUFx/+90P8cvoX
  ACTGykgT1q8HPt3/KdbkrQlqH+5DkxmpmlRMyJqAV7e/CpvdhuNVx5EVS06ZpWCxNMJSXSl4nndx
  4gAcAp4Vl4WclByHE9eZddAoNI4cYCbig9MHY+3UtQ4RZymGcco4SCVS/Lf0vxj+5XDHEGuLzQKe
  5yGX+O5QYnnkwuyWIm0RMqIyEBsR69Gj39pOXBOmgc6kc1lGLRARsggYrUYUaYsCjli8WGQSGQoe
  LrjopjYTh+2F22G0GoPKMb4U4TgOmbGZOHz+8EX1D7QUrVGLXot6YeKKiRiaMfSiBNwb7Pr8ZUQ8
  2BRDgATnle2vYFfJLry6/VWP3Mu2bWmgi1ZLsW9hip1wtXeZzDncOzISMKDOpxPXmXRI1aQiOjwa
  tVZafSWvOg+LDy72uv2KYyuwv2w/1uavdcx1YbQaYbKaIJMB6wvWY+3JtT6Pked5PPXzU3hp20uO
  zBRvvDHqDXxx8AtsPr0ZSaokvHPtO5jddza+PPwlFu1b5IjTnqw+CYPVAJlEBplE5vEw3NT1Jmy6
  fRMq9ZWw2q1oNDc6MlIAEmuGsJedOXGArsuXh77EtnPb8P2J7wEA/9zyT9h4m18hYudcuCIOE0dv
  2UgXExP3R2RYJD4/+Dk2ndrktePTG+GycBgsBhTWF/5pIt5Sfp/xO67Lug6rT64OaqTfpQwL44XC
  iRc3FKN/Wn9HamxrwVI2WzKWwBshE3EewTvxwemDHRP8vL/7fZeBFkK++cZzZXpfcyB8+SVglvju
  2GQZGllxWY6MhG3ntuGbY9+gtKEU6/LXoVhbjM2naA245UeXY9u5bcivyXfMAW20GmGymRwrnB+o
  8EwBY6zOW41NpzfhnV3vYP6O+R5LfjGS1cm4seuNmLN1DnJSciCTyJARnYFfzvyCB9Y/AKPViJyU
  HDz585OYt22eI9VOrVA7OpT23L0Hz139HOKUceia0BWv/PYK8qrzXDrUhJ2WmjCNSziFueysuCxs
  PLURbSPb4ptj38BoNeLd3V7GzLux4oYVGJA2wJHxcbjiMLae2+pTxFvbibPym2wmxIQHL+J6ix5l
  ujJHXv2lRoQ8Au2i22FV7qqLmkXxUmJmn5kALq5/oKUUPVaE32f8jj1378Fdve9qtf3+NZ14EDFx
  ABjTyblSaa2h1iP3khEV5SnaiRcSIHiedyydVK4rhy4sF/XGer/hFNYzzjoTC+sLUdNUg61nt+K1
  319D5486Y8xyKluRtghF2iIUa4sd2R9sQIjBasDZurM4WX3SZQ7uncU7HWL967lfMbP3TAxvPxyr
  T67GFxO/8Hk+JmRNwKGKQ7i1O3XCCW8Ko9WI2X1n48F+D+K93e9hQialeGnCNEiLTMP629ajX1o/
  hyhOyJyAl7e/jB9yf3Bx68IccOG0miw7BQAGpA1AobYQjw54FFvPbg1qcQGABuC0j2nvGMS15NAS
  9E3ti6szrvYQ8d8Lf8d3x79r1Zj4uMxxWHEDxeoD5V8zIuQRWH5kOeKV8S5zdlxqpEelQ2vS4ur0
  q0NdlBYxqsMo/OeO/7S64AVD26i2UEgVaB/Tvtl55v6IU8ZBJpH9dZy4nbdBHqQTj1fG4+PxH0Ml
  V4EHH9RyUoxBgyh3vEhbhJu+vwkAMGb5GHRd2BUWuwVGq9HrpOs6sw6Rikio5c5BMkUNRagx1KCq
  qQpHzx+FwWpA1wSaOKVIW4RdJbsQJgtziDgT7PyafCSpkzCs3TB8vPfjC8dvx6DFg/DadpqZrryx
  HKmaVMy5eg6+vfFbTOzsO6d3VIdR+Hj8x5iUTavgspsiNiIWRqsRKoUKD/R7AMunLHc6GoUGiapE
  j2HG915xr2OIOnPia6euxb/G/MuxjVDEheEU1tS8qu1VGJIxBA9ueNDvtRAinNjsQPkB3HfFfVAr
  1B4i/uimR7Fo/6JmXfOA3y2PwC3db8EHYz4I2lWHy8Lx8vaXMatP8HnCoYBdw+Hth4e4JC3HPTX1
  ckfCSfDh2A+9Jmi0aL/BbMRx3BiO4/I4jsvnOO4ZL+8P5TiunuO4Axd+Ag74pxTD4Adv3N/3fscD
  F+wDTRP201JV9cZ6h6ieraM5YqPCosCDdwyO4Xne4Z6FoxYbzY0wWo0orC9EraEWlfpK6C16pGpS
  oTfr0WBqQL2xHgcrDmJQ20Eo1hY75k4GaEbA9Kh0vDTsJSzavwiAc9DIV0doEh02tWX/tP4+VwBn
  hMvCcX/f+x03OHMryepkl5Xgb+52s0Pg1Qo1EpSeeY5to9rigb4PAHA2Xa/rfJ3L5EjCOSCKtEWO
  /O6M6Aw8NfAp9EjsgfevfR8ZURlYNH4R7sm5J+C1iZDRIC47b8ehikPok0xZMO4izgYF7SzeGXCf
  zeXhAQ8HPW0si8k/NeipVi9Ha3JNh2vw6IBH/S4DJxI67u97/0VPVeyLgHvjOE4C4CMAIwGUAdjL
  cdwanufdF1HczvN8cEPCQDHxYJ04I04ZB9T4X7KMUdpQimFfDkPBw5S1oTVpHaLKwjEqhcohEhab
  BZO+nYQibRGOPnDUEU4x28zQmXXI+jALxQ00f0apjlY4HtVhFFbnrXasC2i1W9E7uTfyqvNwpu4M
  jDb6vlpDLdQKNfqk9EFJQwkaTA3YX7YfU7pMwS+nf3HM2XyxTcd20e2QGZsJCSdxEXEh3RK7+Ryc
  wxZx8DXIJEwaBhtvg8lqwvqC9RjbaazjPZYjrQnTYO2tvjtu3WFiXawtRlR4lKODUSjiPM+jorEC
  745+1+eyaf8rWKpeKLIlmkPH2I54f0zzJxgTuXwJxon3B1DA83whz/MWACsAXO9lu2a1e+wIbipa
  ISwHOhgnXmOocVmlRWvUwmq3uszkJ+wsK9OVYUPBBkfaGxNxjYLS0dh8xrERscirzkO76Ha4Lus6
  NJobMWrZKMdcCFlxWRjdcTQ2FGxwVBp1xjoo5UrIJDL0SOyBN3a8gRlrZmBYxjD0Tu6NA+UHWjQD
  nkqhwuZpm6Ez6XyK+OD0wfjn4H96/Txz1r4EiuM4JKmScLzqODaf3oyxmWO9btcc2BTD5/XnXea8
  EIp4raEWSrkSj1/1OBaMX9Di72wJrEx/pea9yF+DYEQ8DUCx4P+SC6+5cxXHcYc4jlvPcVzXQDu1
  X4wTvzCZUYOpAadqT6HNu77jmbr/b+/eg+MqzzuOfx9Jq8tKsiQbS7YsMNgmGIiTGIhDggsmDMQ1
  AYJJEyBDEjpt3AvkQppgknRwOp2S5I80zKR0SEs7KUnjTOkEnIEQx5MsGXdC4tZOICARYxvjOzbI
  8kW+SKunf5w965Wsy0p7vMer/X1mNOyePT7n7Ivn8aPnvOd5Txymt683e+MwnN2S230uN4h3Huhk
  Wl2wWMDyHy7nrWNvBUG8ppGeEz2kPU3vl3qZ0TCDrgNdfH/59/nwJR+msbqRvnQfv/jEL4AgiC+/
  eDmfefYz2Z7FYTACWDRrEQ+tf4g1d6zh3vfcy8IZC3nuteeoqqia0OPWobBL4UhBfDRhmWW0mQAP
  LH6Au5+6m0RFIpIpdmGwHvr4fW4QL3SRhSiNNBVVJG5RFWf+DzjP3XvN7I+BJ4FhlyRftWoVAMc2
  beT1+R3wwfxP0lrfSnNtM4dOHGL7we3sOryLW394K49+8NFBgQBOlUwOHj9Ia31rduWT3MfWBwXx
  /Z1cMv0SOg908qOuH9Fa38ryi5dTVVHF79/4PW31bdQl6phWN42X97+cPV9LXQtNNU00VDdQn6jn
  bdPeRntjOysuX5HtkNh9rJtkVXCub1z/DVYuXpl9gGB6/XQ27d1UcLBqrGnk8MmRM/HRhN9ltH9E
  Pv7Oj3Pf2vu4fs71BV1nqK6qjt39u9l/dP9pQfzZV5/l+sev58YLb4z8Tv5EjbXai0iUUqkUqVQq
  r33zCeK7gNzUqyOzLcvdj+S8/omZPWJmU939raEHC4P4N1/vYv7CBXldZGjl4pW01bfReaAz+1DL
  k11P8sX3ffG0IB72E+k+1s2ew3t48pUnAU5r5h/qOtDFzMaZpD1NdWU16YE0111wHanXUmzcszG7
  GnZYuw2z15baFjqmdGBmvPiXL2aDc/g4OQTllFmNwS8vtVW1g54Aa6xu5PWe17OloomqqawhPZDm
  0IlD4w7iYYfC0eq9jTWNXDP7msjmH+dm4rk3XJOJJNt7tnOg9wDrtq7jzgV3RnK+Qo00FVXkTFiy
  ZAlLlizJvv/qV0demSufIL4BmGdms4E9wO3AoC5BZtbm7vsyrxcBNlwAzzXe2SkQ1KM7pnTw612/
  HrSmYNpP700d3vzsPt7Nz7b8jHVb1wGw7eA2OqZ0sPPQTuoT9Wz48w2sXLeSrje7WDhjIV943xeY
  npzOoROHaKptorGmkb6BPuY0zwHgwWse5PZLb8/OL26pa8muvnJBy6kG9Nm2m1V1dB/vzi4IO1RD
  dQO7D+/m0umXjmsshgpXZTnQe2DcQTxRmeC5Tz5HfXX9qPs9vPThvOdVjyVsMby/d/9pNXGAh657
  iKl1UyPppBcFlVPkbDVmTdzd08A9wFrgJWC1u3ea2Qoz+1Rmtw+b2e/NbBPwLWDMno0TmZ0COR3o
  TvRw+czLmVo3ld6+Xtydl954KbtfmIn/asevBt3g3Na9jTktQUBOJpJc0X4F7Y3tdO7vZGbDTK5o
  v4LZzbNZ0Bb8lhCWGMI68GUzLxvU6a65tnnYGnFYBmiubQ7KKSM8cdhY08jeI3sjeTKtsTooqUxk
  etnVs68ec5+Lp18cWR+J0TJxCNqRfuwdH8v+f4hb7kNaImeTvKKouz8LXDRk26M5r/8JGNf0gQHr
  JzHOTBwGtxG99vxrObf7XHr7enl689Pc9IOb8AeDRkxhTfy+tfcNWm1l28FtzG2Zyy+3/zIbMJpr
  m9nfu3/Y+mtYYhipfeZHLvnIsMtVhZl4U23ToBubwx1/wAci6RER/oNTCnOEw2X3jvcfP60mDtH3
  lyjU6ttWj3s2lUgxxNaKdqKZ+IyGGWzv2c7B4wdpqm3KZnRDF47InUt+oPdA9vW2g9uyTxqGAaOp
  JigRDF2PD07PxIcaqVF8W0MbEATpvUf2jhjEw+NPqS48iIfZfCkE8WQiyZ4je9h7ZO+glVqyQfws
  mZUSGu+CACLFEl8DrAlm4nNa5lBXVcf6HetpqmkiWZXk6Mmj7D0SrPgQtkQNyym5Kq2Sbd3bOL/5
  fAzLBozwV+UrO6487c+EgXG80+rChRemJYNpi6OVUyCabm3hzdGJ9KMutrpEHS/se4FlFy4btGZh
  +A/Q0PUSRWR4MQbxNImq8QdxM2PZhctY//p6mmubs5l42DkwnLUytEnWns/v4Ya5N7Dv6D5mNsyk
  LlGXDaz11fUkE8lhm92EmXI4u2Q8/EGnvSGoIY+ViUdRE7/q3GB9x1J4ICV8jP2ud9w1aHs4Tmdz
  kymRs0msmXh11cSqOe/teC/AoHLK5reCx+t39Ozgs89+liMnj7D6ttU8fefTQDCNLszyzkmeQzKR
  zAaMB695kJ6VPcOcKWjUf/IrJyfczSw852g1cYgmEx/a3OpsFnYlXHze4kHb2xvbOfmV4dvwisjp
  4u0nPsEbReFc5aaaU0F89+HdVFVUsXHPRh7Z8Ei2Zj6nZQ7T6oIWkGFAnZacRl3VqUzczEZtSlNI
  O8pzm4KVcsasiUcQxC+beRk7P7ez4OMUw7yp89j5uZ2D1vsMRdn+U2SyK8lMPLwRZmbZ9fD2H93P
  3Ja5vPrWq/QN9PHS/pdorG7komkX8czHngFO/Yo+rW7aoEz8TApXKBnpXMlEkgqriGwFk1lTxl/2
  iUspXavI2Sq+VVQnWBOHoKPcE3/yBO+Z9R6SiST7ju4jUZmgraGNLd1bANh7ZC/zps7DzFg0axEA
  6YHgoaC6RN2gmviZNFYQNzMaqhvO+u54InJ2im+KoaUnnIkD3HbJbUDmMe2D25menE5jdWM2iL+7
  /d3ZaX6h3P4XxcrE57bMBRi2bBBqqG6IZS1BESl9JTfFcKhkIslrB1+jtb6VKTVT2PLWFhaft5h7
  F9172r65j04vm7csu6LNmVSXqGPhjIWn9XbJ9dFLPxr5ah8iUh5iy8SxNNWJwk+fTCTZdXgXC2cu
  ZErNFHYd3sXfXft33PXOu07bN7eJ0Zev/nLB587XxhUjL5AM8M0PjL24sIjIcGLJxN2Bin6qJ1gT
  zxWWRFqTrdmSxEhZr5oYichkE2MQn9hj90OFQbytoY2W2qBN7EhP+13QfEFBCy+IiJxtYimnpNNA
  RT+VFl0mfve77qa9sZ0b33YjC1qH73z3veXfG7Q8m4hIqYsxiKcjWfX57a1vp/OvO7Nzx0frP10K
  jaFERMYjlnJKNhOPoLWnmTH/nPmFX5SISAmKJYgPDIBFlImLiJSz2DJxj6gmLiJSzuIrp5gycRGR
  QpV8TVxEpJzFVhNXJi4iUrh4M3HVxEVEChJLEO/vd6hIq5wiIlKgWIJ4X/8AuFFh8bUzFxGZDOIJ
  4uk0uLJwEZFCxRLET/b3YwO6qSkiUqiYyinKxEVEohBLED/R34+5MnERkULFMzslncaUiYuIFCyv
  IG5mS82sy8z+YGb3j7Lfu82sz8yWj3a8vv60MnERkQiMGcTNrAL4NvAB4FLgDjM7rfdrZr+vAT8d
  65gn0/0YysRFRAqVTya+CNjs7tvdvQ9YDdwyzH73Ak8Ab4x1QGXiIiLRyCeIzwJ25LzfmdmWZWbt
  wIfc/Z8BG+uAfel+1cRFRCIQVTr8LSC3Vj5iIF+1ahUvbnmT/q09pFIplixZEtEliIhMDqlUilQq
  lde+5u6j72B2JbDK3Zdm3q8E3N2/nrPP1vAlcA5wFPiUu68Zcix3d/7jmU7+InUrvd/oyvMriYiU
  LzPD3YdNjvPJxDcA88xsNrAHuB24I3cHd5+Tc7J/B348NIDn6kunsXjWaBYRmVTGjKTunjaze4C1
  BDX0x9y908xWBB/7d4b+kbGO2Zfup0I1cRGRguWVDrv7s8BFQ7Y9OsK+fzrW8fqViYuIRCKeBljp
  fio0T1xEpGDxPXavTFxEpGDxBPEB1cRFRKIQ26IQFcrERUQKFlM5pR/TIskiIgWLqZySplKZuIhI
  wWIqp6iLoYhIFGLLxDXFUESkcLHVxCtN5RQRkULFEsTTrkxcRCQKsdXENcVQRKRw8WTiA2kqNMVQ
  RKRg8U0xVE1cRKRg8T12r0xcRKRgsZVT9LCPiEjhlImLiJSw2KYYqiYuIlK42DLxygpl4iIihYov
  E1dNXESkYMrERURKWHyzU1QTFxEpWDxBnH4qNTtFRKRg8WXiFcrERUQKFdONTWXiIiJRiG12SpUy
  cRGRgsUSxAdcs1NERKIQ4xObCuIiIoWKrSaucoqISOHyCuJmttTMuszsD2Z2/zCf32xmvzOzTWb2
  v2b2/tGON+BplVNERCIwZjpsZhXAt4HrgN3ABjN7yt27cnZb5+5rMvsvAH4EzBvpmMrERUSikU8m
  vgjY7O7b3b0PWA3ckruDu/fmvG0ADox2wDR9JCoS471WEREZIp8gPgvYkfN+Z2bbIGb2ITPrBJ4B
  Pj3aAU9yiGTllPFcp4iIDCOyG5vu/qS7XwzcBDw+2r7H6aGlrimqU4uIlK18CtO7gPNy3ndktg3L
  3debWZWZTXP3N4d+vmrVKnr+p5PfbP0hqbmVLFmyZNwXLSIymaVSKVKpVF77mruPvoNZJfAKwY3N
  PcBvgDvcvTNnn7nuviXz+jLgv9x97jDHcncnuXIej1z1Ez5504V5fiURkfJlZri7DffZmJm4u6fN
  7B5gLUH55TF37zSzFcHH/h3gNjP7OHASOAp8dLRj9lX2ML1R5RQRkUKNmYlHejIzHxgYoHJVDc/f
  fJhFl9cU7dwiIqVqtEy86E9sHus/Bl5ByxQFcBGRQhU9iPcc78FONJNMFvvMIiKTT/GD+IkeON6k
  IC4iEoFYMnFXEBcRiUTRg/h9P/08fqyZ6upin1lEZPIpehD/q4WfJ/ncw9iw91lFRGQ8it5K8Lr2
  W2k4XuyziohMTkXPxHt7UT1cRCQiCuIiIiUsliBeX1/ss4qITE7KxEVESljRg/jSpdDaWuyziohM
  TkWfnfLmm1BbW+yziohMTkXvYljM84mITAZnVRdDERGJjoK4iEgJUxAXESlhCuIiIiVMQVxEpIQp
  iIuIlDAFcRGREqYgLiJSwhTERURKmIK4iEgJUxAXESlhCuIiIiVMQVxEpIQpiIuIlLC8griZLTWz
  LjP7g5ndP8znd5rZ7zI/681sQfSXKiIiQ40ZxM2sAvg28AHgUuAOM5s/ZLetwNXu/k7g74F/ifpC
  J5tUKhX3JZw1NBanaCwG03iMLZ9MfBGw2d23u3sfsBq4JXcHd3/e3Xsyb58HZkV7mZOP/nKeorE4
  RWMxmMZjbPkE8VnAjpz3Oxk9SP8Z8JNCLkpERPIT6RqbZnYtcDewOMrjiojI8MZcY9PMrgRWufvS
  zPuVgLv714fs9w7gv4Gl7r5lhGNpgU0RkQkYaY3NfDLxDcA8M5sN7AFuB+7I3cHMziMI4HeNFMBH
  uwgREZmYMYO4u6fN7B5gLUEN/TF37zSzFcHH/h3gb4GpwCNmZkCfuy86kxcuIiJ5lFNEROTsVbQn
  Nsd6YGiyMbPHzGyfmb2Qs63FzNaa2Stm9lMza8r57AEz22xmnWZ2QzxXfWaYWYeZ/dzMXjKzF83s
  05ntZTceZlZjZr82s02Z8fiHzPayGwsInkMxs41mtibzvizHoSDufsZ/CP6xeBWYDSSA3wLzi3Hu
  uH4IZui8C3ghZ9vXgS9mXt8PfC3z+hJgE0F56/zMWFnc3yHCsZgBvCvzugF4BZhfxuORzPy3kuC5
  iqvKeCw+B3wPWJN5X5bjUMhPsTLxMR8YmmzcfT3QPWTzLcB3M6+/C3wo8/pmYLW797v7a8BmgjGb
  FNx9r7v/NvP6CNAJdFC+49GbeVlDkOB0U4ZjYWYdwDLgX3M2l904FKpYQXy8DwxNVq3uvg+CwAa0
  ZrYPHZ9dTNLxMbPzCX5DeR5oK8fxyJQQNgF7gZS7v0x5jsU/Al8Acm/MleM4FERdDONVVneVzawB
  eAL4TCYjH/r9y2I83H3A3RcS/DbyR2a2hDIbCzO7EdiX+Q1ttKnHk3ocolCsIL4LOC/nfUdmW7nZ
  Z2ZtAGY2A3gjs30XcG7OfpNufMysiiCAP+7uT2U2l+14ALj7IeAZ4ArKbyyuAm42s63AD4D3m9nj
  wN4yG4eCFSuIZx8YMrNqggeG1hTp3HEyBmcZa4BPZl5/AngqZ/vtZlZtZhcA84DfFOsii+TfgJfd
  /eGcbWU3HmZ2TjjjwszqgOsJbtiV1Vi4+5fc/Tx3n0MQD37u7ncBP6aMxiESxbqDCiwlmJWwGVgZ
  9x3dInzf/wR2AyeA1wl6yrQA6zLjsBZoztn/AYI77p3ADXFff8RjcRWQJpiVtAnYmPn7MLXcxgNY
  kPn+m4DfAX+T2V52Y5Hz/a7h1OyUsh2Hif7oYR8RkRKmG5siIiVMQVxEpIQpiIuIlDAFcRGRwdxk
  ZwAAAB5JREFUEqYgLiJSwhTERURKmIK4iEgJUxAXESlh/w+FKeZ+iKIc4QAAAABJRU5ErkJggg==
  ",
        "text/plain": [
         "<matplotlib.figure.Figure at 0x7fc258328890>"
        ]
       },
       "metadata": {},
       "output_type": "display_data"
      },
      {
       "data": {
        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEACAYAAABF+UbAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz
  AAALEgAACxIB0t1+/AAAIABJREFUeJzsXXd4VNX2XTdlaiYzkx5CEkoSCL33EilSBUGxAQrWp/Ce
  vTyeiiggvmdXBJ9dFHmKitIREASk95KQUJKQEFImk2RqZjJzf39szp2aZBKiCf7u+r58k5nbzr33
  nHXW2XuffTie5yFChAgRIq5PBDV3AUSIECFCROMhkrgIESJEXMcQSVyECBEirmOIJC5ChAgR1zFE
  EhchQoSI6xgiiYsQIULEdYyASJzjuLEcx2VxHJfNcdyzfrZHchy3keO4YxzHneQ4blaTl1SECBEi
  RPiAqy9OnOO4IADZAEYCuAzgIIA7eJ7PcttnPgAZz/P/5DguCsBZALE8z9f8YSUXIUKECBEBKfF+
  AHJ4ns/jed4OYBWAyV77XAGguvq/CoBOJHARIkSI+OMREsA+CQAuuX0vABG7Oz4CsI3juMsAwgDc
  3jTFEyFChAgRdaGpHJv/BHCc5/lWAHoCWMpxXFgTnVuECBEiRNSCQJR4IYAkt++tr/7mjsEAFgEA
  z/PnOY67CKAjgEPuO3EcJyZqESFChIhGgOd5zt/vgSjxgwBSOI5L5jhOAuAOAD977ZMJYBQAcBwX
  CyANwIVaCiL+8Tzmz5/f7GVoKX/isxCfhfg86v6rC/UqcZ7nHRzHzQWwBUT6n/A8n8lx3EO0mf8v
  gFcBfMZx3HEAHIBneJ4vr+/cIkSIECHi2hCIOQU8z28C0MHrtw/d/i8DcFPTFk2ECBEiRNQHccZm
  MyEjI6O5i9BiID4LF8Rn4QnxedSPeif7NOnFOI7/M68nQoQIEX8FcBwH/hocmyJEiBDRYtGmTRtw
  HPeX+GvTpk2D719U4iJEiLiucVWlNncxmgS13YuoxEWIECHiLwqRxEWIECHiOoZI4iJEiBBxHUMk
  cREiRIi4jiGSuAgRIkT8gdDr9ZgyZQrCwsLQtm1bfPPNN016/oBmbIoQIUKEiMbhkUcegUwmQ2lp
  KY4cOYIJEyagR48eSE9Pb5Lzt6gQwz59gGHDgDff/NOKJEKEiOscLTnE0Gw2Q6vV4syZM2jfvj0A
  4J577kFCQgIWL17ss39jQgxblBI/fBhwOJq7FCJEiBDRNMjOzkZoaKhA4ADQvXt37Ny5s8mu0aJI
  HADk8uYugQgRIv5q4Pxq2IahMWLfaDQiPDzc47fw8HAYDIZrL9BViCQuQoSIvzyay9oSFhaGqqoq
  j98qKyuhUqlqOaLhaHHRKSKJixAh4q+CtLQ01NTU4Pz588Jvx48fR+fOnZvsGi2OxGWy5i6BCBEi
  RDQNFAoFpk6dihdffBFmsxm7d+/G2rVrMXPmzCa7RosjcaMR+Pjj5i6FCBEiRDQNli5dCrPZjJiY
  GMyYMQPLly9vsvBCoAWFGFZXkwpv3RqIjQUOHfK7mwgRIkR4oCWHGDYU13WIYWUlfer1gELRvGUR
  IUKEiOsFLcacUlFBnyYT4OXMFSFChAgRtaDFkTgANGEIpQgRIkT8pdFiSPzYMSAmhv43mcSZmyJE
  iBARCJqdxGtqgEuXgB9/BG67zfW70dh8ZRIhQoSI6wXNTuI7dwL33APs2weMG+f6XbSLixAhQkT9
  aHYSr6qiiJSqKiAuzvW7aBcXIUKEiPrR7CRuNgPFxYBUCoSFuX4XlbgIESJE1I8WQ+IqFRE5g6jE
  RYgQIaJ+tAgSdzp9SVxU4iJEiPgrYOnSpejbty9kMhnuvffeJj9/QCTOcdxYjuOyOI7L5jjuWT/b
  n+I47ijHcUc4jjvJcVwNx3GaQM5tNtNneLgr+ZVGIypxESJE/DWQkJCAF154Affdd98fcv56p91z
  HBcE4H0AIwFcBnCQ47ifeJ7PYvvwPP86gNev7j8RwGM8z1f4O583GIm7K/HYWFGJixAh4q+Bm2++
  GQBw8OBBFBYWNvn5A1Hi/QDk8Dyfx/O8HcAqAJPr2P9OAAEv5+yuxBmJR0YCVmugZxAhQoSI/78I
  JAFWAoBLbt8LQMTuA47j5ADGApgTaAHclXhQEBAaCkREUFZDESJEiGgKcAuufX02fn7LzJTY1FkM
  bwKwO1BTCkBT7AFS4gCpca1WJHERIkQ0HVoqATcFAiHxQgBJbt9bX/3NH+5APaaUl156Sfg/IyMD
  ZnMGAFLiAC3PFhEhmlNEiBDx/xc7duzAjh07Ato3EBI/CCCF47hkAEUgor7TeyeO49QAhgOYXtfJ
  3EkcAP79b4pKYUp8wwbg99+BnJwASiZChAgRLRwOhwN2ux0OhwM1NTWorq5GSEgIgoODaz0mIyMD
  GRkZwvcFCxbUum+9jk2e5x0A5gLYAuA0gFU8z2dyHPcQx3EPuu16M4DNPM9b6junO8xmmm4vDTPj
  QOEB9OlDJhXRnCJChIi/AhYuXAiFQoHXXnsNX3/9NRQKBRYtWtRk52/25dn69QNmzwZK2y7F/P1z
  wc/n8cUXwLZtwJdf/mlFEyFCxHWK/+/Ls7WIGZtDhwIJMTTTx2gzikpchAgRIgJEiyBxhQLQW/UA
  gGNXjokkLkKECBEBosWQeImpBADw3NbnMOO0WoxOESFChIgA0OwkbjQCSiWR+KQOk7Dn0h6YHVWi
  EhchQoSIANCsJG63Uzx4WBhQai7FXV3uEraJJC5ChAgR9aNZSbyykjIWchwp8bbatjj/j/MI5kJg
  sf41vM0iRIgQ8UeiqafdNwgVFUTiAFBqKkW0IhpttW0hC5bD4qwCoG7O4okQIeI6QHJyMjju2nOj
  tAQkJyc3+JhmJXG93kXiOosOkYpIAIBWGgkLdBBJXIQIEfUhNze3uYvQrGhWc0pFBaDW8KiwVsBs
  NyNMQotsamWMxEWIECFCRF1odhKvabULo1eMhkqiQhBHxYlURKI6WCRxESJEiKgPzU7iknA9ssqy
  oJa5TCeRigiRxEWIECEiADQ7ictUFhhtRqilLhKPVkaiOkiH6XXmQxRxPeOll4ArV5q7FCJEXP9o
  dhIPVdDSPu5KPEKhAaSVWLmyuUom4o/G6tVAVlb9+4kQIaJuNDuJh8gpc627EtfI1ICssrmKJeJP
  gMVC0UkiRPzR0OuBJUuauxR14/Jl4P33G3dss5K4TgeEyH2VuFqmBqQiif+VYbFQJy5CxB+NpUuB
  f/6zuUtRNxYtAv7+98Yd26wkXlYGhPpR4mqpqMT/6hBJXMSfhY0br/0ceXnAggVN78cxGIDFi4F1
  6+i7dypxsxl47bW6z9HsJB4kvarEpZ5KvHPvSsjlzVUyEX80RBIX8WfhwoVrP8fq1eSM37Pn2s/l
  jq++An7+GXj00aspub1MjD/8AKxaVfc5mpXES0uBIMlVJS5zt4lroNBWwG537Wu3A4cO/dklvD5w
  7Nifv7D0vn2+qsEd+/cDDof/bU4nJTgTSTxwHD5Mz3vtWuCzz0gAiQgMNtu1nyMzkz4bm5jPZKKV
  ysrLXb/l5gKffgo8/TTwxBNAmzZAodsS9IWFwIcfAv/4R93nbjYS53mqiM4QM9pq2qJDZAdhm1qq
  RpWtEk4nUFNDvx04ANx3XzMVtoVjzpymVwj1YeDAuq95yy3UufgD63BEEg8MFy8CffoQkU+bRk66
  H39s7lJdP2DEey0ruGVlAW3bNp7Et20D7rkHWLjQ9dsjjwDt2wPjxtH3hARycDI88QQQEUFtqS40
  W+4UoxEIDQXsvAULMhZgSvoUYZtapkZlNZlTzp4FOncmwjcam6u0LRtVVfUrcauVskbGxl779Vhj
  OH0a6N0bPmavmhqgqIgqZO/e/ssCuIaOBgOppchI330LC6nMIc2a5ad5sWYNEBRE5J2WBowaRe9c
  RP1wOsl0FxREo3mJJPBjCwuBmBjiqawsYNiwxo94CwqAAQPIPHLTTVSW3bvpd4WC9klIAH79lcro
  dAKbNxP/hYfXfe5mU+JlZUBUFGCpsUAe6skCaqkalVYi8S5dgA0byPRiMjVTYVs4DIb6K9eDDwJx
  cU1zPdaZPvII8MILvtuLi6kSug8N3WEhC5qgxJctA+bN87/vtGmkYv4/Y98+YNYsIoCOHQGVit65
  iPphMpHIUCgaTsBjxwKbNhH3OJ1AYmLjlXhhISnuUaOAl18GXn0VePJJT4IeN47MkC+/TIr9oYcC
  E13Npm8YiZvtZihCFR7bFKEK2J12yBR2AKH47jugXbvrV4lbLC61arNR/nSepx6XLU/XENhspCwc
  DkAq9VXiFgsgk9F1GA4cuPb7YGDk63TSsH7+fCoHUzmMvGsjcd3VjArnz5Miyc8Hzpzx3Y/n6ffi
  Yvp+5QpV+vqeV2OeaUuG0QjcdRcp8vR0ega1PduWCquV6kdQE8jGhrxfg4E6Pbu9YQSckwOcOgVc
  ukSZVjt2pDZV1zmsVhqB+kNhIS0I/+KLtR9/223011A0mxLX6wGtFrDYLZCHeCpxjuMQLg2HVE1h
  hps2URylyUTEcb2hSxcXEY0aRZW5Vy+ycQ4b1vDz9e9PncLQoUR03kpcoSDnlzuaMjSqooLMG7Nn
  AykpNExMSQGOH6ftdZH49u1A9+5AfDyR06OP0n7MceSO4mIyAZWV0Wd8PNn/60J5OS3391dao9Vo
  BNRquvdhw65PJX7PPa4wumtFt25EroGgqoo6vfoI2Btr1lAdZ3UzPZ2ESl316q67gMGDgREjPP96
  9wa++ILMJX8Emo3Ea2roIflT4gAQpYhCiLoUMTEUJ8leABuKX08oKXH10MyWefo0sHJlw8OfsrLI
  YVhTQ8M8q5X+Z5WL2au9Q5UqK/2rIJ4P3OHjfu4BA8izvmkTEcqlS8D339P2wkIgOdk/ia9ZQ58J
  CUT6q1eTEtfpPCMueN5F7GVlrkbLOsPa7oMRhU7nu+16hdFISxi+/DIwciSRUkNs4uz+3f/+LLDr
  nT9fu5BoaB3Mz6fIjkDAlHh9BOx9jR9/BKZOpTqclUVKXCqtvSOoqgK2bqV9L170/GMhgn85Enc6
  geBg/zZxAIgPi0dQeJEwlGFgJhWOA37//U8qrBt4nhytLGomkP3NZhdBdelCnzfdROFDer1nxzRz
  JnDrrbWfb8sW4MYb6f/0dJciY0O5bt3ou7uzkVU8tgAHg8NBxD5jhufvPXpQTKw7OI6Gep9+6rki
  E8eRIp82jcqWlUUzz8aPpyGpd+Pcu5c+a+SXkZzMIyEBOHIESEoCjh6lbZ9+SuUaMYKcnaWl1JjC
  w2sPrZs9m46ZPZu+s/2cTvIF1PVMAwHPk6IKVAE2JUwmGl0wBKrEp04F7r+fhvBSKdlYg4Lo7623
  /rjyAi6z4ZQp9A7z8vynWeB5GmEFBQHffFP/eauqyDQSqDnJYACkUYWQSPmAlfjkyeSUnzGDrnPs
  GLX5utT8xo3AkCH+nZAZGfSZlBTY9RuKZiNxRiC1KfF4VTygIhLv4Io+9HBuBvLSmxoWC9lpAx0R
  2GxEJKWl9N1qBb77jpwa7F7cK+TPP7sUrT+UltKQ7bffqEIzRWa1kso9dYq+V7pNeK2sJCVnMHiS
  akkJkf3atZ7K7vhxKqP7PQOkmj//3JPEAZrJtngxEWdODhH40qXU0XnbutlzODYyAf87/T/cfLOr
  I1i7lrZ9/jkpap4H/vtfOm9hIZlh2PHeOHiQyu1wEPmz/fLzqRxbt3qq84bi+HHqbGobCfyRYEqc
  IVAlvns38MknZFqLjQW+/poU5u7dvua2pgarfxs3klgrK/MfUmoyUb389lsyOdQH1jkHSuJVVcDv
  A1vD2u7bgJR4cTG1LRZSeOoUzU8ZPrxuJf7jj9Rh+YNEQnVZ/QctVNasJB4c7N8mDpAS55VE4mo1
  PVCNhhor89i6K/GcnKaLvgCo4U+Y4Ksk3ZVvIGBEzSqfyUQ26yFDSIHEx3tWSPcXfe+9FIIEUCX/
  739dBKrREEGNHEnbV6+maJERI+h7RQUpH5mMyhwdffV5u3U+hYU0yhk5ksrj7jjW6Wj4vmmTq3y9
  egEnTgDZ2b6qXqOh6xUW0rCR44Dbb6fK7x7n6t6QC6oKcMstZHq57TbqhIqL6RrsvqKiPEmcPUej
  kWKn//UvelcXLgCpqa5jLl8GRo8mFdWrF53vWmyyLC7bXUTcfjuV/cMP/R+j19PzfeONxl+XXTMQ
  Jf7661Se5GQqb+fO9HtkJBGM2UzlGTCASDYpiUZz7qaJK1fovgAyAzz3HI0e2XnffNO179q1rt+9
  p4az8k2YAPTrR//7I3EW4DBuHLXnZ5+l8/3tb0DfvhRVBQDvvUfROez9z5tH+/lLV3333WTGcC9H
  jSbbh4BLSmjkyt6P2UzPY9IkajeJifQ8xo2j5+9tkrFYyD+VnEwRdJMm+Zblz0Czm1NMdpN/JR4W
  jxrFZYEsTp+mCnjwID18gIZoDDt2NK1K0unoxXiTdUNJ3ExZBYTKxzzrwcHAuXPknHQncXdy/OUX
  VwPbu5ciTCoqyCGs0dDQPj+fth8/TqaYLVuAd94hAtm0iZRDeTk1fI3GsyExwv3mG2pImze7tpWW
  Ah98QM+7sJBIfu9eYMwYYMUKKoM71GoihoICoFUr+m3JEgoP3L6dvjudnuRjspnQpQup9fR0ajgv
  vUTXkMloH3cST0+nkY3VSmW9eJHu98IFuiYzIUVFUae2dSsRTXo6cPPNLnt8Y7BmDZEh6+hyc+m+
  3nuv9uxzJ0/Sc3z33WuzQweqxA8epNl/t91G/zM77Z499AxCQmhySXAwlW3XLiL0//3PdY4jR4gs
  7XZ6d6+9Rp3Bb7/Ru9m61bXvsmWUWOrxx+l87qiqIoJctYquDdRN4mFh1OH/+980SvjiC1LA7Hq/
  /UYx1Kwd2WxUnh07PM93/jzVz2+/dZUDAHh5qQ+J//gj1Vd2DZ2O7vvjj+m7Wk0k/uWX9N3bnLJ1
  K8WQ//Yb1cWmmIPRGDSrEkewDWa72WPKPUO8Kh52aZFAanI59YYsbC4tzTMqI9Dh1auvBuYUYZXF
  247nbr7wh08/pQgUpnhrI3GAPhMS/CvxO++kYxjpFRa6hqQajS+J8ryrgcbG0n5MeV66RA3fncT3
  7QPuuIOuL5ORTfvnn2mbUkmEW1xM12VkL5GQnTU/n2aSuSM0lM5z9qzLgRMcTA3ZYqH7rqykzoTB
  bKeHI5fTe506FVi+nD4ZoqOpIeXl0XmVSlLWP/9MJqmsLJfjiSEqCli/ns7588+0beJEIiX3Kdhz
  5xIRZWR4/t10E416MjKIFHNzqQzDh5MqLi4mopw8mc5bWupSfgzbthHJTJ5Mz+bYMap758/DB//+
  N5HWgAGeZOh00ixlFo7KUJsSLyuje01Pd9WXlBQiyE6dqM2EhtK+4eGkIO+8kzqoRx+l6d2ZmTSy
  OXeOnmtQEO2TnEwdOXM2V1WRWeauu0ixsnrOYDDQNSQSurZC4ap7J09Sx8bKHBVF/0+dCnTtSqPJ
  0aOpPMwsxqJESktddW/6dBJ0zD81dy69u86daVSSkeEaOThkpR6TzCZNovfzzDOuezIagdatPZ91
  bCwpcMDXnLJ2LflakpP9T1T7sxAQiXMcN5bjuCyO47I5jnu2ln0yOI47ynHcKY7jfq3vnE4nYJeU
  IkoRJayt6Y74sHjYJEUeZBUW5rJrxsSQKYJNU2WKtL4QxO+/J5VSH1jl8VYP9SnxLVuoAbOKUReJ
  A1RJ3O28TIGuWkXXYJ1GYSHtp9cTGSuVRJLuYE4VRtZnz9L3/Hxq+Fqt637Wr6fzMxNUp06uzo1V
  yG7dPEkcIPLaswc4mDALhmpPJtFoaMTk7oXnOFLJhYW+tnST3XP21oIFdG73WNmoKCLy7duBQYPo
  /jMzSTEOH07PYe9eyjvhfozTSWacsjIihYgIapzseRoMZLefO5fC3156yfVnswEPP0ymgE8+IYdr
  3770fI1G8hfExwNvv00k17UrmZjcsXYtKcf0dDJl/Pgj8NFHvnWvupomdrz+Ok302LfPta2ggESB
  o/NXOH7luPC7SuVfiTNCZNO3S0tdBDl0KI3MvJGRQfXk3XdJgbKFOljnePQodUQAmTSvXKE67O7I
  Uyh8SbyqytVhT59OiZ5Y3du6lfwegGcZ77nHNbHriy+A//zHNXpjUSJlZWQuyc+n9xkZSZ2qw0HP
  6u236TmuX0/v8pNP6Hw1khKBgH/6ier+Dz8ATz1Fx5vNvmYrb3ibU86edQUSNCfqJXGO44IAvA9g
  DIDOAO7kOK6j1z5qAEsBTOR5vguAafWd1+EA7KGliFZE+90eIY+APVjv0eiVShfhscpaWEjDQlZB
  S0ooprw2VFUFptoZ6bKKt3o12d1Z41m1yv/KNFVV1Nl4kzgrtzeJM3MBgz9FA1CjdFfiHOdrl2aN
  hpE4m7Ken+9S4vPnkxORdX5sxBAV5Soj6wzmziXSeeMNFzFzHJHpyjNf4OiVox7X12rpvr1Dqdh7
  YmVPTLx6r3bPm5VK6dzuk5RYhMPAgUTmDGfO0HnT04kUmAmH3UvnzqTKOnZ0qXSZzNUIWQcXH0/k
  4a7E776bSP/xx2mfXbvoHGFh1NB/+omeITNxeI+mANf779iRyr9qFXWS3vtt307v+MwZun/37ULs
  fMc1+OToJx7PyW73tcW7kziLDGJ1LSjI9dzdIZGQI/rWW+mcmZnka1i0iL537ep6H8wcs2CBpyNP
  qaxdibPydujgGtVmZlLbefNN6hQYiQcFud6xVktlS0igkWRREQm4L78kAcfuhT37vDw6z403Unn6
  9aN3OXw42bFskmJUV1MnuXgxveOBA+meUlKoPnibrbzhbU5xFzfNiUCUeD8AOTzP5/E8bwewCsBk
  r33uAvA9z/OFAMDzfL051hwOwBZaghhljN/t4dJwyDUGIWQMoAfM7OHuJP7DD1TZoqPJbvz887XP
  nDIYPJPM1AZvEl++nMwTjFQ//hjYudP3OBZDzQjebKZKxWyp7DuDN4kbjdQ4W7em71VV1Bi9SRyg
  z4ULXauWsEaj1RIhs+H1pUtE8IsWkSrKzaVOadYsV7J893LY7aRgJkwglTJggG8YIgBUVXvKQXb9
  du089/Mm8f37rz4LLxKvDfPmkcoCyPbfpw8ptFat6P4OH/ZsTBMnEmlOmeJp73Un8cxMGr5v3uwb
  P3/bbUSuISF0fjZTkr3Hs2eBnj19788dWVl07dGj6fmx9+i935o19LycTiIe9+2CSAixYl32OvBX
  DescR6p+6VLXviyhHGsXjNTcO8Ta8PrrpMQVCnIqv/UWdeDff+97/Mcfk8167VqXI8+fEmfx2Qzu
  o8DMTBIPTz5JHSIjcX9g8wnCw2nfJ56gTtd9u3sstzdsDrKf1YRUwGol81pSkst5C1BHXlISmBJ3
  T6bVlCS+r2Af7A57/Tv6QSAkngDAPTq24Opv7kgDEMFx3K8cxx3kOG5mfSd1OgFbaGmdJG52VHk4
  C5RKTxJnw/TCQlJGkZGuCQWrV/sP1WNDs/rgTeKsojAS1+n8O2oqKqiHz8wk50pVFak6Rh71KXGT
  iYb/ycmu8paV0TFVVfS/O4n36OGKQnBX4rm51KlFRbls4j17EnEPHUrnGj7cda6ICHKAOp1U1hEj
  XI6auXNJ/TDUOMkIWW5xy6sJ1yjFvfECviQeH3/1WQRI4mq1q2Po1o1su9HRpNQ6dqQG5d6YVCqK
  qFCpPIe7jMT/9z8y+3Tv7np27ggNJVEAEHlfvOipxN3tuO73B5DNe/58qqe33ELXDAoikwSbAbhl
  y1UziYOI6eGH6VhG4jxPtnohj3RwNS5WXERWmWvod+edpLbLyqgjX7iQriOTud5poFPc4+LonURF
  UX3r14/qCYsQcseAAXQvPXu66kdt5hT3mGkWvcTz1I46daLf9uzxHGF5IyGBBFRCAqnsWbM8R10J
  CfQsP/jA5UB1h6WGhpr2IAOqq+n5Tp/u8g0ALh9DfUqcmVN+/ZXat0RS9/6Bgud5DPxkIF7b47v6
  g5N3YmeuH7XohqbKnRICoBeAEQCUAPZyHLeX5/lz3ju+dHUWyZEjQKmkFD1rMaeES8P9Kr0rVyh6
  YeZMsnu522zDw1228eXLSUW6h7c5HNQIAyFxb5s4I/GUFNe5aiPxbt1oiH/77eQwjIyk67KJP+4T
  cfwpcaXSRUrMgcSm6bOYbwB45RWKGWd5UVijYQRjs1FD+f13SubDwM7t3nhCQ6kyV1RQRZXJyOa+
  ahVwww2e92iykS27yOA53KltRl58PI2MoqOpPA4nJRo32Bo3dzwhwXUPrOEGoohkMlKAd9xB7yCQ
  dK5z5pAJoXdves55eZ5mCnZttnrMSy/RNT74wNNn8fTTdJ41a2gobzQSKURHU2cKEHn+8gs5QRcu
  pPA6nQ7ICbGic3RnrMtehyR1EpQSJZRK6liff546pD17XBEwHEcjKW/nd32IjiYyqy/T3/PPe9bZ
  QJS4TEbPaeVK2n/ZMqqv69aROac2zJlDo6UePfxvf+ABl0PeX8pWi92CSHkkys16WK08Cgs5n7rC
  on14vm4lzswpzMdyrSrcYrfgsuEyHDy1hy+Pf4nnhz0PANixYwe2/7odey/txcHLdTvxAiHxQgDu
  c41aX/3NHQUAynietwKwchz3G4DuAGol8Q8/BJbnzENMLU9NGkIu4eqaauF/jYYIpn9/6smPHaMw
  JEbiKhWReJs2ZGPkOFc8utNJDQRwkTgzTzBidkdZGdnd9HpXL52Z6WpwADmeTp6kayYmEnlXVND1
  WSX/6SdSvjodkWpIiGdaVXdbNEBkHxbmihoxGKjhT5nicnqxIS7LQ8ycoazRBAVRJdPp6JkVFXmq
  Ilb5vIex0dFUbpZAC/AcdgplvOqQvGzwtEvVNpsyKoqeEwuPZENcvaVxKyW7kzgbQgdK4uxZSyS+
  nZM/9OpFfwC9l9xcXzNFQgIR6eefk7A4edK3PCkpZL559lkaJUycCDz2GKlwtm/fvnT+114jpT1/
  PtXxnJBqTEybiO252/HM1mdQ+EQhWqlaIT2dzCrr1xMpMjIDaI5BQxEVFVh+ERYbzqBQ+GYYrapy
  mQQBel6KdtyTAAAgAElEQVQ330z3PH26K2dQbeTMMHAg/dUG9/fjD5YaC1RSFSrMRhisFhQWKnze
  DVPiHFe/EmfPp7ycRnLXgme3PouvT36N6ppq9E/oj1Mlp1BVXYVwaTgyMjKwtnotsjOzsXvJbnSN
  7VrreQIh8YMAUjiOSwZQBOAOAHd67fMTgPc4jgsGIAXQH8CbqANOJ2AMyUO8ys+Y7SqYGo8OIcnI
  honu+XcLCoikWrVyKfGBA6kx8DyRcFQUKZVx42hozoasq1aRumJxoO4oLqZhO3MQtm9P52bmHMA1
  LD96lLafOkX3FR/vimG32VzmFDbRxx1aLVUgu53Ine1z662uFeEPHCC7sNPpOROTgRGuO1Fv2UJm
  lNOn6bu7KqqNxNmogCnx2sDMIEVGTyW+caN/FcfOW1pKo5JqB7WEMnPjlqcZM8ZFIq1bk0+gvpzL
  AN1TQQGVcenShuWWBkil5eX5Dv/T0ymsdMcOIunaOpTkZFfUS9u2RBosRfBrr9H2WbOoPrBEX4sX
  Awd/JCX+38P/BQBszNmI+3rdhwcfJDEzYgR1Zjfd1LD78UZdtum6EIgSB8gsZzDQ558FNplQAhUM
  1Ua/JM6UeHBw/Y5Nq5Xud8YM13T6xuK8/jw+nfQpHlr3ENKj0xHEBeHYlWMYljwMPM/jh6wfsP6u
  9egS06XO89RL4jzPOziOmwtgC8iG/gnP85kcxz1Em/n/8jyfxXHcZgAnADgA/JfneT/JRV2w1zhR
  KP0FI9rWHkoSLg2HwWZAtJJaDRseupP48eNUWWQy+jx+nJQvIw5mv2RDZxaWWFHhsjH7Q2Eh2eB2
  7SLFlpDgSvQUFHQ1RNJOBJ6eTpV41SpXDLfNRjbD4mLqOKxWUvLeJM5UM5uQw8wYgwbRb2++SZ1U
  +/a1L9PkrcQBGv737u0adQSixKOiqLw2mys21h+YOaWgqsDjd3eTjfd52YSdjAxS4hHyCJSZy6iR
  +cmdUxfcI06Cgog4A4FMRu+vWzf/M/3qA1Pi3o1XqaS48voQGkpmFoaPPnL9/8wz9PnOO57HpKcD
  ym3VSItMg95KI5dVp1fhvl73YepUV0x9mzaUJ+VaEBXV8I4NINOUxULCiI1QvG3iAPk13O/5z4C1
  xgp5qBwyToWicgMcjhif6e8qFY1aQ0Prd2yWldE9Ll8emNO4LuRX5qONpg0mdZiEtMg0qKVqTPtu
  GlQSFZy8EyFBIegc7cdp44WAbOI8z28C0MHrtw+9vr8O4PWAb8B+BDJnFNpo2tS6j7dd3J8SN5lc
  TiimxDUamoL+1Vf00FlWMrmc9uE4IhTmNPSHwkJy4Lz7Lpl+WrUim29uLtki3e2/6elk12ORNHI5
  VYiEBCJFlu97yBD/12KmD47znV596BBV/rpWtvFH4gx9+tAwvYtbZx4VRYrQu5HFx9PsR+9c5N4w
  2U1Ii0zDqZJTcPJOv3H+L/76Ip4Y+AQ0Mo0HiSckkIlMHiJHrDIW58rP1TlUbEowJV6bI+3hdQ/j
  QsUFPDPoGYxs5ztCVCqp426sYm0srDVWxIbFQiVR4Ya2NyCzNBO/XvwVN7QNwB7UAIwc2bhFD4KD
  ifytVpe/JyenZYTfWWpIicuC7MjONQgpIdyhUpHzWir1dOB7QyolzkhNvXYCB4jEk9RJeHfcuwjm
  glHjrMHcfq5hSrQiGlwAF2q2GZtVNaUI5+tO66WSquokcVZhBg26ur+KZm9pNBTL2qULqe7jx0mx
  9e9P+7CoFnclbrGQ/by6ml6Uw0EK/JFHyL7OnHIXLvjG23bsSDPr+vSh7yyGm5W3qKjurIfh4XRN
  Zg/3/t2f190dWy7/DxJNmV8V1b8/mWPcozCCgkgRetePDh3oWdVlSgFIiSeGJyJCHoFz5eT2WH5o
  OSx2igRw8k68sfcNnC2jYGxvErc5bJCGSJEamYpsHc2S+erEV9CZryFDVQBgJO6PhKuqq/DliS+R
  GJ6ILee3+D2evRt2/MqTK7Ezdyf+sfEfjbbvB4LqmmrIQmRI1iQjNSIVY1PG4njx8foPbCDGjSO7
  NcOhy4fwW95vAR3rblLJy6MRz4ABTV7EBoON9FRSFU7nGP12LO7trz7HJuCKrqoPG3I24Hy5nym6
  ACqtlXDyTmhkGshCZAgNDoU8VI6UiBThz99Mdn9ovnziTgeCEFznPuHScHx7+ls4nA5sPrcZYeHE
  hO4miQ4dyNsPuEKeGHlGRZFj7h//oMrJIlhYSJjB4HJ0jR5NzqSHH/ZM4hQVRcQdFeVyrLo7bG68
  0eXsfOklVwIqZla5+26KUGEVwD2+mIHNwCsv90yAlZBA12XnrA2fZ72FfpOO1blPsbEYJ4tP1rlP
  ejqZh+ojcZZ5sner3jh0+RBKTaV4ZP0jOFF8AgA5PM12M0pM5EBQq6mBX7x4VYk7qiEJliAtIk0g
  8Wd+eQb7C/fXfeFGQm/R49DlQ5DLiVy8SXxN1hr8Z89/0C22G25ocwPyq/J9znG27CzsqnMICaF3
  aLQZMfun2Zj4zUS8d+A94d6bAjzPY122K1uXtcYKWYgMSeokJKmTEKOMEZ7tH4nXf38d7x+oJTGM
  F9wn/KxZQ/b5lrAuKlPiankYDNUGvyTO2l99IYZyOdXluhZy0Zl1eHvf23j999cxYeUELD1IwfwV
  1gq8ve9tLD+0HEeKjuDV3a8iSZ0UkNKuD832mB28A0Fc3STO8zyWHlyKe3vei7t+uAvf3LQWwCCP
  3tJ91uS4ceT9ZkTIVPauXeQgWruWzCCMxNmLu3CBHJ+hoRSy5x7Ez6ZwMxIHiMSZHXDpUld0y4QJ
  9Ae4lDhLpjN/Pn0eOeJ7n0wJlJaSM5UhJqb21KvuMNqrMP9fdY+D496IgzxEDvO/ao/N7tiR7Pb+
  Zva5w2Q3QSlRYlzKOLy17y2cKD4BHjyyddno37o/cnQ5AIBSMxWe41xL0anVQG6xDdJgKdpq2+JE
  8QkUGYpQZCxCZmkmesT1QCtVq7ou32AM+GQAsnXZmCvjfZR4mbkMd/94Nww2A8anjkeSOgn5lb4k
  /s7+d6CSqGC3vwaH04E39y6jZ2EzYUjSkFpJtcJaAZPNhITw2m0LF/QXEC4Nh8lmQrImGQabATd9
  cxM2z9iMIUlDYK2xQhosxeMDHkd7bXv8cuEXHCwMIHdEADhXfg7tte0FMuF5HlllWUiJSMHm85sR
  IXclydFb9LDUWDzez/ny8zhVcgqh0d1hNrcBQKbLJ57wvE5uRS5ilDF+k901Fg6nAznlOegY5TnL
  x/2eLHYLZCEyRIZJAEndShyoW4kHB/sPKwYAu8OOzec346MjH8HmsCE9Kh2DEgcJE3jWZa/Dx0c+
  xqWqS+jTqg9Cg0Ixb0gtC8s2EM2rxP3YUt2xr4Bi6nJ0OSi3lONs1RFwXO3r6zECZLk/OnUiQurT
  hyJWunQh+3JiIiky9uK++YZIhiWbP3fOFf3A7KfuJM4UcufOtdv9WKZBBpns6ow/m1EgOQYW4pSV
  Vb/pxB8MNgOsNbWnVWQ5ToYmD63zPElJ1JFJwoywO+ww2Ux+Z5GZbCYoQ5WY0W0GBrUehMyyTIxp
  PwbZumzwPI+9BbTygzuxxcdTp8RxZB6QBEsQHxaPImORMH1/wc4FeGnHSw29/Trh5J3I1mWjdXhr
  yGQ0ZHa3iW86twkj2o7Alzd/iReGvYBkTbJfEs/WZQvROB8c/AAfHv4QK6aswJJRS9AluovQYXlj
  1ppZGPv1WGGClD88tO4hdFvWDW3eaQPAFbo55qsxeGzTY4L5aVS7UWirbYtoRTRKzP47DZ7nfeZX
  1Ibz5eeR+l4qDhS6FmDNKsvCuK/H4bz+PDQyDUpMJSg1lcJit+Cd/e9g/q/zPc4xfuV4/Gv7v1DR
  8yWYTCQ6jh6lka07Ht30KNaeXRtQufzBZDMJoakMu/J34dZvPVf72F+wH6nvpQrcwRadiQ5XAVKD
  x0QhBqbEDYbGT95Zfmg5nthMPqDV01bjzTFv4qmBTyG/Kh8mmwkHCw9iZreZSIlIwemS05jTdw6m
  d2uEd90PmjEVrbNeJf74AEpesTt/NwDgyJXD0GjqXiSV510mi1dfJUfngQPUi86cSYo4LY0SFrEZ
  hocPkwIHiMTXrqUwNsCl2phNXKOhlx4WRiGF8loCK9xt4gCReFgY8PLOl5H2fpoHkbMQp8xM/1OH
  60NVdZUQtucPjGDqIhKAnlGHDkBZn8ex8uRKqF5V4e8b/+6zn8lOJB7EBeGdce/gpzt+wt3d70Z2
  eTYOXj6IRbsWoU+rPig1uYgtJ8flDGakFK+KR5GhCCeLT0IZqoTBZvCJPefryOFqc9jg5OvOeMZs
  1dYaq0d6W57nwfM8Pjz8IW7tdCtmdp+JAa0HoJWqFUpMJULnVV1TDZ7nPUh8+eHlWDFlBW7rfBue
  GfwMopXRfpV4QVUBdufvRrQiGh8c/MBnO0NhVSGuGK8I5S0yFCE0KBR/7/d3fHTkI/DgPQRPjDLG
  49m64/0D76PT0k4w2lzJ4dk98DwPi90Ci90CnueFMuWUu+piuaUcZeYy6Mw6xIXFYXDiYPT/uD8m
  rZqEQ5cPIa/Slf85W5cNo82IRSMWAfIymM3UdkaP9m0XZeYyIbqmMXhu63M+pp2zZWc96stXJ77C
  +JU0c4j5aqw1VsGcotDUrcR1uoY5rZ28Exa7BU7eiXU56/DqyFfxxc1fQCkhOZ+kTkJuRS5GfjkS
  7x54F71b9Ua0IhrFpmIh4q4p0HypaAOwib8w/AUsvGEhdl/aDa1MixPFJxAf3/CZaN5mJ2Y2MBjI
  yXn0KMX5RkSQ0+/XX12zyNhLjYqi60ZFuVR1XYiL81ykgh1TaaVAb/cp1A1R4h8f+dhDrTp5JwzV
  BlTX1E7iLB47kGnuHTsCkFWgyFgEHrxPGCE7D6uoDKkRqcjR5SCzNBNTOk7B3L5zPdQix7neA7OJ
  MyWeV5mHvgl9AQAnik+g7TttUeOsweJdizF3g/+gYovdAvUSNe77+b4676fUXIr22vaosFYgVEqd
  WFHIHgz8ZCA2nduESmsl7uzimvYQEhSCBFUCzpWfw7ErxyBbJMPC3xbiUtUlYYZqmbkMbbVthWNq
  I9WCqgK007bD++Pfxyu/vVKryYU9awDYmbcTRcYiTE2finfHvYvQoFCf/WvrNHiexyu/vYLW4a3x
  5XGa/PBT1k9QLlZi3rZ5eH778whfEo7wJeF4/ffXcbjoMAa2Hij4JQBAb9XDZDfhsuEyIuWRWDJq
  CSLkESgyFGHTuU0eo5RtF7ZhTPsxiFJEwSnVwWCofYUbnVkn1P3G4Jz+HM6UekYtZ+uyobfqhVHo
  K7+9gh9v/xHzh8/Ho5sexau7XhXixFVSFSLiDD55fQAicbYgd0NIfPoP0xG+JByTV03G75d+x+j2
  nsOPJHUSThSfgN1JgqB3fG8hzUht6UYag2Y1pwTXo8QBehDHrhxD34S+KDYW49Ahz9lijUGrVmTP
  zsujGWO5uRSmeOkS2buHDnXZ1d1JXKNxkXh9w67//AceybvkcjrGXGOGVqb1aDjh4TSp59w5T5u4
  P+RV5OGC3rW6sslmAg/eQ4l3XdYVO3J3CN/LzGWID4sX4rvrQno6gFCLECnibhN1v6a3bbONpg3y
  K/ORU56D1IjUOtVidU01pMFSxIXFodhYjNyKXPRP6A8AuFR1CbkVuVh5ciX+8/t/8O2Zb4Vp+j+f
  /RkLdiwQ9rPWWD1StAJEZNwCTrjXElMJ4sLioJFp4JTSPWXbduJA4QHcv/Z+TO86HcFBnvVwdLvR
  2HhuI/Ze2ovUiFS8ue9NxIXFEdnyPPQWPbQyl5KozbxRZChCvCoenaI7YWa3mZi3jWyg+ZX5GPHF
  CFRaK2GxW1BhJUNr7/jeOFt2lo4LoxAIfzbkGGWMMLo6fPkwui7rCp7nkVuRC0mwBLek34Lz5edh
  tpvx6KZHsfKWlfjoyEdYnbkaG+7agG13b8PKUytx9MpR3NHlDmTrsnH76tuRW5ErjFxyynMQqYhE
  j7geOPTgIbw//n3EhsUivzJfGB1llWWhS0wXRCoiAYUOx49TUjjmF3KHzqJDZbUvibP3VR/B51fm
  C20mqywLKe+mIEuXJTxnvUWPy4bLGJw4WIip/zn7ZzyxhUwcYZIw3H630e/szqgoan9lZQ3LC74n
  fw/23rcXG3M2YkDrAQiXesbsRimikKBKwPIJy8HP56GVa4WsrbVlb20Mmk+JB+DYBCDEkfdt1Rel
  5lLIZNe+VDfHkeK0Wl1LRyUkkJkmKclzUQI2ASIykv5iY4mM65shKJG4cmc8vulxhCrM5MG3m9E9
  rrvHEFalouxxcXF1m4oAoLK6EjqLKxSP5R9hStxkM+FUySkPc02ZuQxJ6qSAlHinTgAXahauESn3
  rdUGmwFhEs9eLEoRBbPdjKNXjiItMg0xyhhhqPvz2Z/xU9ZPwr42hw2SYAmkIVKopCocvXIUgxIH
  QS1VgwOHYC4YD6x9AE8NfAqxylgcKSJv8FcnvsKq06twwxc3IK8iD73iewl2eIDs2y/++iIAYPtF
  Wk6o1ERJ1mKUMbBLiPjOm4/gX0P/hRJTCSamTfS5v4lpE7H6zGocLjqMuf3mggOHJSOXwFBtgN6q
  R0hQiJAKAnAp8Zd3vozPjn6GkV+OxJnSMygyush4/vD5WJ+zHkM/G4qMzzOQWZaJJ7c8iSn/c8nW
  Ue1GCWabeBUd528ilFqqRnVNNXRmHU6WnMSpklMYvWI0tpzfgl7xvZCkTsKOvB0Y9Mkg9Evoh9s6
  34ZxqeOQrctGr/heGJQ4CBf1F6GVaTGw9UAcu3IM35/5Hrvzdwsmj2xdtse7z2iTgbzH8iALkQl1
  I7s8G2mRaYiUR8IeqsPSpeR78k6R7OSdKLeUC52VO1gStfU563Hbd7dh2GfDMGHlBI/ZvDzPCwIB
  oI7rvP48NuZshEamEfwqPeJ6IDgoGB2jOiKIC8K+gn0YlzIO84bOg0qigtXpmavnhe0vILciFyEh
  5K9RKv1PdrI77JiwcgL+s+c/wm+lplJUVVehd3xvDEsehpvSfKfLchyH3MdyhVEmQHVFFiLzaT/X
  guY1pwRA4oMSB2HPvXvwzOBnIA2WCk6bpQeWBuzA8QcWFtj36vNltrJPP/VU0DIZ2c9DQylsavly
  YIfkaSxbXs/qE274/Pjn4NQFpMTtZvSI7YH1OeuxIWcDlh1chvBwstsHYg+vrK70iKdmz4ANKTef
  pzXW3G3FpaZSvyT+Q+YPmP3TbHxxzLVC7c03A8kpFsH+66+yZZZlIi3Sc8jAcRwS1YnYemErUiNT
  0SWmC/Iq81BmLsNPWT9h6wXXul7VDlc+nFaqVrhivIIhSUNw8uGTiFZG44VhL2DHPTvw3JDnkBaZ
  hvzKfNgddvxy4Rdk67KxI3cHTpacRLfYblBKlIJCHvf1OCzctRAAhBC9ElMJohXRiJRH4jvzI0CQ
  A6fLj2B6t+m49PgldI7xnRE3NmUsKqsrserUKvRP6I/MOZm4u/vdiA2LRWZpJjQyT5aKUcbgXPk5
  vPLbK3hg7QMAgFu/vRVfnfhKIHG1TI0D9x/AohGLsGLKChx58AhWn1ktvC8OHG5ocwOyy7ORX5kv
  HOdv/VmO4zC7x2ws2rUIJaYSzOoxC0nqJDy55UmBxI8UHUGiOhGf3/w5AGBi6kQkqZMQqYhESFAI
  jv3tGH6Z+Qu6x3VHoaEQDt6BI0VHBCXuTeIAmZqS1EmCvTlHR6MurVwLK1+JgkKHR5w5A4uJdlfi
  Nc4avP7768ityAUAzNkwBya7CQtHLESMMgY3fXMTZv80G8sOLkOFtQIcOBiqDZi1ZhZWZ67G3L5z
  sfe+vRiePBzPbX0OO3J3oFccyeyecT1x4m8U8jmw9UCEBodCJVV5JFwz2oz49+//xtYLW/HVia8Q
  07a4VlNKQVUBDhQewOt7X0dmKSV5P1B4AD3je4LjOKy+bTXm9J3j99iQIM8AQCYomiK0kKFZlXgg
  5pTgoGAMShyEcGm4hy3w5d9eFhyeAKk799ja2rD1wlZUVVcJU8Q7daJ4VhaxkJDgmaYScJlvpFIg
  LMKIt/a/DnVkgMvdg+y3QQq9oMTHpozFuJRxuGfNPXhkwyPI43agoiJAErdWCurF4XQIBFztqIbD
  6cCLv76IlIgUDydSmbkMyepkDxLneR5PbXkKHSM74qlfnhKGqqGhQA1nFuyP3hEBPM/jSNER9Ir3
  HZcqQhWwOWzoGtMV0hApRrYdiee3P49Tpac8ojeYEgeAMe3Jg6yVaZGoTkR8WDy6xHTBwMSBCA4K
  RqQ8EjqLDmdKzyAuLE7II7E7fzeSwpOQGkEThi5WuNZHkwRLsLdgL8ot5fj2zLeIUcbgePFx5Nh2
  QRtPw+5kdTLiwvyvrB0aHIq1d67FhxM/RJ9WfRAbFguO49BW0xZHrxyFVu7plOkQ1QFqmRoqCU2Z
  /d+t/8PMbjOxt2CvoKgBIFGdiGHJwzA4aTDiVfHYOWunUIY99+5B19iuOFp0FNsvbhfsq7WlJLi/
  1/3YfnE7igxF6BLdBe+New/LJizD3/r8DckaqrCj240WzDFT0qfgu2nfCce30bRBamQqJMESjGk/
  BsnqZBwuOizUG2ZO8cbtnW/HU1uewis7X0FBVQHaatsiJCgEYRIVIKsQVgFyB1Pu7iaTDw99iKd/
  eRoHCg9gZNuReG/ce/jy5i8xLHkY3h/3Ph7p8wiGJg3Fy7+9jGe3PotkTTJ+uP0HyEJkWJO1Bv0S
  +qF/6/64bLiMXfm78MbeNzC8DSkzjuPQOaYzYpWx6N2qNwASI8zZa62x4l/b/gWbw4Z9BfswZ8Mc
  1HT6ulYSz6/MR8eojrgl/RasOLECi3ctxrzt83BPd0psHiGP8DHJ1YZoZXSTmlKAZlfiDbs8swXW
  OGtQaioVhtkAcLrktIcTjOd5HLviOwHmn9v+id8v/Y4RIyg2PDmZFjqtL/fymdIz2JizUXBu1RUN
  4g4n76R95XpBiWvlWszqMUsYMp6105pUQ4e67sU7KqPEVIKCqgIPc0pOeQ6W7KEVIaprqnFBfwFG
  mxH39rjXY+jqbk45VXIKANkVa5w1eGbwM7i3x72CIwygToc5sLzvM78yH7IQmV8CPF1C2baYyn7l
  hlew59IeHCg8IHS++wv2Y3f+bkiDXfusuX2NoEwWjljoMeU9Qh4BnVmHI0VH0Du+N14b9Rp6xvUk
  ElcnoU+rPtiYsxHfnPwGw5JpFsaItiNwrvwc3t3/Lnbk7gAPHltm0CxMTWwVHLwDspC6ZzS107bD
  9G6e9vK0yDTsL9zvYQ8HSG19e+u32DB9A76/7XtEKaLw+ECKrGKdlT90j+uOvfftxc5ZOzEwcSDi
  w+Ixf/h8rLxlpfB8/SlxAEiNTEVOeQ4KDYWIV8VDKVFiZveZiAuLQ1xYHEKDQj06WkmwBP0S+vk9
  1wvDXsDbY99GbkUuOYCDQlFmLvPrD3li4BOYmDYR1Y5qvDXmLeH+opWR+HqNzm8IHzNtuSvxn86S
  eW33pd3oENkBM7rNEDoNdi/39rwX3037DjHKGLw0/CXc2P5GvDDsBQAQRoIfT/oYj/Z/FHaHHaPb
  eToWl45fiuHJROwqiUoItX1z75s4ePkg3h7zNlacWAGbwwZ99Lo6STxJnYTe8b2xZPcSbL+4HbO6
  z8Ld3e/2f0AdGJI0BAsyFjT4uLrQjJN9nAEpcXdEK0iJFxuLwYPH4aLDwrYSU4kwXDLbzcgszcSk
  VZNQ+IRn1lydWUfDM841Xb+uVJcMT215ChvPbcTmGTT8tdgtQAB5m4SoEbkeYYqrkR2hSrTRtAEH
  DqPajYL5KuGOGUND1C7LumD//fs9Gt0HBz9ApbUSldZK6C16OJwOj6neldWVOHj5IDpGdYRWrhWG
  qQBQZilDK1Ur2J12dF3WFZtnbBZMGBzH4aYON2HuhrlYOIJMESyRPgCf+PPDRYf9qnAAWHPHGo93
  2jmmM/7W+2+Yu3GuoMRv/e5WFFQV4N4elCtVHirH5I4u+eZto45URKLEVILLhsvoFd8LY1PG4sfM
  H3H0ylF0iu6EZE0yRq+gxvvkwCdxsPAgWqtao0NUB7y9723c0/0ezOg2Ax2jOiJe2h6quBKES8Mb
  NZxNjUjFJ0c/8TElsXt1hyxEhsUjFgsjjdrQRtNG8PtwHIenBz/tsb22yTHh0nCES8NxuOgwHun7
  iMe2IC4ICzIWoHd87/puCQB1JsmaZOgteuiterTVtvVrTgGog35uyHM+v0cqItGuk+ciIXqLHjqL
  Dg+tewgATXw6WnQUXWO7Iqc8B91ju2NX3i6PfCHeGJI0BEOSXEmHEsITsGjEIiHfTrfYbnhh2Avo
  ENkBKqln8qBbOrkSjKukKkGJrzixAl9P/RodozriWPExjGgzAg+u+XudJJ6sTkbvVr3Bg8eCjAUY
  nDS41jLXBY1Mgwlpfjy/14DmixPnHQEPQRiYA6nIWAR5iFywTwEUSsZ62jd+fwNzNszxazPXWXQB
  57lwtysXm4oBQDAzmO1mvzHMNc4ajxhdRoi8tEIwpyhCFVBKlHio90MYnzoeUo0e339PjpUVJ1YA
  8E3TmleZh3JrOSqrK8GDh96qF8oEAEsPLsX0H6YjLTINWpnWx5ziHpe6ZPcSXDZcRutwyh8woPUA
  XKq6JIQTMrPLqHajfJT4kaIjgu3RG+NTx2NMiidpTUmfgmmdpglKnA2p2YSg+sDMKXsu7fFRkv0S
  +mFY8jDc3f1uzOoxC7d3vh3xqnjEKGNwV5e7MChxEJZPXC7M6NOEyTH17mLB7NFQpEWmIac8x8ec
  Uhv+OfSfHuaUxqCuDI9pkWm4oL8g2M+9r92Q7JDh0nCY7WaUmcswIXUCOkZ1RIeoDvUfeBUamUZo
  V07eSUr+3xFYtGsR2mnb4YFeD+BUySn0+7gfHt/0OIoMRRiWPAyXqi4hNSI14OsAwLyh8zw6t0hF
  JIaCGUQAABwVSURBVB7u+3Cdx4RJwmCwGVDjrMFF/UWkR6VDEarAZ5M/w11d74KNM+Chhx1C+d0/
  8yrzkKROQqfoTrir610Y0LoFJIVxQ4t3bLojShGFUnMpLhsuIz063YOoSkwlsDvtsDlsyCzLxLEr
  x2C0GYXwNIC8zFXVVQFNOjBUG9DqjVbC8UWGIoRJwgQST3s/DY9tesznuEc3PgrVqyqBhIWkUBKX
  OYVVwGUTlyElIgVVdr0QEcOclt7hefmV+dBb9Ki0VkItVWPBjgW4/2ff3KOpEanUoLxIPEpBMiNC
  HoFDlw/hrO6s0PhDgkIwNmUs1mev9yjzxNSJPvHnR4qOCHbGQNBK1QpfT/0a5ZZyGKqpEc3pOwej
  2o0K6PhIRSROFp9EbkWu0HgGJg7E0KShCA4KhiRYgi9u/gKfTf4MfRP6Ij4sHtHKaDw9+GlsmL7B
  w2wSJpWjVUqJTyhYoOgWS2u9eTur/kjUZk4BgCGJQ6AIVQid8bUgiAtCuDQcF/UXMavHLGTOyWzQ
  eRWhClhqLDDbzUh+Oxk/ZlLu5/XZ6/HJpE/w2ihaeuzNG9/EihMrkKxJRqySkh35yxjZ1FBJSInn
  VeQhNizWo4MLDgqGSqJCh26VuPP7O4WRXcKbCXhpx0vYc2kPOkZ1hCRYgq+nft1g8flHo8U7Nt2h
  DFXidOlpTF41GSkRKaiwVoDneSw/tFwILTNUG5CtyxYUJFPFAz8ZiI+OUDJjphjWnl2LxbsW+73W
  0StHUWwqpuWTnA6UmkvRMaqjx4SDdw+863Mcc7CxyTxMiSel6TFqlCeJA+TQcx8ZVFRXIFYZ6zOZ
  I68iD3qrHpXVlUiNTMWPWT9CZ9Hh2cHP4vPJnwv7dYvtBq1ci60XtiLitQikL01HqalUcKbEKmMx
  KHEQVp9Z7aESx6eMx5YLW8DzPKw1VjhedKB1eGtUO6rx4q8vQvuaFtrX6Lx9WvXx/4JqQWhwKFQS
  FU6Xnka8Kh7vj38f747zfXb+ECmPxOGiwxiTMkYgz1k9ZuG32f6z66VEpNSa3lgeKkexqbjRJN4+
  oj26xHRBWGjThYfVhyFJQ8DBv+ln0chFMM0z+Uy8aiy0ci2KjEW1OnzrgixEBovdIvhuHt30KJ4c
  +CRKni5BRpsM4ZnP7D4Ti0bQjF6Wg6Wx76MhCJOEIbciFynvpfjtnJgJctWpVZQLiOdxxXgFC3Yu
  QIIqQbCtt0Q0rzmloSQuUQpRFNJgKYK4IFhqLNh8frOwZJjBZvCIwWYmFeaFBuDhgT9Z4j+zH3Oa
  5lfmo8RUAq2MAvW9Z415LxZcZCxC5+jOyNHlYNI3k4R0rOGxevTqxcNsN3uoAK3c0/Sht+iRFpnm
  QeJO3olLVZdQWFWIkKAQjG43GoUGsvVHK6IFR+I7Y9/B8DbDBcfbklFLUGQoQrmlXDABKCVKDGg9
  AEab0WMY3i22G86UnoG1xgpJsARBXBCkIVJU11Rjd/5ufDrpU1z4xwWUP1veqARVsWGxOHz5sN+h
  f11gzq6Jqb7x3P7w2eTPMLmDnxAJkKotNjaexAHgxN9O4J1x79S/YxPhyYFPwvGio/4dmwAamQYh
  QSHCqK0hkIfIYamhSWIdIjsgLizOw/wVHBQMx4sOaGQazOk3ByumrMDsnrP/tHtzt5czp7o7tDIt
  9l7aiy4xXVBmLkPPD3siShEF4z+N2DB9Q5OGBDY1mleJN3BYogxVosRUgmHJw/DhxA8FO5x7lMoF
  /QWPHCEGmwEV1goP9csiN0w2U62x5keKjiCYC0Z+Zb4w+YKZKZgy6h7bHS9sf8HjuCJDEYYnD0e2
  Lhtrs9fi8c2PC9e0OWwICQrxGI5rZBqPSBK9lUi81FyKedvmocxchivGK6hx1iC3IhdqqRoT0yZC
  HiJHaFAoYpQxQqVk8cssqmBKxylI1iRDK9cK1wyThAmOSXcyTolIwUX9RRhtRuFZSYOlsNZYkVOe
  g17xvaCVaxs9SWFw4mCsPLWywTbiKEUUgrggjE2pZdkgL3AcV2uDY0rc2wHWEHAc1+CoqmtBXffT
  1NDKtIhVxjbq/uQhcljsFpRbypEQnoCjDx3FtE7TPPZxPy/7/896lqyNTO4wGWvv9E3EpZFpcODy
  AcFkdrz4OBxOB5QS5Z9qPmsMmlGJOxFUX1yfF5QSIvEIeQTkoXJoZVqcKz/nQYJZZVlIjUgViKiq
  ugo5uhyPiAKmfI02o+AMZdhyfguKjcUoqCpA19iuROKGIrRStRIULnP4vHHjG1iduVrIJV3jrIHO
  osPgpME4VUqhfGxUwHJSeEcbeJtT9BY9OkR2wBXjFby6+1XsL9iPnbk7MTx5OHjwSFQnYmDrgdh9
  726007ZDtNKlxJnCjFRE4vCDhxGtjEaSOslDWSlDlQKJuxOqPFSOGGUM5u+YL9iRpSFS6K16lJnL
  kKiuJz9tPZiQOgG/X/q9wUo8RhmDgw8c9Buz3FDIQ+QoMZUgXPLHD9+vR2jl2kanAZaHymGtsUJn
  0SFSHgm1TN2i1CsrS6wy1q/5SSvXYn/BfqRFpCHn7zm48uQVHPtb3Tn6WwquO5u4tcYqqEGtXIvj
  xcfRTtsO6+5ch8GJg3FBfwExyhjEh8UjJCgE2y5sw8mSk8IadoDLJm6y+yrxxbsWY8v5LdBZdOgZ
  1xP5lfm4WHERSeFJgkkiJYISiCeqE/Fwn4eFCTclphJEKaLQVtPWw+wSLg2H0Wb0sYcDrugD5kys
  sFYgLTINey7tAUBOtHU563Bb59sAUEgax3HoFd8L7457F4MTBwuk6x51wYg6KdyLxCVKJKgSsHra
  ah9VfanqEpYdWibEoUuDpThdchrtte2vWTGNTx2Pt8a8hft61p2wyh9qC2lsKGQhsmuyif/VoZVp
  Gx1N425O8Rea2FJQW2SRVqbFWd1ZpEamIiUiBbFhsUhS173yWEtBM6aidSCkgeYURoDKUOpJtTKt
  kANiQtoERCujcUF/AdHKaDw35DkMSRqC5399HvN3zEfPuJ7YOH0j3hn7jocS9ybxUnMp8ivzoTPr
  MDx5OA5ePogcXQ46RHUQhpvMbKEIVeCmtJuwPmc9dGYd8iryEB8Wj0hFJPIq8gTlrpFpYHPY/JI4
  4LKL8zyFDjKbNUDmoONXjmNgawpmd5/tdWP7G6GSqoShoj9yStYkCyT+8U0fY0HGAnAc5xFDy7Du
  TprxymZpykJkqHZUCzMArwXSECkeG/AYusd1v+ZzNRZNYRP/K0Mr0zZ4pMQgDyVzis6ia5JR0x8F
  74la3r/3jPOz9FYLR/OROBoeYsiGQUxBamQaXKi4IJCqSqIiJa6Iwf297he80AVVBZiQOgEDEwfi
  vp73odRUCpPNROYUm6c5pcRUQiRu0WFyx8nI1mVjV/4uir+Wa5GsSRbCvpShSvSM7wkH70CXZV3w
  wNoH0D6iPSLkEXDwDqEnZwmLaiPxKEUUJd6vsYADh9iwWHw66VOoJLTGaGV1paAg/KWw9DanuCOj
  TYaQnOe+Xvf5rILijglpEwSboPt5W7KyagjkoXLorXqRxGtBRpuMgH0P3rgelPi0TtMwNX2q320F
  BpojUVf7aKloVnNKQ5U4U+CCOUWmxQX9BaEXDZOECUoccEWOTE2fKuTcUEqU6N+6P7Zd3OZjTnE4
  HdCZdcjSZYHneailakxImyBk5kuPSseINiME84VSQgsjvD/ufbQOb43TpacxLmUctDItOHCIkEdA
  JVFBI9Og2lENo80o3IM72JJgeoteIOvZPWdjdo/ZROJXY8PbadthfOp4n+PrUuL9Evrh/l6+8eS1
  ITHcZftm522pjbKhYJ1voAvQ/n/DuNRxuLmjnwxWAYAp8XJreYtV4t9O+xapkf4nFmUkZ2Bap2kt
  yo4fKK6rGZtMiTMijJBHEIlfJT6VhDKVMbXKVkv5/rbvPV7OmPZjsO3CNhhtRtgcNmFCi86iAw8e
  R4uOIkIeAY7j8HLGywCAtpq2GJg4EK+OehXyEDlCgkJcSZxSxmD37N3oFN0J41PHIzgoGBqZBmqZ
  Glq5lki8phrllnK/+SiSwonES82lHoQZLg2nNRrtJqikKpz/x3m/+S+YYr6WqAuGSR0muaJTmBJv
  oY2yoWD+h8bEQYuoG/IQOcw1lJunqddI/TPwUJ+H8O20b5u7GI1Cs8XOOHHtSrx1eGtKKOVmewZc
  duNkdbKQsModcWFxOFVySlg44NOjn2JX/i6cKT0jrDbDTDHtI9rD+aLToxOQhch8FLU0RIpTD58S
  9otUREItVUMr0wpKXGf2by9kSjzsSpiQEwIgEs/WZSNMElanY1EWIgMHzq/Kbyge7P0gHuz9IN3T
  X1SJN9buK6J2yEPl+O70d+gc0xkj2o5o7uL8v0LzkXgjQgyZQmQkzhxuTInP6DYD87bPExx539zy
  DRy872QCZagSRptRcB5+fvxzYbFYpq7dV97xHmLJQmR+bdvu+0XK/6+9u4+R4r7vOP7+7i73wB3P
  GCgHR2xwcOzgJ9k4tZvm7MQOdVVw6iqGSOkDrYoqGTeVEj+pVc5J1Mb5p65EEtktrSI3LVXT1BAl
  cVAabSukuCENtkkNNrFbGw5zqDQp5oh9t7vf/rGzd3PL3e0uMzfD7n5e0skzs7+bmfvp+Pp7v8cg
  iIcy8crwq2r9C/p58fSLvF14e9KiRfM653H87PHxUTXT6c51z8qQrkomPtVfD82okolHXc9ELlTp
  BB9YM5DoOHpJNYgXyV1kx2Z4I1KY6FlevWA1rz7wKpcvLO9/GN59Jay3o5eRsRFGxkZY0r1k0uSg
  0eIoN6y4YXwH9ql0z+muOdV5ydzyWNmFXQtZ0LmA0eLotJ0+/Qv6OfDGAXKZHLs37x6/Pr9zPifO
  nqjZhntZz2V8/3frW1CqEZW2/1ZpTqlM2oh7PWeZ+Csnzr0jpT6pNqdks40F8Y5sR7AAfTkTr3TC
  hcd+XrFoip1Qq/R0TGTiaxas4cenf8xnBj7Dfe+9j3Oj51g5byVDZ4em/f6pmlOqLe5ePN6csqAr
  COI/PzPlcL2b+27mwVsfxMy4bfXEEpfzO+dz/OxxNizbcMH3VJuNXvVK0KveyaZZVTqxL7UFjFpB
  5a+cOHdxl/qkm4lfxD+mnjk94wG0p6OHJd1LGg4ylV0+zo2e49rl13L49GHuvfreSbM6Z+r86s7V
  zsS3X7+d5b3LuWnlTSydu5RH/uURhkeGp8zEu3Jd7Lxl5wXXK0MM0x5NEed+gGmqdwliaZwy8fTU
  FcTNbBPwBOXRLLvd/fGqzz8A7AUq27B/3d0/N9M9L6ZjE8qBOxxUdm7cOeUi/TPp7ejlzPkzzMnM
  YfP6zXz18FcnDa2rpZ5M/PbLby8fBIlJZ7aTk2+dbKhpojJksFab+Gy6+8q7WbMg+mSfS8FHr/no
  BfMCJB6VTFxBPHk1g7iZZYBdwAeBk8BBM9vr7keriv6bu2+u98EXm4nftfYu+ub3jZ9/euDTDd+j
  Z04PwyPDLOxayJ1X3MmynmUNDc+7csmV3Lr61oae2ZkLgngDIz0qQ7Wq97lM0jc/9s3Unh23Dcs3
  8MSmJ9J+jZZUycTV35C8ejLxjcAxd38dwMz2AFuA6iDe0NAIp0iuwTZxKC81GlVvRy+FUoHL5l7G
  ou5FDH9yuPY3hdz4Czc2vJ5HZ7aTU+dONTTSY3nvcras39IymbC0LmXi6akniPcBx0PnJygH9mq/
  aGbPA0PAp9z9pSnKjCtRSm0oUmV4YJK/cJ25Tkpearh9+5mtz8zSG4nEJzyLWZIVV8fmfwD97n7e
  zH4FeAaYsqF6cHAQgHM/PMTQir6pisy6bCZLd6470Z70ysSZVukkFAlb2LWQkUdH0n6NlpHP58nn
  83WVrSeIDwHhNRlXBdfGufu50PG3zexLZrbY3Sdve8NEEN916mXWbnhvXS85G3o7elk2N9lMvNbM
  S5FmNtUEOLk4AwMDDAwMjJ8/9thj05atJ6IcBNaZ2Roz6wC2AvvCBcxseeh4I2BTBfCwkl9cm3hc
  ejp6Em1O6ch2aPU8EYldzUzc3Ytmdj+wn4khhkfMbEf5Y38K+A0z+wNgDPg5cF/N+1qROSkG8d6O
  3sSbUxTERSRudbWJu/uzwPqqa0+Gjr8IfLGRB5dofBXDOPV29CbesakgLiJxS23GppNuJv6hyz80
  aQOE2daZ7cQ6mm+tYhG5tKUYxEtkG1zFME6fveOziT6vM9c5PgxLRCQubZuJJ60zqyAuIvFLLRW+
  2BmbzUpt4iIyG9Lbns3aLIhnO5nXEX37NBGRsFQz8XZqTtE4cRGZDam1idNmmfj2G7YrExeR2KW6
  s087ZeKNrnooIlKPFBfyKJHLah0REZEo0msTT3navYhIK0g3iOcUxEVEokivPUOZuIhIZJrsIyLS
  xFJtTulQc4qISCQpNqeUlImLiESUcsemhhiKiESRbsemmlNERCLR6BQRkSaWShB3BzIK4iIiUaUS
  xEsl2m4BLBGR2ZBKEC8WgUyRrCmIi4hEkWImXkp1t3sRkVaQaiaeMQ0xFBGJIr0gbmpOERGJKr3m
  lEyBXCa9jYVERFpBqpm4griISDTpZeLZgjo2RUQiSiWIjxVK5YerY1NEJJK6oqiZbTKzo2b2ipk9
  NEO5m81szMx+fab7jRaKUFRTiohIVDWDuJllgF3Ah4FrgG1mdtU05T4PfKfWPccKBXA1pYiIRFVP
  Jr4ROObur7v7GLAH2DJFuZ3A14DTtW44WihirkxcRCSqeoJ4H3A8dH4iuDbOzFYC97j7lwGrdcOx
  ojJxEZE4xJUOPwGE28qnDeSDg4MMnT6PHx4ln88zMDAQ0yuIiLSGfD5PPp+vq6y5+8wFzN4HDLr7
  puD8YcDd/fFQmdcqh8BSYAT4fXffV3Uvd3cOPD/MwD9soPBnNVteRETanpnh7lMmx/Vk4geBdWa2
  BngT2ApsCxdw9ytCD/sb4BvVATysUCyqOUVEJAY1g7i7F83sfmA/5Tb03e5+xMx2lD/2p6q/pdY9
  RwsFdWyKiMSgrkjq7s8C66uuPTlN2e217jdWKGLKxEVEIktlymShpCGGIiJxSCWIjxYKGMrERUSi
  SicTLxbJKBMXEYksnUy8qExcRCQO6axiWFSbuIhIHFJqTlEmLiISh/QycQVxEZHI0tmeraSOTRGR
  OGiIoYhIE0ttsk8mtgUURUTaV2odmxll4iIikaXTsalMXEQkFhpiKCLSxFJsE1cQFxGJKsU2cTWn
  iIhElV4mbsrERUSi0hBDEZEmltKMzQJZZeIiIpEpExcRaWIpBfGC2sRFRGKQ3gJYCuIiIpGlNGOz
  QFbNKSIikSkTFxFpYukEcS+SNWXiIiJRpdaxqSGGIiLRpRLES8rERURioSGGIiJNLLWOTWXiIiLR
  1RXEzWyTmR01s1fM7KEpPt9sZi+Y2SEz+6GZ3THT/YquNnERkTjUTIfNLAPsAj4InAQOmtledz8a
  KvZdd98XlN8A/DOwbrp7Fr3IHAVxEZHI6snENwLH3P11dx8D9gBbwgXc/XzotBf4n5luWPQC2Yya
  U0REoqoniPcBx0PnJ4Jrk5jZPWZ2BPgW8MBMNyyPE1cmLiISVWwdm+7+jLu/B/g14OmZyhZLRXLK
  xEVEIqsnkg4B/aHzVcG1Kbn7ATPLmdkSdz9T/fng4CBD//p93sr9hPz7r2VgYKDhlxYRaWX5fJ58
  Pl9XWXP3mQuYZYGXKXdsvgn8ANjm7kdCZda6+6vB8Y3AP7r72inu5e7OdX+8g7Vzb+Trj+6o80cS
  EWlfZoa721Sf1czE3b1oZvcD+yk3v+x29yNmtqP8sT8F3GtmvwmMAiPAfTPds+gFchm1iYuIRFVX
  w7S7Pwusr7r2ZOj4C8AX6n3oO5ylKzOv3uIiIjKNVGZsvmVvsCTXX7ugiIjMKJ0gnnmDpQriIiKR
  JR7E3ym8w9uZ/2VhbkXSjxYRaTmJB/ETZ08wt7iSOTl1bIqIRJV4EN++bzu9hX4yqTTkiIi0lsRD
  6Sdu+QTXnfgyc+cm/WQRkdaTeBD/yHs+wrn/upq+C1ZfERGRRqXSqDE0hIK4iEgMak67j/VhZl4q
  OV1d8LOfQXd3Yo8WEWlaM027TzwTP3MGenoUwEVE4pB4EB8agpUrk36qiEhrSjyI33ILvPvdST9V
  RKQ1Jb4zw5kz0NWV9FNFRFpT4h2bST5PRKQVXFIdmyIiEh8FcRGRJqYgLiLSxBTERUSamIK4iEgT
  UxAXEWliCuIiIk1MQVxEpIkpiIuINDEFcRGRJqYgLiLSxBTERUSamIK4iEgTUxAXEWlidQVxM9tk
  ZkfN7BUze2iKzz9mZi8EXwfMbEP8ryoiItVqBnEzywC7gA8D1wDbzOyqqmKvAb/s7tcBnwP+Mu4X
  bTX5fD7tV7hkqC4mqC4mU33UVk8mvhE45u6vu/sYsAfYEi7g7s+5+/8Fp88BffG+ZuvRL+cE1cUE
  1cVkqo/a6gnifcDx0PkJZg7Svwd8O8pLiYhIfWLdY9PMbgd+B/ilOO8rIiJTq7nHppm9Dxh0903B
  +cOAu/vjVeWuBf4J2OTur05zL22wKSJyEabbY7OeTPwgsM7M1gBvAluBbeECZtZPOYB/fLoAPtNL
  iIjIxakZxN29aGb3A/spt6HvdvcjZraj/LE/BfwJsBj4kpkZMObuG2fzxUVEpI7mFBERuXQlNmOz
  1oShVmNmu81s2MxeDF1bZGb7zexlM/uOmS0IffaImR0zsyNmdlc6bz07zGyVmX3PzP7TzA6b2QPB
  9barDzPrNLN/N7NDQX38aXC97eoCyvNQzOxHZrYvOG/LeojE3Wf9i/L/LH4CrAHmAM8DVyXx7LS+
  KI/QuR54MXTtceDB4Pgh4PPB8dXAIcrNW+8K6srS/hlirIsVwPXBcS/wMnBVG9fH3OC/WcrzKm5r
  47r4I+BvgX3BeVvWQ5SvpDLxmhOGWo27HwB+WnV5C/CV4PgrwD3B8WZgj7sX3P2/gWOU66wluPsp
  d38+OD4HHAFW0b71cT447KSc4PyUNqwLM1sF3A38Vehy29VDVEkF8UYnDLWqZe4+DOXABiwLrlfX
  zxAtWj9m9i7Kf6E8Byxvx/oImhAOAaeAvLu/RHvWxZ8DnwLCHXPtWA+RaBXDdLVVr7KZ9QJfA/4w
  yMirf/62qA93L7n7DZT/Gnm/mQ3QZnVhZr8KDAd/oc009Lil6yEOSQXxIaA/dL4quNZuhs1sOYCZ
  rQBOB9eHgNWhci1XP2aWoxzAn3b3vcHltq0PAHc/C3wLuIn2q4vbgM1m9hrw98AdZvY0cKrN6iGy
  pIL4+IQhM+ugPGFoX0LPTpMxOcvYB/x2cPxbwN7Q9a1m1mFmlwPrgB8k9ZIJ+WvgJXf/i9C1tqsP
  M1taGXFhZt3AnZQ77NqqLtz9UXfvd/crKMeD77n7x4Fv0Eb1EIukelCBTZRHJRwDHk67RzeBn/fv
  gJPAO8AblNeUWQR8N6iH/cDCUPlHKPe4HwHuSvv9Y66L24Ai5VFJh4AfBb8Pi9utPoANwc9/CHgB
  +GRwve3qIvTzfYCJ0SltWw8X+6XJPiIiTUwdmyIiTUxBXESkiSmIi4g0MQVxEZEmpiAuItLEFMRF
  RJqYgriISBNTEBcRaWL/D0/4iN+zdJOWAAAAAElFTkSuQmCC
  ",
        "text/plain": [
         "<matplotlib.figure.Figure at 0x7fc26840aa50>"
        ]
       },
       "metadata": {},
       "output_type": "display_data"
      },
      {
       "data": {
        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEACAYAAABF+UbAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz
  AAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4FFXbBvD7ScIGQhoQaoCEKr0JgoKIgNKUoqgg9kax
  v6KIjSBdpEovNkAQQQVUqhJEREGBoKHXj9CbgZC25f7+OOkJycquWUKe33XtlZ2ZM2fOnMw8c+ZM
  WSEJpZRSBZOXpwuglFLq2mkQV0qpAkyDuFJKFWAaxJVSqgDTIK6UUgWYBnGllCrAnAriItJRRPaI
  yD4RGZTD9GAR+VpEokTkNxGp4/6iKqWUyirPIC4iXgCmAOgAoC6A3iJSK0uytwBsJ9kQwOMAJru7
  oEoppbJzpiV+C4D9JI+StAJYBKBbljR1APwEACT3AggXkdJuLalSSqlsnAnioQCOZRiOSRmXURSA
  +wBARG4BUBlARXcUUCml1NW568LmaAAlRGQbgOcBbAdgd1PeSimlrsLHiTTHYVrWqSqmjEtD8jKA
  p1KHReQwgENZMxIRfVGLUkpdA5KS03hnWuJbAVQXkTARsQDoBWB5xgQiEiQiRVK+PwtgA8m4qxRE
  PySGDBni8TJcLx+tC60LrY/cP7nJsyVO0i4iLwBYkxL055LcLSJ9zWTOAlAbwGci4gAQDeDpvPJV
  SinlOme6U0ByFYCbsoybmeH7b1mnK6WU+u/pE5se0qZNG08X4bqhdZFO6yIzrY+8SV79LW5dmAjz
  c3lKKXUjEBHQhQubSimlrlMaxJUqhE6dAkaP9nQplDtoEFeqEPrkE2DwYODoUU+XRLlKg/h16ORJ
  oHfv/3YZa9cCb78NbN5s/ublzz+B6tWBWrWAixf/27Lll507gSpVgLAw8/nyy+xpJk0C5s/P/7I5
  a8sWoFo1U/5nn807/cGDJv2IEcDttwNNmwI9egB6qer6M3t2+raZm0ITxPN7I3VleX//DXz1FZCY
  aPJxNi+Hw/llTJkC/PgjsHUrsGZN5jwcjszLtNuBjz4C+vQBgoOB7dtN2azW7PPFxprPlSvZl0kC
  cTk8AvZv1jF1WTYbkJCQ87Tc8kpdlsMB/Pwz0KqV+Tt6NDB2bOZ1SkwExo0DVq50vmwZJSebuoiL
  y7yOV/s/2WwmvT3DCyuy1k1iokkHAJcvA5MnA088Afz0E7B0KXAo23PSmW3aBNSvb4L5+vXm/799
  uzmYJyfnvEzlGZs2AS++aLbP3BSaIH7nnWaDzQ8bNgAdOlz7/EeOmB05Ohr48EPgvfecm691a2Dj
  xrzTnT1rAveRI+kfwASH0FCgXTtg3rz09H37mpZ7376m5RYVZVpzLVuand1qBerUAe65ByhfHqhc
  GShd2gSHjEaPBgICgB07so9//XXn1jE2FqhQwZSxdOn0wJOqRg3grbeuPv+AAcC995r5o6KAW281
  LZ0HHzTrcttt6QGsXj3Az8+kuxYdOpj6DAkBwsNNy3fqVOCZZ3JO3707UK4c0KtX+rgVK4CHH05f
  99BQoEsXYPlys/6//AI895z5f/TvD9Subc7kriYqCmjRAihbFvD2NuV69VWgY0egbl2z3XXpAtx3
  37Wts3KfI0eAJk3ybonn96OjzC8OB7llC3nuHGmzkcWKkdOnk+fPp6eJjyfPns0+b0yM+ZuYSJ45
  Y76fPk0mJZnvSUnkqVNXX/bo0WRgoCkDSdrtJs+DB8mNG9M/sbFm+rFjJm3q37ffNm2huXPJ++4j
  27dPL8f27enzkenjo6PNPDNnZh6fWva//kofP3ky2bs3abGQnTqZ+fbsIf/+O7UNRg4YYNLv2kUG
  BZl6JMnZs8m77iJDQsgqVcg//zTLTJ3v6FGTbuhQ8oUXMtdLt26knx85a5YZTkgw9VC1KtmqFRkV
  Rf72W3q9JSWl19Xp02bchg1mOSVLmvmiojIvI7UcGzeaOsnozBmyUaP0NKVLk7/8kj7d4TDr9Mcf
  Zn0DA00ZixY1f1Pt32/yv3DBDMfEpJc5o3LlzLTU+ilenKxXz2yL//xj0mzbZvJasYIsVcpsn8HB
  pl5J8s03yYYN0+v+nntM3TdqRM6bl32Z7duT33+ffXyqdu3IH37IeVqTJuS0aaastWvnnOb4cfLA
  gczjrlwhN20ik5Ozp4+JSf8fpv6vjh27evk8JbVMrpZtzx6TR3IyefJk+vgzZ8iLF009pNbh8eO5
  5xUenl7XKbEz57h6tQn/xSc/g3hqQHruOXL3bvM9OJi89970NG3amB0towsXSF9fE+BnzTJBlDQB
  6OOPzff5881OdDW9e5vlHTpkhletIkNDTTBs2dJ8qlQh33nHLCcoKD0Iz59P9ulDNmtGPvIIWa0a
  6eVFBgSQq1eb7z17mny3bDEB4eJFs7MXL06+9ZYJ2BaLCXwOB9mggZlv507Sx8fkuXq1+evvnx7U
  Jk0yAaN7d1PGM2fMcocMSV+3nTtJERMs3nuPvOkmsmxZc4B8++30dAcPmmCTeuAjzUbZvz/5/PNm
  +MUXyZo1yQcfJL29yRIlyPLlTR2QZl2qViXr1CEfesiMmzyZvOUWcsoUM+7zzzPXfXAwedttpvyB
  gWanIk1dWCxkkSJk377k+PFmHeLiMs8/ZAj50kvkjz+aAwtp/hdr16anqV6drFyZfOUVM1yjBvnz
  z5nzSUgw25Hdbv4/bduauixbluzYkVyyxOzkRYumbxOTJ5t5x441aY8cMQfZ4GAz/vbbyW+/JadO
  Ndtx1rKT5GuvkSNHZh9Pmm0hJOTqwePbb005GjQwdZyV3W7+h/7+Zp1SjR9vtp8lS7LP0769ya9l
  y/Rt0scn+4HAkw4eNOt08KDZh6zWa8vn+HGzb7RpQy5ebLZbh8M0FH19zb5Sp47Zdvz9ybAwU6c5
  sVrNtpq6/9zwQfzAAdNqPXjQBM6YGNMSDA01G+OiRaZyAbMBLVtmKg8wgePsWRNEFy40+QDk1q0m
  4KQG63r1TNAhzY4CmB3399/Ty7F2rcmncmWyYkUThOx2ctQok75bt/S0S5eaVtWiRWbaypXm7623
  msD25ZdmRy5WzLQ6LRazPm+9ZYL+Rx+ZHdxiMQE0NJR8/XXy4YfNX4uFfPxxcvhws7E0bJievkIF
  c3bStm16AAfIpk3JYcNMa9Dfn3ziCXNAycjhIOvXN3Wwf7+ZL2sgTZUadFLrpnhx87dWLXNgDQlJ
  P9CFhpIjRpj1vvlmE6gqVDAHpL/+MnWycCF5xx2mtUiaYNWliwl2UVEmqKUGTpL83//MQXjqVFMX
  FovZkfLalkqXJnv1Sj/YTJxI3nmnyeeHH0w+K1aYIL96dfoBMKO9e81BMlVcnEnXqZM5ePfvb4Jf
  27Y5l6N/f1OGkBCz7W7fnv2gmJPPPydbtCAPHzYt96lT0z8LF5o8cjpryOj4cbJMmczjbDZyzBgT
  kHv2JJ95xuQZFUU++qj5/73zjkl76pQ5+4iNNWcXqS3S6tVNQwgwB8sff8y7LKn27jVnHjabc+mz
  iokxefz0U/q4LVvIuCt2Lv7KToD84ANTtl27rp7PhQtm+1u4MPu0Dz4w+3hwsGlUAWY/nTzZbDP+
  /uaspW5dU4cNG5Lr15v9aOpUc5aZ6uhRU6epbvggnhpUS5YkO3dObwkPGmRO3994w7QEAFO5wcHk
  mjVmuHJlc9pfqpTZWSwWM37OHNOiK1HCbGgBASYokaZ1UbmyaZUAJmjExZn5S5Uin3zS7ORhYWY5
  Dz1EPv2Mgzt2pG+xBw6QlSqZndrf3wSwgAATeF56yZxuz5xpdvSPPzYb/CuvmNP8Tz4xO/nLL5uD
  TqlS5lQ4MpJs3ty0ZpctM10i/fub0+vHH09vLa1YYcqwdCk5eDC5fDnZoYOZHhlppg0daubfvTt7
  fa9ZQ+7YYb7PmWM2zJzMnk326EFeumQOPBMnmnp64AHzvwoZcD+fWfYMSfKzz0wrLSHB/I/69zdB
  gzSnphaLOTAOGJDeZbN3r/kflSxpgnx0tGkVpzp2zPxv+/c38/30U847X1YTJph5tmwxwxcvmv/L
  00+bcpQvb8qa8QD45JPZ6yhrgA4JMev21Vfp8736as5lOHzYHEQGDzatt/vuy949lZNTp8z/slQp
  EyT69zefvn3N2Vi7dnnnYbenn43a7DYmWBP4zYoEhldP4Kp1Cdyx08r+/c2+1qMHWa9RIkPfu40t
  Hl7DBGsCR4xJIMTO5/o60g4GSbYktm9vzvKqVTPrBGTu9rParUywJjDBmkCbPXO0vv12s5/88APp
  cDbyZ9CrlznbSw1BiYlkYIWT9InwpQzxIiptYp36SQTIL764ej4DX3ewVSsTV7J2xbZvb/at8uVN
  oO7f3+zjpUqZ7XvxYpPuxx9NT8G4caah1LatqZcSJUydJ9mS+MknDt7bNX09b/gg3rMnef/9ZgcL
  CjKn0QEB5HffmdPxqlVNQLBYTEB47jmycWNzSmqxmJ2rZEmyXz9TIxaLme7nZ1rugwaZU5ugIPKb
  b0zeL75oxgFmA0k9kJQvn346NmmSacmHlHbw7tkPcvrW6SRJu8NOu93kExhIPvss2bWrCUhZN1C7
  wzQrHQ5HjhtvcjJZsvJJlnq/Kg8dNi2Kps0yn6NZ7VaOGZfAOvWsjE9OoNVuZXxyfNp0m93GyTNj
  Wal6LG22nHeQ1HLk5NVVr3L8r+OzpfvnH7N+99yT+SzkyhXSLyyaiACrTaqWNTuSZGxiLBOtiWnD
  jRrb04J6Rtu2pRzAQ6y84+5Ytm1/jefCTnA4zA7ZooUZLlfODNeta7aXuDhy4EDTfda9e/bA3rSp
  OYiknsGULEl++unVl5dal5272NPODp2x/0gcxXKFq1ZlHt+hgzkYOaN6dfKPnZdYdnhNeg/xpbzr
  S58IX/oO82XZsWV58MJBRkc7GFo1lj4dB7HEyBDKoFL0HupDr/csLP1WM+J/oWzRbSdHbxxNiRA2
  f3k8AdNASD2Ipa7Td985WHJUafoO86VlmIUNpzdk9OGzHPBiMp991uyjEyeS9RtaWW1cPe49t5fT
  puXcpTRtmtmXUz8//GC2Q9N16ODYsQ726EEGNF7JwBfasWq/gbS8VpOIAMPviGSzZuYsL3V3u5R4
  ibGJsTwee5Ler4Xx+9/2slUrc1Y5dao56Dkc5gwuJobs0NFG+MTz8GHTOi9fnky2Zt9/Tp40MaBU
  KXNQuftu8va+S+jzvg/9BzZikaG+aWlv+CDerJm5YLB5szklWbPGdHUkJJgWSGr/9Pr1Jv2mTUzb
  mCpVMkf5bdvIS5ccDAy28Y03zIbw5ZeZW1uNGqV3X3zxBQkvK59/3rTcREzf7u9brWnBNj6enD4r
  mY9Omk6/EX7strAbE62JrDWlFv8+/TdXfGfnup+sHD3a9JW2e/onIiK9jqJORTFsQhhPXT7FkT+P
  ZM/FPXMM5KOXLyYiwB0nozj7k3jeNKEBp22Zlja984LO9B8RwOrj6jFgZADrT6tPvxF+jE2MpdVu
  Zcu5LVl8RHH6DC3Cz3Z8lq0VlGBNYOUJlbnx6EaS5IX4C2nlsNqtDPkghJ0XdOapy6dYcXxFfr/P
  XFmz2W388UcHP5xykYcOZ96In5z3DvsuH0C/EX48d+VcWnqb3caPfv+IlmEWlv+wPOOSzF56y0d3
  cdT6CTwTd4aXky6n5ZNoTeKydadYf1JzFokoyrtm9kqb5nA4eO7KOadabja7zal0bduSD/YyB4oN
  G0yfe3S02REjIswpsMViuvGyXlj9/XcTdBwOct068tffbJkuUmcsS7ItmS3mtOCojaPYfuYD7DV1
  hFNdD+sOrqPvMF/6vl+My/d8zzNxZ3gm7gwdDgf37jVnMQ6HI9PB1ma3MT45PtOBvVMXK7uOH8Ii
  Dz7GKVPMGVfqxd2xm8bSd5gvm89uQbxdlMXeqMG/Tv3NysNuYaXaJ1mnro2tp9/LW8c/yOLDAxk+
  MZwbjmyg35AQosxO7tpl9juA/HjhOZ6JO8PbOhyn5V3T+e9wOPjkt0+yyBA/ln61A6dNM/tsQgLZ
  7rnVRAT4zrohtFjMWWlGx4+bM+2pU80+/L+BNhbxi2fnnme49pcLLNl1FPHg/XxvzBn+7+vR9Lvv
  Zfo2/IaIAKuMaM7nl7zHMVPOsEJ4HLdtI+f8OYeWYRYWH1GcgSOD6fVGWTaf3ZwDXrDy3q42AuYM
  78QJsw04HGTXuU/SO8KH/yTEMi6OXL7xIMuOLcs1B9YwNjGWdoc9bVtbuTL94vqBAw5aBlVinyEr
  6d2vGREBno83d2Lc8EG8dGlTiRlZ7Vba7DZu2JjM4BIOJtvSW2gOh2lpLF9u+linzzKX1T/b8RnL
  9XuMi5emX2ZPC+JeyRw/3sGmTc34NRv+IV4P4eJl//BC/AXeefcVTphoY5tP2/DVVa/SZrfR7rCz
  34p+LPdhOf6w7wciAgwYGUBEgIgAW3/Sms1nN+cnn5hlNH/3tUxB/I01b7DCuAq894t7WWNyDYZ8
  EMK1B80VtnNXzjEmNob/JPzDV1a+kpZn+8/bs/UnrVlqTCnuObuHMbExDB4dzOlbp/Oxbx7jp9s/
  ZZ+lfdhiTgtWGl+JjWY0YvvP29PusHP61umsOL4i602rl2mH/nrX1wz5IIQ3z7yZaw6soddQL/Zd
  0ZcxsTFcuX8lq0+uzhKjS/CVla+w/eftWWFcBZ67co5vrHmDjWc0ZpH3i/DBrx5M23DPx59nhXEV
  uO3ENvZY1IPlPyzP1QdWs+L4irx55s30H+nP9YfX885P72TgqEBO+X0Kg0cHs8rEKgz5IIRBo4L4
  6//9yosJF9llQRcGjw5mryW9+Nux39hkZpO0ci/fs5yIAN9c+yaTbEmMiY1hTGwMz105l2k4JjaG
  Hed35HPLn2NMbExaOWMTY9OmX0q8RJJ8ZWACQ96rw6hT5laL03GnabWbg7mXlzllrlTJNAAycjgc
  PHXZ3NIUlxTH7ou6s9XHrbJtyxHrI9hjUQ/Oj5rPZrOasfQHpRk4KpDFhhfLdGZyNX2W9uFHv3/E
  VftXsdyH5RjyQQiLjyjOET+P4Om407TZbbz/y/v57k/v8nTcaW4+tpkVx1dk6LhQlv+wPKPPRHPv
  ub0MHFKZ8nZxtn9sS47LiT4TzVvn3Momrc5x7tzUdTTXjry9M9/Nk+r+4XOJfg2ZZEtih/tP0q/p
  YhaJKMagUUH0eq0i5fn6vO02pn38w3ez0tjqmeqwyYS7WK7vEywzOpRSaj9vb5veFD92zJwRPf20
  Gf7zxJ8MHRdKr9cqMXB4CP1G+NH73eL0eqEeg0cHExHgXW/OYsf7zvL2j2/nsj3L0vZRvyGlWbnW
  Wfq/0oK1u37P+3va2WLcA2zx8Dq2/7w9i79fkuhfj7Vrm/93/frpXVX1p9UnIsBtJ7aRJB//5nF2
  mt+JZceWZfERxYkIMGJ9BEnTdZLq8MXDLDG8HMXLwX79yHafteN3e78jmXsQL/BvMYyPB0qVMg+X
  eKXc9X7wwkFU/6g6GpVrhMtJl9GsdBuUDvbD5E6TkWRLgq+PL06eBOzFTuLQyVh0X34bNj21CdP/
  mI55UfMBITY8sQHl/MvhykV/wPcyui7uiFdavISmpdoiMMiBeVuXY8jmV/Bx65/Qf1MntAq9E/2a
  DsCIX9/D2StncfzycQy7cxgW/LUAX9z3BRqXb4x60+qhQdkGqBRYCR/8+gEAILhoML5ocBGdOwNN
  J92NPy6uBYcQZ6+cRf3p9bHqkVV4fe3rEAg6VOuAbae24fXbXkerj1sh0DcQNocN1UtWR4OyDbA4
  ejEuJl7EukfXYc+5Pfh85+doVqEZku3JmHXvrEz1NnDNQEz/YzpuLn8zFty3AJWCKmHn6Z1oOKMh
  yhYvi0EtB2FAswHw9fHFQ0sewp3hd2LohqEIDw5H15pd8e3eb3HgwgEk2hIxou0ITNs6DecTzmNZ
  r2X4evfX+L/Y/8Ovx35F1RJVMbLdSDy57EksvH8hbgm9BUMjhyLmUgxmd50NAKg8oTISbAnwFm/Y
  acfN5W/G9w9/j2/3fIthPw/DnnN78EyTZzCl8xQAwOdRn+OtH9/C5eTL8BIvnHztJIr6FMWpuFNo
  ML0Bzrx+BgAwNHIojl8+jhX7ViDINwgXEy/Cx8sHsYmxqBRUCRcSLsDHy7xSv2HZhriQcAF7zu3B
  a7e+hnfveBfhE8ORZE9K+z8tuG8BOs3vjDPxpzGp4yS0rdIW9afXxz0178Hi7ssRHS24+WYg5nQC
  KpYthivWOCTbk1GyWEn0/64/5myfgw/v+hDf7PkGvx77Fb4+vrg8+DIA05hac3ANHvv2MSTZknBX
  tbvQqlIrVAiogM0xm7HgrwWI6heFcv7lctwPSGLria3otKATdg3YhbL+ZdOm/XHiD7T+pDVsDhtq
  lKqBy0mXcS7+HGwOG4p4F0F4cDh61+sNHy8ffLTlIwBANa922LjlH3zXZxm6dMnx5XkAgBMn0u85
  B4DTp4Fz58w951klJRHdFnXDsSsHse/8PojDgjsvz8awZ25H8y8ro02FLhhe57u09F5+sbhrZSji
  3opDki0JU7ZMwfwdX+LIe5tw+7tDsPbMZ0hOFqzsswo1wopj0mTgyGFg5EigWDHgg00f4Of/+xld
  wh/AmE4R2Hk6Ct0mvYuwzcuw7kcbGsxogIXdl6BqQF0EBgL/JP6DetPq4a/+f6HXkt74+chGVPGv
  h2lNN+J/L1vg42Pu/X9u4DHc8WkbHP7nEJIGO7B5azJ84IvwcKBMOSsCRwfijrA78HTjp9H1pq6o
  PbU2vnv4O9QpXQerD6xGxwUdcW/NezGp4yQ0mdUEC+5bgM41OmPmHzOx9tBaDK62BHXqAGO3vI+L
  CRcxoeOEXN9iWOBb4n//bS5qpVr89+JMrV1EgMGjg1lnah2SZMPpDTn+1/E8d+UcEQH6DvNl+MRw
  Np3VlLd/fLvpF5sYzioTq9BvhB+rTKzCgJEBbDqrKYsOL8qSY0qmTfd5pRYf+eoJBo4yp4yvr3md
  70e+z7UH1xIRYNeFXRkwMoBWe/Z+2rNXzqaVb8WmA0Tx0wwdF0pEgA6Hg90XdeegtYMyzXP80nHW
  mlKLvsN8OXD1QJJkmbFl6PO+D8/Hn+f5+PPssahH2llAn6V92GxWM569kv1m+A1HNvD1Na9nGmez
  29hhXgcuiV5CRIB+I/x4Oekyg0YF8dyVcxy7aSwbTm/I03Hmpu3LSZd5zxf38MSlExy8bjAtwyxM
  sCYwPjme7T5rxwcWP5CW94DvBnDcr+NIZm5hkGSvJb0YNiGMS6KXpPWtpzoff56d5nfihfgL2dbh
  y7+/5Ls/vZs2bHfYaRlmSTuL6Lm4J7/Y+QW/3/c9H/360bQuhDUH1rD3kt459vNvPb6V1SZV48EL
  BxkwMiCt6yFoVBDfXPsmEQFahln44FcPcuqWqXzk60fYeEZjjv91PHef3c1tJ7ax/IflOXXLVNaf
  Vp9Bo4I4YfMEhk0I458n/mTQqCAWH1GclxIvsdSYUvzl6C/cfXY3n//+eZYZW4bf7v6Wj379KBEB
  bj2e3glea0otRp+JzlbeVN/v+57FRxTnnD/nZJvmcDjYc3FPbonZws4LOjPqVBQf+uohbj62md0W
  duOhC4eyzXPokLlwf623213Nqcun2O6zdtx+cjubjOvI5rdfYvUaDvq8E8h+K/plK7ffCD/+k/AP
  W3/SmjUm1+Dus7sZFma6rD78kGw28H0GR4QzfGI4fV4LZ4Ux5nv4xHDWnlKb+8/vz5Tn5Mnm4nJe
  VuxdwddWv5Y2nHpXzfLl6WnCJoRx0NpBrDO1DuOT43kl+QpX7l/JGpNr8LXVr3HwusFp+3jGbe3o
  P0dZ+oPSbP1Ja/Ze0psVxlXgsA3DGDQqiPOi0m/+jz4TzdBxobQ77Dd2d8rCheQ9D5h+oxOXTrDM
  2DL8PeZ3vvPjO0QEWPOjmvz5yM/0H+nPDUc2sOzYsgwaFcRfjv7CulPr8ullT/OP43+w4/yORAT4
  6NeP8tf/+5X9VvTjd3u/44DvBnD5nuVMsCaw28JuaafEJDnu13FpXQu+w3zZdFZT/njoR5LkL0d/
  ofdQb3aY1+GqZX946cMs/UFpeg/1ZoVxFVhseDF6D/XmjK0zWH9a/RxPn212Gx/5+pG0HbrtZ21Z
  YVwFd1YprXYr7/r8LiIC/GT7J+y8oHOe8+w5u4fPLn/2qtMX7FzADvM6cMfJHQwYGZDW10eSS6KX
  cNJvk646779RZWIVrju4jlGnolh9cnXuPLXzX83vcDjYdWFXFhtejC3mtEgb32FeBxYfUZztP2/P
  4RuGs9SYUmzzaRvO+XMOo89Es9GMRrzpo5t400c3sf93/Rk0KojhE8M5d9tc1p1al5GHI0mSneZ3
  YuMZjUmSr6x8JW2elnNbpl0bOHX5FBvNaMRkW3q33q1zbk27JpFVXFIcB64emHaK7i7XcBPIvxIX
  Zy42tm9P3jrnNo74eUS2NNUmVeMzy55h609ap12rSUw0ty86HObhsBo1zK2stWs7V+ZrXa+sF1Gf
  W/4cfd73YfXJ1fnKylfYeUFnhk0I4+trXuf0rdMZOCqQoeNC0+7AyqjDvA586KuHaLPbOGzDMDaa
  0Yi7z2a/FazZrGacsHnCjR3Enx78F4MiKtHhcPDNtW/y5ZUvkyQ/3f4pEYG0VkbLuS3ZfVF39lvR
  jx3nd+Rj3zzGu+fdnZbP8UvH2Wdpn391+9KfJ/5kw+kNue7gOpYcU5KIQNpFt4sJF4kI5Ngyyqjd
  Z+1Y/sPyLDmmJJvMbMJSY0qxzNgy/PnIz7nOl+qlH17KtB7u1HhGY1YcX5Gf77jKjeD/wolLJ9hk
  ZhPWn1afD371oBtKlzOf932ICLD+tPpsObelU/3IWTkcDt700U2ZDkqfbv+UTWY24fFL5kmZaVum
  sfGMxjxy8UiOeXy+4/O0u5Ey+n7f95y4eeK/LlOXBV24fM/yHKf1WNSDiEDa9ZKCZMgQc3FvwuYJ
  aQe6jBrPaJxpP87K4TDPCoSFZb/I+V87e+UsH1j8AI9fOs7QcaEMHBXIK8nmftsdJ3ew0YxGaY26
  axV1KorYLHQrAAAZgElEQVRNZzW9MYO4zUYuWRHLKvfPJSLAX//vV7ac2zJtQ954dCOLvF8krSuj
  5+KerDqpKkf8PIIzts6gZZiFj3/zuNvKgwiw6PCimcY9+e2TOXYDZE3Tc3FPdlnQhY998xjDJoQR
  EUjrssjL6gOrOfvP2ddc7txM3DyRd31+F2MTc7iF4jo1auMoLvzLiZvB8zB321wu27PMDSVyj0e/
  fpSfbv80bdjusPP3mN958vJJBo4KZId5HTLdtXOjSO2OuN79eOjHHM8k3CW3IO7UDyVfj/78E+gz
  5z1YG5rfa77t49sAAM1DmwMA6pepj35N+6VduCrjVwaHLh5CmeJlUL9MfSTbk1Hev7zbyjOi7QjU
  CqmVadzH3T7Oc77ONTrD4m1Bsj0ZPl4+2HZyGwCgZLGSTi337mp3//vCOunlFi/j5RYv/2f5/xfe
  bPWmW/J5qvFTbsnHXUoULYELCRew8/ROlChaAmsOrsGLK19EgG8Aut7UFfN6zMs7kwJo3N3jULZ4
  2bwTeljbKm3Rtkpbjyy7wAbxw4eBYrU2IskrEffUvCctMAf4BgAAgooGYXKnyWnpyxQvk/a3Tuk6
  AIDyAe4L4m/dnsur83LRs07PTMNjNo1BcNHgtIOPUoA5qC/dvRTDNw6Hr7cvKgZWxOx7Z2PD0Q0Y
  0XaEp4v3n/nfrf/zdBGuewU2Uuw7Eoe4ontQxKsIXrrlJdxV7a5c02cM4gG+AQgPDndrS9xdAiwB
  CPEL8XQx1HWmRLES2HRsExb3XIyTcSfxW8xvuK/2fejToI+ni6Y8zKkgLiIdAUyEef/4XJJjskwv
  BWA+gPIAvAGMI/mpe4ua2faTO1AhpC6ebd0VN1e4Oc/0qUE89dTs1RavonnF5v9lEa9JgG8AShUr
  5eliqOtMXLL5NY1utbrB4m3BS81f8nCJ1PUizyAuIl4ApgBoB+AEgK0isozkngzJXgCwg2QnEQkB
  sFdE5pO0/SelBrDvn79xU/UGeKf1O06lz9gSB3Dd7gT+Fn9tiatsetbpCYu3BRZvi6eLoq4zzvyy
  zy0A9pM8StIKYBGAblnSnAIQkPI9AMB5VwP4rl3mF0gefBA4fx7o2dP8ekyjRuaXumOS/0aj0HpO
  51emeBn4FfFDcUtxV4r1nwuwBKCUn7bEVWY1S9XEwNsGeroY6jrkTBAPBXAsw3BMyriMZgOoKyIn
  AEQBcPmWhuho4PffzW9NRkYCP/wALF5sfuNx1iwgMfBvtK/vfBCvUqJKgbgA5G/xR0gxbYkrpZzj
  rgubgwFEkbxTRKoBWCsiDUhm+1nciIiItO9t2rRBmzZtcsww9RfVK1YEFiwwvx1Yr55pnY+ZcBl4
  eTuahebdF57K4m3BKy1e+Rer5Bk9avUAob9Sq1RhFhkZicjISKfSOhPEjwOonGG4Ysq4jFoCGAEA
  JA+KyGEAtQD8kTWzjEE8N6dPA2+/bX749okngCefNOMbNQLiKy1Hm9DbUaJYCafyKkiux4utSqn8
  lbWBO3To0KumdaY7ZSuA6iISJiIWAL0ALM+SZjeA9gAgImUB1ARw6F+VOotTp8wvf99+u/mF9Xvv
  BXad3YU9wRNRtfMK9G7S1ZXslVLqhpBnS5ykXUReALAG6bcY7haRvmYyZwEYBeATEYkCIADeIHnB
  lYKdPg20aQNUrQps3WrGdZj/Kn6L+Q2Xil1Cy0rvupK9UkrdEJzqEye5CsBNWcbNzPD9HIB73Vmw
  1JZ4qrNXzuL3mN8xsu1IvLP+HdQuXdudi1NKqQLpunti88IFYP160xIvm/LKhM3HNmPFvhVoHdYa
  TzZ+EuHB4fASZ3qClFLqxnbdBfHVq4H33wdiYoDQlBsZO8zvgMvJlzG63Wj4FfFDl5pdPFtIpZS6
  TlwXQXz+fMDhAM6cMT/ttHev+cm14inP5dQuXRtbjm9By8otPVtQpZS6zng8iDscwODBwPHjgI8P
  0LCh+Wni8PD0NJeSLmFa52m4teKtHiunUkpdjzwaxK1W4LbbgDJlTDCvUQPYsMH0hYeFmTRD1g/B
  nnN70KdBH3h7eXuyuEopdd3xaBBftcq0vtevN38BIDYWePppwL/KLkzdsh7v//w+ACDQN9CDJVVK
  qeuTR4P4118DjzwCFC2aPu60YxcONH0L0fZl+Gyl58qmlFIFgUfv09u+HWie5Snzp5Y9hZ6tGmHp
  g0sBAOX8y2HvC3s9UDqllLr+eawlnpxs7kKpWzd9XJItCdtPbcfGJzfCx8sHRX2Korx/edQsVdNT
  xVRKqeuax1riu3ebO1CKFUsZPrsbj337GCoFVkIR7yIQEZT3L5/2Iw5KKaWy81gQP3ECqJzh3Yhz
  t8/F4ujFqFayWtq48gEaxJVSKjceC+JWK2BJ+aUpkvhq11cIsASgWokMQVxb4koplSuPBfGDl6Lx
  S51m6LygMyKPRCLZnowH6jyA2iHpL7YKDw5HxcCKniqiUkpd94TMv1+RERGmLm/g7OUYd6Ibapaq
  idNxp9GuajvM7zEfPl4+KOJdBACQaEuEt3inDSulVGEkIiApOU3zWEvcZgPKx9+N6AHRaFSuEdpV
  aYdiRYplCthFfYpqAFdKqVx47hZDuw1FUBw+Xj748bEfIZLjQUYppVQuPBfErTb4iFm8vhNFKaWu
  jce6U5LtNniLx1+iqJRSBZrngrjNCh8vDeJKKeUKz90nbrfBx0svWiqllCs82BK3aUtcKaVc5Llb
  DO0axJVSylUe7k7RIK6UUq5wKoiLSEcR2SMi+0RkUA7TB4rIdhHZJiJ/iYhNRIJzy9PqsKGIBnGl
  lHJJnkFcRLwATAHQAUBdAL1FpFbGNCQ/JNmYZBMAgwFEkvwnt3ytdhuKeGsQV0opVzjTEr8FwH6S
  R0laASwC0C2X9L0BLMwrU5vDBh8N4kop5RJngngogGMZhmNSxmUjIsUAdASwNK9MbdoSV0opl7k7
  it4L4JfculIiIiIAADGbf0Jxa3U3L14ppQq+yMhIREZGOpU2z1fRikgLABEkO6YMvwmAJMfkkPZr
  AItJLrpKXmmvoq394ptoWCsIi54f7FRBlVKqsHL1VbRbAVQXkTARsQDoBWB5DgsJAnAHgGXOFMpO
  Gyz6mlmllHJJnt0pJO0i8gKANTBBfy7J3SLS10zmrJSk3QGsJpngzIJtDu0TV0opVzkVRUmuAnBT
  lnEzswx/BuAzZxdspw0WHw3iSinlCs89du/QIK6UUq7yWBDXlrhSSrnOc0EcNliKaBBXSilXeCyI
  O2iDr7bElVLKJR7tTvHVlrhSSrnEg90pVu1OUUopF3muOwXanaKUUq7yaBAvatEnNpVSyhWeDeLa
  naKUUi7xbHeKRYO4Ukq5wmNBnKItcaWUcpXngrg+7KOUUi7zXBD30sfulVLKVR7tTtFbDJVSyjUe
  C+IQ7U5RSilXeSSIkwC8rbDoj0IopZRLPBLE7XYAXvrLPkop5SoPB3F9YlMppVzhkSDucADwssHH
  S1viSinlCo+1xMVbg7hSSrnKo90pGsSVUso1GsSVUqoA82gQ9xZvTyxeKaVuGE4FcRHpKCJ7RGSf
  iAy6Spo2IrJdRP4WkfW55We3AxS7tsSVUspFeUZREfECMAVAOwAnAGwVkWUk92RIEwRgKoC7SR4X
  kZDc8rTbAYgdXuK5B0aVUupG4EwUvQXAfpJHSVoBLALQLUuahwEsJXkcAEieyy1D051ih7eXdqco
  pZQrnAnioQCOZRiOSRmXUU0AJUVkvYhsFZFHc8vQbgcAh7bElVLKRe7qlPYB0ARAWwDFAWwWkc0k
  D2RNGBERgfPnCfzlwMYNG3HnnXe6qQhKKXVjiIyMRGRkpFNphWTuCURaAIgg2TFl+E0AJDkmQ5pB
  AIqSHJoyPAfASpJLs+RFkti9x4E6i3zACMe/WC2llCqcRAQkJadpzvRnbAVQXUTCRMQCoBeA5VnS
  LAPQSkS8RcQPQHMAu6+WYbLNDlC7UpRSylV5dqeQtIvICwDWwAT9uSR3i0hfM5mzSO4RkdUAdgKw
  A5hFctfV8rTa7BDqRU2llHJVnt0pbl1YSnfK5j/i0XJZCBzD4vNt2UopVVC52p3idla7HeLBHxVS
  SqkbhWeCuHanKKWUW3gkiNvsDkCDuFJKuUy7U5RSqgDzWEtcoC1xpZRylQf7xLUlrpRSrvJgd4q2
  xJVSylWe607RC5tKKeUyz3Wn6IVNpZRymYda4tqdopRS7qB3pyilVAGm94krpVQB5rHuFC9tiSul
  lMs8E8Qd2p2ilFLu4MGWuHanKKWUq/TCplJKFWCea4nrL90rpZTLPNQnrveJK6WUO3isO0XvTlFK
  Kdd5rCWu3SlKKeU6j0RSu0PvE1dKKXfw2H3iXqJBXCmlXOWZlrjenaKUUm7hVCQVkY4iskdE9onI
  oBym3yEi/4jItpTPO7nlZ9PuFKWUcgufvBKIiBeAKQDaATgBYKuILCO5J0vSn0l2dWahdodDW+JK
  KeUGzkTSWwDsJ3mUpBXAIgDdckgnzi7U3J2iLXGllHKVM0E8FMCxDMMxKeOyulVEdojI9yJSJ7cM
  7XphUyml3CLP7hQn/QmgMsl4EekE4FsANXNKGBERgZ3rd+G87EFkZCTatGnjpiIopdSNITIyEpGR
  kU6lFZK5JxBpASCCZMeU4TcBkOSYXOY5DOBmkheyjCdJ9Hj3S+wvshR/v7fYqUIqpVRhJiIgmWOX
  tTPdKVsBVBeRMBGxAOgFYHmWBZTN8P0WmIPDBVyF3eGAt3anKKWUy/LsTiFpF5EXAKyBCfpzSe4W
  kb5mMmcB6Cki/QFYASQAeCi3PO362L1SSrmFU33iJFcBuCnLuJkZvk8FMNXZhdocdm2JK6WUG3ik
  OezQ7hSllHILzzx2T+1OUUopd/DQWwwd8PbSlrhSSrlKW+JKKVWAeex94toSV0op13nmwib1wqZS
  SrmDx7pTvL20O0UppVzloZa4dqcopZQ7eO7uFO1OUUopl3mwJa7dKUop5SoP9olrS1wppVzlsbtT
  fDSIK6WUy7Q7RSmlCjDP3SeuLXGllHKZ3ieulFIFmGda4rBrn7hSSrmBdqcopVQB5rELmz7anaKU
  Ui7zXHeKt7bElVLKVXqfuFJKFWAeCeKE3p2ilFLu4LmWuHanKKWUyzzWJ+7trS1xpZRylVORVEQ6
  isgeEdknIoNySddMRKwicl9u+RF2FNE+caWUclmeQVxEvABMAdABQF0AvUWk1lXSjQawOq88HbCh
  iI/Pvy+tUkqpTJxpid8CYD/JoyStABYB6JZDuhcBLAFwJq8MHWKFxbvIvyqoUkqp7JwJ4qEAjmUY
  jkkZl0ZEKgDoTnI6AMkrQ4oVFh8N4kop5Sp39WlMBJCxr/yqgTwiIgJJ2//CGvqgvldptGnTxk1F
  UEqpG0NkZCQiIyOdSiskc08g0gJABMmOKcNvAiDJMRnSHEr9CiAEwBUAz5FcniUvkkSxZzpj+lPP
  44nbuji5SkopVXiJCEjm2Dh2piW+FUB1EQkDcBJALwC9MyYgWTXDwj4BsCJrAM/IIVb4aneKUkq5
  LM8gTtIuIi8AWAPThz6X5G4R6Wsmc1bWWfLMU/vElVLKLZzqEye5CsBNWcbNvErap/LMT1viSinl
  Fp55d4qXFb5FNIgrpZSrPBfEtSWulFIu80wQF22JK6WUO3jmLVTaEldKKbfQPnGllCrAPNYSL6pB
  XCmlXJbvQZwE4K3dKUop5Q75HsTtdqT0iVvye9FKKXXDyfcg7nAA8LaiiL6KVimlXOaxlngRLw3i
  SinlKs8EcW2JK6WUW+R7ELfZCIgD3pL+G5vh4eEQkRviEx4ent9VqpQqxPL9hy4TrVbA4QOR9Ffj
  Hj16FHm917ygyLheSin1X8v3lrgJ4tqVopRS7pDvQTzJaoVoEFdKKbfQIK6UUgVY/gdxm3anKKWU
  u3imJU4N4kop5Q4eaYkXtO6UixcvokePHvD390eVKlWwcOFCTxdJKaUAeOAWwySrFV4FrCU+YMAA
  FC1aFGfPnsW2bdvQpUsXNGrUCLVr1/Z00ZRShZxnWuIFKIjHx8fj66+/xvDhw1GsWDG0bNkS3bp1
  w7x58zxdNKWUyv8gnlzAgvi+fftQpEgRVKtWLW1cw4YNER0d7cFSKaWUkf/dKbZr605xx4OQ1/JQ
  aFxcHAIDAzONCwwMxOXLl10vkFJKuciplriIdBSRPSKyT0QG5TC9q4hEich2EflDRNpeLa9rbYmT
  rn+uhb+/Py5dupRpXGxsLAICAq4tQ6WUcqM8g7iIeAGYAqADgLoAeotIrSzJ1pFsSLIxgCcBzLpa
  fkm25AJ1YbNmzZqw2Ww4ePBg2rioqCjUrVvXg6VSSinDmZb4LQD2kzxK0gpgEYBuGROQjM8w6A/g
  3NUyu2KLK1BB3M/PD/fddx/ee+89xMfH45dffsGKFSvw6KOPerpoSinlVBAPBXAsw3BMyrhMRKS7
  iOwG8AOAl66W2fnEM/B2FP+35fSoqVOnIj4+HmXKlMEjjzyCGTNm6O2FSqnrgtsubJL8FsC3ItIK
  wDwAN+WUbtUX85F0LA4RERFo06YN2rRp464i/GdKlCiBb775xtPFUEoVEpGRkYiMjHQqreT1Hm8R
  aQEggmTHlOE3AZDkmFzmOQjgFpLns4xnh+lPYPeW8jj68ciM42+o94nfKOuilLo+pMSVHO/Rc6Y7
  ZSuA6iISJiIWAL0ALM+ygGoZvjcBgKwBPNWZxGPwtYc4W3allFK5yLM7haRdRF4AsAYm6M8luVtE
  +prJnAXgfhF5DEAygCsAHrpafmeTYhBkL+We0iulVCGXZ3eKWxcmQt/3/VB/z2JsXdAl4/gbpgvi
  RloXpdT1wdXuFLdKcsSjVDFtiSullDvkexAHgHKB2ieulFLu4JEgXiFYg7hSSrlDvgfxBjvWoWJI
  cH4vVimlbkj5HsTjdrZDyZL5vVSllLox5XsQP3YMKFXArmtOnToVzZo1Q9GiRfHUU095ujhKKZUm
  398nbrUWvCAeGhqKd999F6tXr0ZCQoKni6OUUmnyPYgDBS+Id+/eHQCwdetWHD9+3MOlUUqpdB65
  O6V0aU8sVSmlbjz53hK/dAnw8/v388lQ13+fjUP0SUql1I0l34P4tf6qmQZgpZTKziPdKUoppdxD
  g7gT7HY7EhMTYbfbYbPZkJSUBLvd7uliKaWUBnFnDB8+HH5+fhgzZgwWLFgAPz8/jBgxwtPFUkqp
  /H8VbU7Lu5Fe33ojrYtS6vpwXb2KVimllPtoEFdKqQJMg7hSShVgGsSVUqoA0yCulFIFmAZxpZQq
  wDzyFsOswsLCIOL6u1GuB2FhYZ4uglKqEHHqPnER6QhgIkzLfS7JMVmmPwxgUMrgZQD9Sf6VQz45
  3ieulFLq6ly6T1xEvABMAdABQF0AvUWkVpZkhwC0JtkQwHAAs10r8o0vMjLS00W4bmhdpNO6yEzr
  I2/O9InfAmA/yaMkrQAWAeiWMQHJ30jGpgz+BiDUvcW88ejGmU7rIp3WRWZaH3lzJoiHAjiWYTgG
  uQfpZwCsdKVQSimlnOPWC5sicieAJwG0cme+SimlcpbnhU0RaQEggmTHlOE3ATCHi5sNACwF0JHk
  wavkpVc1lVLqGlztwqYzLfGtAKqLSBiAkwB6AeidMYGIVIYJ4I9eLYDnVgillFLXJs8gTtIuIi8A
  WIP0Wwx3i0hfM5mzALwLoCSAaWJu+LaSvOW/LLhSSql8fp+4Ukop98q3x+5FpKOI7BGRfSIyKO85
  CjYRmSsip0VkZ4ZxJURkjYjsFZHVIhKUYdpgEdkvIrtF5G7PlPq/ISIVReQnEYkWkb9E5KWU8YWu
  PkTEV0R+F5HtKfUxMmV8oasLwDyHIiLbRGR5ynChrAeXkPzPPzAHiwMAwgAUAbADQK38WLanPjB3
  6DQCsDPDuDEA3kj5PgjA6JTvdQBsh+neCk+pK/H0OrixLsoBaJTy3R/AXgC1CnF9+KX89YZ5rqJl
  Ia6LVwHMB7A8ZbhQ1oMrn/xqief5wNCNhuQvAC5mGd0NwGcp3z8D0D3le1cAi0jaSB4BsB+mzm4I
  JE+R3JHyPQ7AbgAVUXjrIz7lqy9MA+ciCmFdiEhFAJ0BzMkwutDVg6vyK4j/2weGblRlSJ4GTGAD
  UCZlfNb6OY4btH5EJBzmDOU3AGULY32kdCFsB3AKQCTJXSicdTEBwOsAMl6YK4z14BJ9Fa1nFaqr
  yiLiD2AJgJdTWuRZ179Q1AdJB8nGMGcjt4tIGxSyuhCRLgBOp5yh5Xbr8Q1dD+6QX0H8OIDKGYYr
  powrbE6LSFkAEJFyAM6kjD8OoFKGdDdc/YiID0wAn0dyWcroQlsfAEDyEoAfADRF4auLlgC6isgh
  AAsBtBWReQBOFbJ6cFl+BfG0B4ZExALzwNDyfFq2JwkytzKWA3gi5fvjAJZlGN9LRCwiUgVAdQBb
  8quQ+eRjALtITsowrtDVh4iEpN5xISLFANwFc8GuUNUFybdIViZZFSYe/ETyUQArUIjqwS3y6woq
  gI4wdyXsB/Cmp6/o5sP6fgHgBIAkAP8H806ZEgDWpdTDGgDBGdIPhrnivhvA3Z4uv5vroiUAO8xd
  SdsBbEvZHkoWtvoAUD9l/bcDiAIwMGV8oauLDOt3B9LvTim09XCtH33YRymlCjC9sKmUUgWYBnGl
  lCrANIgrpVQBpkFcKaUKMA3iSilVgGkQV0qpAkyDuFJKFWAaxJVSqgD7f3LWS+xdI6UNAAAAAElF
  TkSuQmCC
  ",
        "text/plain": [
         "<matplotlib.figure.Figure at 0x7fc251f4ddd0>"
        ]
       },
       "metadata": {},
       "output_type": "display_data"
      },
      {
       "data": {
        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEACAYAAABF+UbAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz
  AAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VMX6B/Dvm4RAgACh9xYQEJEiAsJFAihNBREsSLFx
  RRRF/F0FriLhSlexAAIBVHoRpJcgJVJEaaETeif0AIGEJLv7/f0x6dkkC7tkCbyf59knOXPmzJkz
  e/bd2TlNSEIppVT25OHuCiillLp7GsSVUiob0yCulFLZmAZxpZTKxjSIK6VUNqZBXCmlsrFMg7iI
  TBaRCyKyO4M8P4rIYRHZKSK1XFtFpZRS6XGkJ/4LgJbpzRSR1gD8SVYG0APAeBfVTSmlVCYyDeIk
  NwKIyCBLOwBT4/P+AyC/iBRzTfWUUkplxBVj4qUAnE42fTY+TSml1D2mBzaVUiob83JBGWcBlEk2
  XTo+LQ0R0Ru1KKXUXSAp9tId7YlL/MuexQC6AYCINABwjeSFDCqiLxIDBw50ex3ul5e2hbaFtkfG
  r4xk2hMXkZkAAgAUEpFTAAYC8DbxmEEkl4tIGxE5AuAWgLcyK1MppZRrZBrESb7uQJ5erqmOUkqp
  O6EHNt0kICDA3VW4b2hbJNG2SEnbI3OS2XiLS1cmwqxcn1JKPQhEBHTywKZSSqn7kAZxpZTKxjSI
  K6VUNqZBXCmlsjEN4koplY1pEFdKqWxMg7hSSmVjGsSVUiob0yCulFLZmAZxpZTKxjSIK6VUNqZB
  XCmlsjEN4koplY1pEFdKqWxMg7hSSmVjGsSVUiob0yCulFLZmENBXERaiUiYiBwSkb525hcQkd9F
  ZJeI/C0ij7q+qkoppVLLNIiLiAeAMQBaAqgOoJOIVE2V7b8AQknWBPAGgB9dXVGV9cLCgEuX3F0L
  pez76y/AZnN3LdzPkZ54PQCHSZ4kGQdgNoB2qfI8CmAtAJA8CKC8iBRxaU1VlhswAJgxw921UMq+
  9u2BXbvcXQv3cySIlwJwOtn0mfi05HYBeAkARKQegLIASruigsp9jhwBzp51dy2USstmAy5fBo4e
  dXdN3M/LReUMB/CDiOwAsAdAKACrvYyBgYGJ/wcEBCAgIMBFVVCOsNmAW7cAX9+ktMhIIE8ewCPZ
  Vzppgni1avbLIc2HqIj+3kohKgqwWIB8+dxdk5RIMzRWtKiZvnABKFbMvXVyxtWrZl8+ciTtPBLY
  vRvw9AQeeyzr6+YKISEhCAkJcSwzyQxfABoAWJlsuh+AvpkscxxAXjvpVO41eTLZoEHKtHbtyCFD
  UqadP08CZJMm9ssZP97MVynVqEE+8YS7a5HWpk1kiRJkTIyZBsg5c9xbJ2fs22e24Z130s7bvZvM
  nZssVIhctCjr63YvxMdOu/HWkZ74VgCVRKQcgHAArwHolDyDiOQHEEUyTkT+DeBPkjcd+xrJXhYt
  AqpXB/z9gS+/BMLDAT8/oGFD4JFHzLxz54C1a4EuXYAVK4D589OW88QT5m+xYkDJkkCDBsD33wN7
  9yblad8eCA4GOnQAmjQBoqOBKVNMj3nLFiBHDuDFF4HffkvK/9xzQGws8PnnQESEKbt6dVN+uXLm
  YNDff5u65coFFC5s0v76Czh2LGndV64ABQua4ZQVK0wPLqHOq1YBQUH22+fKFWDgQFN+gwYmbcsW
  0ztt2BAYO9ZsR48eZsz95k2gQgVTXwCYPBnYvNls48CBpl4NGwKlSgGHDwMHDwLPP5/5+2SzAT/+
  CHzwgWmnJUvMe5eeBg2AmBjgzTdNHQ8dSpr3738D9esnTY8aZern6WnGZHPmBF54AZg3D9izx7Q3
  YHrlX3wBtGwJlChh9otWreyv/+BB4Ntvgf79gfLlgU8/BW7cAD77DKhUKfPtBYCVK837/fjj9ssP
  DwcWLADatjVpX34JbNgAfPUVUKCAY+tIMH262ScWLDDbWCrVAOvMmeYzIGK2qWLFlPMT3p9y5Ux9
  /f1N+qJF5r1K7sMPgZo1gcGDgRMnTHs//7xp/+Bgs3/Vq5eU/+RJ4Omngc6dTfutWgUMGgQUKmTm
  T5gAbN0KeHsD7dolfX4SvPQS0KZN0rTVCowbZ/YlkbRtQZr37pNPUv6adca33wJeXkDv3g5kTi+6
  M2UPuhWAgwAOA+gXn9YDwLtM6q0fBHAAwDwA+dMpJ0u+tSwW0mYz/yf/a7ORVqt52ctvsZBxcUn5
  4+JSviwWsmVLcuJEMjiYrFLF/F+3LunpaXq0cXFk795kzpzkxYtkq1Zknz4mX8IrKIgsUMD0JACy
  fn0yLIwsUiQpz4ABpswqVcjHHjP1WbPG5M+Xj5wwgXzpJZPno4/I7t3JLl1M3adNI5980pTzyCMm
  T/fupm41apjeeMJ6Hn+cLF6cXLw4ZR0nTiRXryZ9fJLqabWaMipWTEpL3VaBgabO9esntXPXrmSt
  WuTRo2TBgmZ9PXqQAQGmLXLnJiMjyXPnTLtMmGB+AQQFkeXLm+0jyf/+1ywbFZX2vUn9WrkyqbcZ
  FWV6od9+m3YbJ0406/P1Nfl79iRLlkya99lnZMOGSdsYG0vmyUP6+ZmeXlAQ+dxzpo0//ZT86SfT
  PqT5tVK1KlmhAtmiBVm2rNmH7O1zL79s1j9jBnnokNnOt94ybZdawnIJ4uLI27dN+a1apd1nSbJ/
  f7J2bbJRI9NTrVDB7CfPPksOH555eyZ8juLiyPBws397eprt+/DDlHmvXjXtM3Ys2bQpOW5c0jYn
  5Fmxwmyvpyf55ZdJ5TdpYto8of0/+sh85q5fN/tJUBBZrZp5n9q0MftEw4Yp1z9+vOmhx8WZ9mzT
  xuyXcXHkqVOmbkFB5IsvmvX37p20vpEjyTJlyOjopFiwe7epa3BwytiRsL5Ll8z8Awfsx6PU71dy
  9uLR/v3mc+Lrm7QcMuiJOxTEXfXKiiC+ezeZKxf5+eem8Ro3Jjt0IF94gaxenXzqKfMm3bpl8p84
  YYJimzZk/vykiNnB2rYlPTzMm5zwypePrFzZ7PgJHziSXL7cLF+unMlXsKBZp6+v+cCfO5e2nv/9
  L/n666acWrXMckOHJs23Wsmnnyb/+cd8UNq2NR/s0qXNTk6SR46QdeqYHW7JElOH8eNJb2+zDaT5
  oL74ovmC8PQ0fxN+UpPkggXku++m357585vtAkwAKFvWfNDq1UsK5C1amHbz9DTbvHOn+XKoUcPs
  hFWqmOU8PcmBA8lvvjEfyM2bzTrq1TPb5uFBfvKJSRszxnwp5slj2jMyknzmGfPeJX9P0nt5eZkA
  6O1tptu2zXi/+c9/zJegjw/5/fdJ6XFxZp1t25ptLF7cbM/QoeSgQSbP3r1mG+LiTNt6e5MjRphA
  FxJi6l2xohlmWbgw7T7n6UmWKmXWX7u2adOOHckrV8yX2oULKevarZtZ/tQpctkys62enmSzZqS/
  f8p2yJPHBIWXXyanTjWfAYBs3dqUtWMHmTdvxm0pYj5PQUFJ73OHDqauBw+aL7PUy7z9til/+HDy
  //7PdGiS50t4f8qXN188b75pyvf1NdudIDrabFPx4uazS5Iff2z2px49TJs/9ljKuvr5mS+GBHv3
  mvZKyNOvn0k/fNi8J7dvp2zf1q2T6rhkCTlpknl/vLzM5+fqVXL+fLMuDw+yUiXTplOm2N+3unc3
  23X8eMr06Giz/fXrJ32JkeQHH5hOnL+/GTYiH7Ig3r27+fZv0IAcNsw0PGD+enmZBm/TxgSu0aNN
  b/btt82O/OGHJsi0a2d2muTBjkx6s/z87I/FpfbZZyboZmTtWlNm+/bp5xkzJqnXMmuW/TybNpmd
  wd+f/OuvzOvmqDp1zLoPHzaB6LnnkuaVLZtUr/DwlMvZbOYXSp8+JpAk9Grs6dXLBMbkO/KWLabs
  Z54x79HYsfYDWlYYOtR8WE+eNL9wunXLOH+FCubLYNeulOkJPd9+/VLucwkGDDCBHyC//tqkvfOO
  OV5x7Zrp5X/7rflSe+stE0jr1El/n0gos00bEyy2bDFtDNzZuP3CheTzz5Pvv0/+8IPjy5HkvHmm
  M9KlS1JgT+7cObN/+PiY97dy5bR5rFbz2evd20zPnGm2YcCAtHkXLTLzJky4s3raM2eO+aJq2pT8
  8UeT1rmz+cLp1s302o8fN+sTMfvq6NEpX999Z7br7bdNZyr5vPffN/tD1armS3L0aLMePz/yzBmy
  UyfzPo8e7fyYeLZBmvG04GCgVi0zJrx0KXDmjDn7IuFofLFiwE8/mYtZypQB+vY1Y2ANGpgxzkGD
  zHiht3fK8itVMkfDIyKSjvJn5P/+L+VYqj0JY4kZjXu+8Qbg42Ne6Y2pFixoxtN9fZPGol2hUiVg
  xw6gdGlg4sSUZzQULQrcvg189x1QvHjK5USAMWOAadOA4cPN+F563nsPePnllOONtWqZceGmTc0Y
  6EsvmbFiR9rd1Xr2NNtftqwZL89s3POLL4Dr19OOTb/8stkntmwxY7IJ+1yCggXNuHy9ekCn+KNO
  H3xgxrCvXgX++ceMDY8fDzRqBIwcCVStatomPR99BAwdavI99php4z//NPuSoxL2+9hYc8zlTlSq
  BKxfDzRrZo53pFaihBm3rlrVnC5YtmzaPB4ewKRJSe99ixZmu9qlvloFwJNPmr+px+jvRvv25hjH
  tWtJ6xo0CHjnHdOGISFmTL9IEXPco0ABE1NSGzcOCAgwn4Pk80WAb74x5c+da/4C5n0tVQp4/31g
  9mz7ZaaQXnS/Fy/cw574yZPmm65YMdPbqFHDDBXcqYsXTQ/pzJm083r1ShpCGDXK+TqT5M2bruk5
  XLhgynnySdfUK0H//uZnsD2tW5thqnvNZjM/mSdNuvfrutcSesb2TJli3sPx41OmN25shmgOHbr3
  9bMnKsoMUZYrZ4ZP7kRkpNmmkyfvSdXsKl/eDKHcK0eOmBhx44aZbtuWnD793q2PfEh64mPGAAsX
  mrMERMwZDnny3Hk5RYoA58/bX9bf3/QKbDbX9Qjz5AHy5086On+3/PzMX1f0QJKrVCn9MosWNb3H
  e82Z9/N+M3Cg6W3bk9CWqfetZcvMrz97vdSs4ONj6nbypPk1dCfy5k060ymr7NiR9Hm4F/z9U8aI
  adOA3Lnv3foy88AE8QULzClICRenOPOBT2/ZgABz6tzUqa79Wf/OO2b4wBk5cpihFFcH8caNzQ5r
  T8uWSadt3Wt582bNeu41T8/0P/DpBXFf35QXZ7lDly5mP0g9xOiIrAzgwL0N4AmSxwh3X9glpqee
  RSsT4b1YX1yc2cmvXzfjp/dSQm8kNNT5wOtq5cub86/793d3TdTdCAsznZCDB801B0olEBGQtHOW
  +gNyP/FTp8wBknsdwIGknqc7DrBlpmBB1/fEVdZJryeuVEYeiCB+5IjjV7U5K08ecwS8cOGsWd+d
  qFUr6WpBlf34+Zl9K39+d9dEZScPxHDK2LHm9Lpx41xetFIPDavNCg/xgNi7tly51QM/nLJnD/Co
  PktIOclqs2Lz6c24GftA3vYnU31X90XBkQVhtdm9Aam6Tz0QQXzLlqST/FXGImMiceDSAafKOBZx
  DJejLrukPqHhoTh69ShOXDvhkvLu1OErhxEeGY6jV4/irUVvod3sdmg5vSUm75iM8zfTOS0nA2dv
  nMXRq9nzJtcR0RG4dvsatp7b6u6qqDuQ7YN4dLQ5qp/emSI3Y29i+u7pWHJwCSKiI9Itx0YbBq8f
  jOWHlwMAYq2x+Dn0Z2TlcFNG9l7ci61nnf9wjds2Du3ntE+xXRabBRO2TUCsNTZF3g0nN+BYxLHU
  ReCNhW9g+MbhidNbz27F/kv776o+dYLqoNLoSuj8e+e7Wv5OXI66jPn752PU5lHot7of9lzYgzcX
  vYkW01ug8++dEWuNxf4P9uPZis9i1t5Z+CT4E/x1+i/subDH4XVUGVMFTX5tAsC065SdU+6bfSgz
  l6IuIadnTrvvuUpfyIkQHLlq58bmWSTbB/HgYKBuXXNbVRttCAwJxMVbF3Eu8hxen/86Gv/SGF0X
  dMXLv72Mn7b+BMBcpTp4/WCcvZH02JqDlw9i9JbReGPhG9hzYQ++XPcl3ln8Dv46/RcOXTmEKTun
  2F1/dFw0/rPqPxl+QbjChG0TMGnHJLvzvtv8HU5fNw9f2np2KzrO7Zhub3D1sdU4FnEMq46uwo//
  /IjNpzfj8zWf4+Pgj9FnZZ/EfCTx9uK3MTBkYIrlD105hC1nt2DN8TWJae8vfx9vLXoLr857FV0X
  dMXV6Ktp1jt843AcvXoUX6z9InH+1eiryOGRAz2e6AGLzYLX57+OjnM74uS1k4nLXYm6gi6/d8Gs
  PbMcbKmUdZ2wbULi9K87f0XH3zpi9t7ZsNGGZ6Y9g+MRx1G7eG0cv3YcU9tPReHchREYEIi5L8/F
  8sPL0ejnRvhk1SeYu28uOs3vlKJu3//9PS7cvIAzN86g3+p+OHX9FG7F3UKRPOZJGXsv7sWbi97E
  1399fcd1P3j5IMZsGXPHy2XEYrOg/+r+OHPjjN354TfD0ahsIw3id6jNjDaoPLoyLDaLW9afbYP4
  //4HvPKKuRfFe++ZtAnbJmDQn4Pw277f0HFuRxTNUxSDAgbh4/of45FCj2DKLhOI5+2fhwHrBmD1
  sdUAgBm7Z6D7ku5oUq4J+jTogx//+REz9szAO7XfwaTQSfht32/ovbI3Gk5uiDhrXIp69F/THzP3
  zETvlY7c+Det/wv+P8zZOwcAsP3cdtSZUAdTd01Nk297+HaE3wxPk37p1iX0Xd038SfwkkNLMP/A
  fKw4siJFPhtt6LGkBzae2oip7afilXmvYNjGYWg9ozVm75uNvT334o9jf6D+pPqIiovCwrCFAIDF
  BxfjVuytxHKWH16OLjW64HjEcYRHhmPd8XU4f/M8Dl85jCqFquBq9FU8N/M5PBH0BELDQwEAR68e
  xZfrvkTtCbUxZMMQ/H3mbwBmKOWpMk/h04afYsvZLdh9YTdirDFYELYgcX3vLXsPq4+txtz9c2Gj
  De8ueTfx15I9ty230WFuB/RY0gM9l/XE/9b/L7EnvP7kegxrPgzBXYIx8tmR+P2V37H2jbWY+MJE
  bHhrA7w9k65kKehTEGvfWIs5Hedg27lt6LW8Fwr7FEaXBV0AALdib+GzPz5D29ltUWdCHUzbPQ2P
  /fQY3qj5Bq7fvg4ACLschkZlGuG7v7/DjvAdiWV3mt8Ja46tQUbm7Z+HD1d8mLhvOOt4xHE8OvZR
  /LrrV/RY2sNunvDIcDQq0wjHI47jk+BPcPjKYbv5fg79GQPWDgBgvoj/9fO/UGt8rcRt/PPEn6g5
  viaWHlrqkrqnp93sdui+uDvqTKiD8Mi0n4309P2jL8Iup7whyS+hv+D7v78HYN7bbgu6ORyUS/qW
  RA6PHCne4yyV3vX49+IFF907Zc8ec3/oOXPMfbDNvZltrDK6Ct9c+CZ9Bvuw7ay2tNrMjXrjrHG8
  GXOTPoN9GBkTyU7zOrHIyCIcFDKIq4+uZuGRhekxyIPDNgzjuRvniEAQgeCFmxdYYHgBNp/SnEW/
  LkoEgrvO76LNZmOMJYbnbpyj33A/7ji3gwWGF2DwkWA2/rkxj1w5wsiYSJLk2Rtnuf7EeuYdmpfe
  X3nT+ytv5huWj2uPrWW1MdWIQLDj3I4cun4oc36Vk/3+6MeKP1Tk8YjjjLHE8NjVY6w1vhYRCNYN
  qkuL1cIYSwyj46IZHRfNrzd9TQSCY/4ZQ5J8ee7LbPJLE7618C2S5KVbl3jq2in+Gvornwx6kscj
  jpMkT147yYjoiMS/JHn99nXWm1iPCw8sZJGRRbjx5EY+Pu5xbju7jSQZY4lhi2ktOGfvHL698G0O
  3zCc/j/4c+nBpbx++zpJcvPpzawyugp//PtHen/lzRbTWjD3kNz8Ys0XPHT5ELst6MaxW8byeMRx
  5h6Sm/1X92esJZYegzz4wbIPOHvPbLaY1oLBR4JZdUxV+g3346ojq9hgUgNO3D6Rj/30GPMOzcun
  f3mahUcWZs6vcvKbTd/wRMQJnog4wXFbx7HgiIIsPLIwEQhKoHDvhb1sO6stfQb78OLNi3e0r9ls
  NtYeX5sLDyykxWph2e/KctWRVZyxewbLjCpD/x/8uf3cdt6Ou82wS2G8HXeb3l95MzImkgPXDeQX
  a77gsA3D+M6ipNteJuxfXX7vkpg2Z+8c+gz2Yc+lPdlmRhu+MPMF9v2jLwsML8DouOg7/YikMWvP
  LLac1pL7Lu5jhe8rpJlvtVmZ4385uPzQcj4x4Ql6DvJkjyU9ePbG2RT5WkxrwSIji7DqmKos+11Z
  frLyE744+0V+ufZLdp7fmSQ5fMNwNpvSjEVGFmHOr3Lyj6N/3HF9T0ScYNnvyrJuUF3W+KlG4n6b
  wGK1EIFg2e/K8pmpzxCB4H+C/2O3rBhL0u1IrTYr8wzJw7cXvp2YfjziOP2G+7HA8AL0G+7HehPr
  EYFgxR8qMvhIMC/cvMA6E+okfqaTi7PG0fsrb/ZY0oP9V/fnD3//wIBfA3j06lHejLmZ6XZO2j6J
  1cZUS7NtDSY1YPCR4MQ0PGj3Thk7Fnj3XdMTT7AjPBRWWjG46WCcv3keU1+cCg8xPzS8PLzg5e2F
  yoUq44+jf2DN8TXoXqc7hm0chtw5cuOXdr9gzbE1aOnfEiV8S2BUi1E4ce0EiuYpiucqP4cZe2bg
  YK+DCAwJxI7wHdh5fifeWPgG8uXMh66Pd0XtErVROl9pvLf0PRTIVQDNpjYDSXzx9Bf4YPkH8PLw
  wvDmw/FeXfOTYdnhZfj0j09xNOIoZnWYhaDtQfjhnx8Q2iMUVQtXRdiVMDwR9ATqlKiDDSc3oF3V
  drh++zrORZ7Dq/Nexc7zO3Hh1gXk9c6La7evoYV/C5yLPAcAOHD5AD6s9yFGbR6Fjac2ovWM1sjh
  kQPRlmj89vJvKF+gPACgbH5zI44CuZIe6ZIvZz608m+FPsF9UK9UPTQq2wjVCldD2OUwPFHyCby5
  8E0cvHwQzSo0Q0nfkug0vxNuxd5Cm8ptEk9La1C6AQ58cAAigm41u+G1+a9hRecVaFy2MUQEjxZ+
  FDvP78SNmBt4seqLGNJsCEQEZfOXRZ0SdfBMxWcwMGQg3lv6HpqWb4ryBcrDv6A/wiPDMX7beHzz
  7DdoWqEp3lr0FnrW7Ym6Jeuiw9wO+HHLjwAAD/HArA6z0LhsY7wy7xUUyV0EL8x6AeULlEdE3wjk
  9LqzK8JEBNvf3Z64fZ83/hzdl3QHAPT7Vz/0rNszcV6VwlUAmOMpvsN8UbdkXXxc/2M0r9gcNcbV
  QK/zvRLbO4dHDvxx9I/E9YzaPAr1S9fHuG3j4JfLDxG3I/Bti2+x4sgK7LmwB0+WehKnr5/GwSsH
  AQB+ufzwRMknMqz71eirOHDpABqWaYiwy2F4suSTKJG3hN3hrstRl5EvZz7UKl4L28O3I5dXLmw4
  tQGPjn0UA5sMRJ+n+mDn+Z04cOkAznxyBl4eXvhp60/4/u/vMbPDTFT0q4jy35cHSZy+cRrtqrRD
  t8e74c1Fb6Y7PLMjfAeK5TG3xSyVL+kqtZ3nd6L74u74sN6HOH39NNYcX4OfQ3/G/5r+LzHP2ciz
  KOlbEid6n0DQ9iCsPrYaG05tSLMOq82K6j9Vx7T209CgdAMcvnIYPjl8sOn0JjSd0hSDAgZh7r65
  6Pp4V0TFRaFyocrou7ovqhSqgrzeeTF843DUKFoDO8J3YMTGEWhXtR3qlqybWP6ZG2dQNE9RdHqs
  E95Y+AZ8c/qiepHqCPg1AF4eXhj33Dh4eniiQekGyOudN03d+gT3QWRsJK7dvpa4b6w+thqnrp/C
  O4vfwYrOKzI/wJ5edL8XL9xlT3zfPvOwh2++IQcPNvfnPZuyg8ARG0ew17JeGZbTYU4HIhDs+ntX
  /nH0DyIQnLdvXobLXIm6wncWvUOrzcpvNn3DFtNasPX01ok9sgQTtk1gx7kdE7+tP1/zOREITto+
  iR8s+yCxt0uSF25eYM6vcjLfsHzcf3E/JVDYYFLKB1/+c+YfIhB8f+n7JE1vAoFghe8r8JOVn3Do
  +qEMXBfI3it6M2hbEFtNb8Xd53cz1+BcvBp1lc/PfJ4SKOyzsg8v3brE95e+zzhrBjf1jrf3wl62
  mNaCm0+bJzYk9CbPR55ngeEFEnvccdY45huWj82nNM+0zOTm7p2b2BOdvGNyYvqQ9UN48pr9W91F
  xUZRAoVFRhZJ/HXlqBu3b/Dfi//NCzez7kbkQ9YP4cB1A9liWovEHuTsPbPpO9SXCASLfV2M0XHR
  9Bnsw+i4aO4+v5ulvi3FrWe3EoHg5tOb+eHyD2m1WfnWwrc4bqt5NM6zU59l3aC6bD6lOQsML8DQ
  8FCuPbaWtuQ3Yk+mzYw2zD8sP7/e9DVf+e0VTt81nVablZ6DPBP3hRhLDNcdX8fFYYv5r5//RZKc
  unMqf9//O0nTSy32dTGuO76OHyz7gAPXDUx3u4t+XZTnbpxj21ltE5f/bNVnHLp+aJq88/bNY4Hh
  BVhmVBl6DPLgzvCdJMmlB5eyyMgi/HTVp4nbtf3cdj4y+pEUy687vi6xvuGR4Wwzow2fmJB0k/QT
  ESc4dstYfrrq08RfPWO3jGWPJT3YYU4HWm1W9l7Rm82nNGer6a145MoRkuaXV/FvijNoWxBvxd7i
  y3NfZotpLfhL6C98ZuozzDU4F0OOh/Bq1FWS5Oqjq9n458Z22+PrTV+z+ZTmrDOhDhv/3Jghx0NS
  zN9yZgurj63OZ6c+y4+Wf8SxW8Zy7JaxfHTso5y+azrrT6yf+BlDdn8oxGuvmSfBNGhgbo06c2bK
  +TabjU1/bZq446TnhZkvEIGmDkeuHKEECq9EXclwmeSOXj3K9rPbE4Fg2KWwDPNarBZ+v/l7uz+F
  rTYrvb/yZpXRVRgVG0UEgl+u/TLN8vmH5ef8/fMT0xAIvjbvtTTlLT24lAgE60yow3LflUtMn7pz
  Kk9fP+3w9tkza88sPj/zebaZ0Yafrfosxby2s9ry01Wf3lF5m09vJgLBkRtHJn4QHFFgeAG2nt76
  jtZ1v5nADY7YAAAbOklEQVS8YzLLjCrDpyaZR9TUHFeTG05u4HtL3uOAtQNotVk56q9RKYLy6H9G
  84kJTzA0PJR5h+ZN7AwErgtk5R8rE4Hgwcvm/rBrj61laHgoVx5eyd/2/Ua/4X48cOkAi31djAVH
  FOT2c9tJkoVGFEocVvo19FciEKz0Y6UUX6rJBR8JZvFvitNvuF+6X7QkWX9ifW48uZG1x9fm1rNb
  SZpA9snKTxLzxFpiGbgukIVHFubWs1tZZXQV5h+Wn40mN+JHyz9i0a+LctOpTSnKtdqsLDyycIp9
  +ecdP7PbgqSnc0RERzDPkDyJX/IvzHyBz898nj2X9uTAdQMTA3nPpT255tiajN4mztw9k+du2Hkc
  F8l6E+sx1+Bc/GnLT5y7dy5rjqvJrzd9nWF5cdY4Bq4LZJGRRfjBsg/Ye0XvxC+Qj5Z/xNVHV7Pn
  0p6Jr+83f0+bzcaNJzfyzxN/kszGwymjRpmbwV++bB4q8N139h94MHHHRFy4dQEtK7XMsLwxbcZg
  cLPBAICKfhWx7PVlKOjj+C3WKvpVxPxX5mPlkZV4pFDGdyjy9PBE7wb2D3Z6iAdK5yuNEr4l4JPD
  B6V8S6F5xeZplp//ynw0KtsoRfpTpZ9KU14J3xIAzM/Tlv5JbdC1ZleHtisjLfxb4LM/PkMFvwqJ
  bZdgaLOhyON9Z7eLrFuyLlZ0XoFWldJ5ukU6SuQtgTol6tzRMvebt2u/jTM3zuDQFfMU5p51e6LT
  /E4gie3vboeHeKDPU31SLPNq9Vdx5sYZPP3L03i0yKOJP7n7PNUHhXMXxpRdU7D93HZULlgZPZf1
  xNXoq7DSiojoCIx4ZgSqFq6K4C7B2HR6Ex4vZp5SUdCnIK5GX0WRPEUwKXQShjUfBr9cfuhcw/5p
  ni38W+CXdr8gxhKTOAxnT0W/ijh+7TjO3DiDMvnKAAAK5y6MPRf3wGqzotvCbjh05RDy5cyH+a/M
  R92SdTG742z4evti+eHlsNKKWR1moWGZhinK9RAPNKvQDC/NeSnxzJ+jV4+i02NJz2svkKuAGQ6c
  3gqvVH8FG05twOk+p5HXOy8sNgsalmmIFv4tHHqfOtXolO68OsXrYMvZLZi4YyLCb4ZjaLOheKPW
  GxmW5+XhhYEBA/HcI89h46mNienlC5RHuyrtUMGvQprPP4A0n/10pRfdmbIH3QpAGIBDAPramV8I
  wAoAOwHsAfBmOuVk+I2V2tNPm2c15stnnkdnz+Erh1l4ZOFMe8b3mya/NGGneZ1IkmGXwtL9SZzc
  ocuHaLGmfeLq+cjziUMUH6/42OV1PX39NK9FX3N5uXei9fTWXBy22K11cIUbt28kHiy02Wz888Sf
  PBFxItPl/jr1Fw9dTvtUiCHrh/A/wf/hnyf+ZLUx1bjlzBbuv7if+y7uS3efajCpATed2sT9F/ez
  +DfFGWuJdW6j4vX7ox8RiBQ94iUHl7DNjDbccmYLK/1YicsOLXPogF9qp6+f5tKDS1O8Lt+6nCJP
  aHgoB6wdwFyDc7Hj3I4u2abUfg39lWVGlSECwdH/jL4n67AHzvTERcQDwBgAzQGcA7BVRBaRTH6O
  Ti8AO0m2FpHCAA6KyHSSd33ipNVqbu6+cSOwdq05Dzy125bb+G7zd3iz5puJB5WyizL5y6BobnO7
  OkfrXrlQZbvpxfIWw41+N/DYuMdQtXBVl9UxQel8pV1e5p2a+/Jc5MmR/Z8K4ZvTF745zc3BRQRP
  l3vaoeWeKpP2Fxhgfpn1WNoDRyOOonud7niyVOaXLhf0KYgrUVfwwz8/4J3a7yCHZw7HNyADjxZ5
  FMXzFseOd3cknlRQOHdhXLp1CQvCFqB1pdZoU7nNXZVdOl/pTPfDWsVroZRvKXy1/is0r5C2Z+sK
  XR7vgucfeR7NpzZP95dLVnNkOKUegMMkTwKAiMwG0A6mZ57gPIAa8f/7ArjiTAAHzP1QSpQwzxSs
  WTPt/IOXD2LKrilYengp1nZb68yq3KJp+abIn9N1t6vzzemLjtU6Ov4TLJtJfWRfGQHlA/D8I89j
  w6kN6Fazm0PLFPQpiOGbhiM6Lhq/tvvVZXXpWrNrmiG8wrkLY+u5rTh+7TjmvTzPZetKT5E8RdDl
  8S53/WWRGU8PTxTKXQg739t5T8q/G5nexVBEOgBoSfLd+OkuAOqR/ChZHg8AawBUAZAXwKskV9gp
  i5mtL8HHH5vHQg0blnYeSRT/tjg8xANjWo9Bh0c7OFSmUgrovaI3pu+Zjm3/3oYKfhXu6bqu3b4G
  vxF+CHkjBE3KN7mn63qQZXQXQ1cd2OwPYBfJpiLiD+APEXmcZJrbwQUGBib+HxAQgICAALsFzp5t
  hlLsORt5FhdvXQQAVCtSzcmqK/Vw6VazGzo/3vmeB3AAyJ8zP35q85PDw0bKCAkJQUhIiEN5HemJ
  NwAQSLJV/HQ/mEH2EcnyLAcwhOSm+Ok1MAdAt6Uqy6Ge+PXrQMmSwM2b5iG5qS0KW4T2c9rDQzxw
  67+37vgCDqWUyk6cvZ/4VgCVRKSciHgDeA3A4lR5DgB4Jn5lxQA8AuCu76Jz9Kh5Uo+9AB52OQw9
  l/VE2yptUa1INQ3gSqmHWqbDKSStItILwCqYoD+Z5AER6WFmMwjAMAC/iMguAALgM5Jpr+11UEaP
  W/tp60/oXKMzhjYf6ra7himl1P3CoTFxkithDlomT5uQ7P/LAF5wpiJxcea2srlyAYcPpwzi4ZHh
  IIibsTcxb/88rH9rPXJ45nDZqVFKKZVd3TdXbI4bZ25sFRkJkMCPPybN676ke+LtRwv5FIK/n7+b
  aqmUUveX++J+4lOnAl99BUycCAwaZNLatTN/T18/jb/P/I3xz41HQZ+CqFOijj7IVSml4rm1Jx4T
  Y67M/PRTYMoU4OmngUaNgNatAe/4+/P/svMXvFb9NfSo2wPbzm1LvHeCUkopB04xdOnKUp1iWK4c
  cOMG8PjjwJ9/JuXrtbwXCvkUwkf1P8Lj4x/H0k5LUbtEbVy7fQ2e4pl42bJSSj0MsuJin7ty6pT5
  +3Sq6wAmh07GbcttbD6zGZ1rdEbtErUBpHyAgVJKKTcH8fLlgRMngHr1UqYXzVMURfMURQnfEhja
  fKg7qqaUUtmCW4N46dJpg3hUXBQu3rqIYx8dg6eHp9vqppRS2YFbz06Jjga2bAGKFUtKO3DpAPz9
  /DWAK6WUA9waxG/eBHxTHaOct39eiqfTKKWUSp9bh1Nu3gTWXJiN9/8JwvWY6yiRtwRCToRg27vb
  Ml9YKaWUe3vikbE38MXm95E/V35ULlgZFpsFZz85e0+eTqOUUg8it/XESSCy3Gy0LReABa/+7q5q
  KKVUtua2nnhMDCBl/sZzj7R2VxWUUirbc1sQv3kT8PKJ0qsvlVLKCW4N4p65ouDj5eOuKiilVLbn
  1iDukTMauXPkdlcVlFIq23NrEBfvKPjk0J64UkrdLbcGcXhpT1wppZzhtiAeHQ3QS8fElVLKGQ4F
  cRFpJSJhInJIRPramf8fEQkVkR0iskdELCKS4X1jY2IAm2eU9sSVUsoJmQZxEfEAMAZASwDVAXQS
  kRSXVJL8hmRtknUA9AcQQvJaRuXGxAA2Dx1OUUopZzjSE68H4DDJkyTjAMwG0C6D/J0AzMqs0JgY
  wOqhBzaVUsoZjgTxUgBOJ5s+E5+Whoj4AGgFYH5mhd6+TVgkWsfElVLKCa6+d8oLADZmNJQSGBgI
  ANi02QKPEp5633CllEolJCQEISEhDuXN9EHJItIAQCDJVvHT/QCQ5Ag7eX8HMJfk7HTKSnxQ8pfD
  rmJkjD9uB0Y4VFGllHpYZfSgZEeGU7YCqCQi5UTEG8BrABbbWUl+AE0ALHKkUrdio+ENPaiplFLO
  yHQ4haRVRHoBWAUT9CeTPCAiPcxsBsVnfRFAMMloR1Z8KzYKObx1PFwppZzh0Jg4yZUAqqRKm5Bq
  egqAKY6uOCo2Gt45tSeulFLOcNsVm7dio5DTU3viSinlDPdddm+JQk4P7YkrpZQz3BbEb1tikNMz
  p7tWr5RSDwT3PZ7NEgtvDeJKKeUUtwXxWEssvD293bV6pZR6ILivJ26NRU4vDeJKKeUMt/bENYgr
  pZRz3BfEbbHIpUFcKaWc4rYgHmeNRc4cGsSVUsoZ7gvitljk0iCulFJOcV8QpwZxpZRyllt74j7e
  Ody1eqWUeiC4LYhbGItc3toTV0opZ7g1iOfWIK6UUk5xWxC3SZyOiSullJPcFsQperGPUko5y31B
  3EPPTlFKKWe5JYiTJohrT1wppZzjliBuswHw1J64Uko5y6EgLiKtRCRMRA6JSN908gSISKiI7BWR
  dRmVZ7UC4qW3olVKKWdl+qBkEfEAMAZAcwDnAGwVkUUkw5LlyQ9gLIAWJM+KSOGMytQgrpRSruFI
  T7wegMMkT5KMAzAbQLtUeV4HMJ/kWQAgeTmjAi0WABrElVLKaY4E8VIATiebPhOfltwjAAqKyDoR
  2SoiXTMq0GoFxFODuFJKOSvT4ZQ7KKcOgGYA8gDYLCKbSR5JnTEwMBBRUYAt9Cj2btmLgPIBLqqC
  Uko9GEJCQhASEuJQXiGZcQaRBgACSbaKn+4HgCRHJMvTF0AukoPipycBWEFyfqqySBIXLwKlBtXF
  5s/Ho27JunewaUop9fAREZAUe/McGU7ZCqCSiJQTEW8ArwFYnCrPIgD/EhFPEckNoD6AA+kVaLEA
  0OEUpZRyWqbDKSStItILwCqYoD+Z5AER6WFmM4hkmIgEA9gNwAogiOT+9Mq0WgF4xiKHh96KViml
  nOHQmDjJlQCqpEqbkGr6GwDfOFKe1QpQe+JKKeU0t1yxabUC8IjTIK6UUk5ySxC3WAB4aE9cKaWc
  5baeuA6nKKWU89w6nOLl4arT1JVS6uHktuEUikWDuFJKOcl9wylihaeHpztWr5RSDwz3DaeIFZ6i
  QVwppZzhpuEUAkJ4iNueDqeUUg8Et0TRmDgrQA+I2L0VgFJKKQe5JYjHWa0Q6lCKUko5yz1B3GKF
  UM9MUUopZ7kliMdaLBBoT1wppZzlxp64BnGllHKW+8bEtSeulFJO0564UkplY27riXtoT1wppZzm
  vp64BnGllHKaG3vieoqhUko5y01BXE8xVEopV3AoiItIKxEJE5FDItLXzvwmInJNRHbEv77IqDwd
  E1dKKdfIdExDRDwAjAHQHMA5AFtFZBHJsFRZ15Ns68hKdUxcKaVcw5GeeD0Ah0meJBkHYDaAdnby
  OXw3K4v2xJVSyiUcCeKlAJxONn0mPi21p0Rkp4gsE5FHMyrQYtMgrpRSruCqU0S2AyhLMkpEWgNY
  COARexkDAwPx51/nEH37IkJCQhAQEOCiKiil1IMhJCQEISEhDuUVkhlnEGkAIJBkq/jpfgBIckQG
  yxwH8ATJq6nSSRK9v/4Hc258iPNfbXGokkop9TATEZC0O2TtyHDKVgCVRKSciHgDeA3A4lQrKJbs
  /3owXw5XkQ6L1QoPfTSbUko5LdPhFJJWEekFYBVM0J9M8oCI9DCzGQSgo4j0BBAHIBrAqxmVqWPi
  SinlGg6NiZNcCaBKqrQJyf4fC2CsoyvVnrhSSrmGex6UbNMn3SullCu4J4hrT1wppVzCLUHcarPC
  U/QGWEop5Sz33ADLZtGeuFJKuYCOiSulVDbmxuEUDeJKKeUsDeJKKZWNuW04RcfElVLKee7riXto
  EFdKKWe5LYh76SmGSinlNDcNp1i0J66UUi7gnp449cCmUkq5gvuCuPbElVLKae4bE9cgrpRSTtOz
  U5RSKhvT4RSllMrG3BPEYUEODz3FUCmlnOWWIG7TnrhSSrmEHthUSqlszKEgLiKtRCRMRA6JSN8M
  8j0pInEi8lJG5WlPXCmlXCPTIC4iHgDGAGgJoDqATiJSNZ18wwEEZ1amFVbk8NQgrpRSznKkJ14P
  wGGSJ0nGAZgNoJ2dfB8CmAfgYmYFak9cKaVcw5EgXgrA6WTTZ+LTEolISQAvkhwHQDIr0EYrcnjq
  2SlKKeUsV0XS7wEkHytPN5AHBgbi+s712H4rD0JKNUBAQICLqqCUUg+GkJAQhISEOJRXSGacQaQB
  gECSreKn+wEgyRHJ8hxL+BdAYQC3ALxLcnGqskgSxbr1wesvlMF3L3/i4CYppdTDS0RA0m7n2JGe
  +FYAlUSkHIBwAK8B6JQ8A8mKyVb2C4AlqQN4clZakUPHxJVSymmZBnGSVhHpBWAVzBj6ZJIHRKSH
  mc2g1ItkVqYNVnjp2SlKKeU0h8bESa4EUCVV2oR08r6daXl6iqFSSrmEey671564Ukq5hNvunaJB
  XCmlnOeeIC6xyOWV0x2rVkqpB4pbgjg9YpErh3fidPny5SEiD8SrfPny7mhSpdRDyi2XTdokFjmT
  BfGTJ08is/PVswuRTC9YVUopl3HjcIp35hmVUkpl6L4YTlFKKXV3NIgrpVQ2pkFcKaWyMTcF8RgN
  4kop5QLuCeKesfDxzj5BPCIiAu3bt0fevHlRoUIFzJo1y91VUkopAG46xRAescjtnX0u9nn//feR
  K1cuXLp0CTt27MBzzz2HWrVqoVq1au6umlLqIZflPXGbDYBn9hkTj4qKwu+//47BgwfDx8cHjRo1
  Qrt27TBt2jR3V00ppbI+iFutADxj4e2ZPYL4oUOHkCNHDvj7+yem1axZE/v27XNjrZRSysjy4RSr
  FYDXnQdxV1wIeTcXhd68eRP58uVLkZYvXz5ERkY6XyGllHKSe4L4XfTE3XVVft68eXHjxo0Uadev
  X4evr697KqSUUslk+XCKxQLAI/sMpzzyyCOwWCw4evRoYtquXbtQvXp1N9ZKKaUMNwRxAl6xyOGZ
  I6tXfVdy586Nl156CV9++SWioqKwceNGLFmyBF27dnV31ZRSyrEgLiKtRCRMRA6JSF8789uKyC4R
  CRWRbSLSLL2ybsfFAVYveIhbTlG/K2PHjkVUVBSKFi2KLl26YPz48Xp6oVLqviCZ3QJWRDwAHALQ
  HMA5AFsBvEYyLFme3CSj4v+vAWAByUp2yuKRU5GoNKEYOPhW8vQH6la0D8q2KKXuD/Fxxe7pHY50
  h+sBOEzyJMk4ALMBtEueISGAx8sL4HJ6hUXFxkJs2WM8XCml7neOBPFSAE4nmz4Tn5aCiLwoIgcA
  LAfwUXqF3Y6NhVizz9WaSil1P3PZwDTJhSSrAXgBQLqXM8ZYtCeulFKu4sh54mcBlE02XTo+zS6S
  G0XES0QKkbySen7QmG/APTcRGBiIgIAABAQE3HGllVLqQRYSEoKQkBCH8jpyYNMTwEGYA5vhALYA
  6ETyQLI8/iSPxv9fB8BvJP3tlMXFm/eh49yOiBm1P3n6A3Mw8EHaFqXU/SGjA5uZ9sRJWkWkF4BV
  MMMvk0keEJEeZjaDAHQQkW4AYgHcAvBqeuXFWGLhQR1OUUopV3DosnuSKwFUSZU2Idn/IwGMdKSs
  2zomrpRSLpPlV9zExGlPXCmlXCXLg/jtuBgN4kop5SJZHsTHHfoCHsxe54mPHTsWTz75JHLlyoW3
  337b3dVRSqlEWX4r2tfL9cW8FVUyz3gfKVWqFAYMGIDg4GBER0e7uzpKKZUoy4N4Q78XEXw7q9fq
  nBdffBEAsHXrVpw9m+4p8kopleXc8ng2T8+sXqtSSj2Y3PJkH6+7WKsMcv75bByoF+EopR4sWR7E
  hw0DfHzufDkNwEoplVaWB/Hu3QF9splSSrlGlgfxzp2zeo3Os1qtiIuLg9VqhcViQUxMDLy8vOCp
  g/tKKTfLPs9Ic6PBgwcjd+7cGDFiBGbMmIHcuXNjyJAh7q6WUkplfhdDl65MhPbW9yDd+e9B2hal
  1P3B2cezKaWUuk9pEFdKqWxMg7hSSmVjGsSVUiob0yCulFLZmAZxpZTKxrL8Yh97ypUrBxHn741y
  PyhXrpy7q6CUeog4dJ64iLQC8D2SHpQ8ItX81wH0jZ+MBNCT5B475dg9T1wppVT6nDpPXEQ8AIwB
  0BJAdQCdRKRqqmzHADxNsiaAwQAmOlflB19ISIi7q3Df0LZIom2RkrZH5hwZE68H4DDJkyTjAMwG
  0C55BpJ/k7weP/k3gFKureaDR3fOJNoWSbQtUtL2yJwjQbwUgNPJps8g4yDdHcAKZyqllFLKMS49
  sCkiTQG8BeBfrixXKaWUfZke2BSRBgACSbaKn+4HgHYObj4OYD6AViSPplOWHtVUSqm7kN6BTUd6
  4lsBVBKRcgDCAbwGoFPyDCJSFiaAd00vgGdUCaWUUncn0yBO0ioivQCsQtIphgdEpIeZzSAAAwAU
  BPCTmBO+40jWu5cVV0oplcX3E1dKKeVaWXbZvYi0EpEwETkkIn0zXyJ7E5HJInJBRHYnS/MTkVUi
  clBEgkUkf7J5/UXksIgcEJEW7qn1vSEipUVkrYjsE5E9IvJRfPpD1x4iklNE/hGR0Pj2GBqf/tC1
  BWCuQxGRHSKyOH76oWwHp5C85y+YL4sjAMoByAFgJ4CqWbFud71gztCpBWB3srQRAD6L/78vgOHx
  /z8KIBRmeKt8fFuJu7fBhW1RHECt+P/zAjgIoOpD3B654/96wlxX0eghbos+AKYDWBw//VC2gzOv
  rOqJZ3rB0IOG5EYAEamS2wGYEv//FAAvxv/fFsBskhaSJwAchmmzBwLJ8yR3xv9/E8ABAKXx8LZH
  VPy/OWE6OBF4CNtCREoDaANgUrLkh64dnJVVQfxOLxh6UBUleQEwgQ1A0fj01O1zFg9o+4hIeZhf
  KH8DKPYwtkf8EEIogPMAQkjux8PZFt8B+BRA8gNzD2M7OEVvReteD9VRZRHJC2AegN7xPfLU2/9Q
  tAdJG8naML9GGotIAB6ythCR5wBciP+FltGpxw90O7hCVgXxswDKJpsuHZ/2sLkgIsUAQESKA7gY
  n34WQJlk+R649hERL5gAPo3kovjkh7Y9AIDkDQDLAdTFw9cWjQC0FZFjAGYBaCYi0wCcf8jawWlZ
  FcQTLxgSEW+YC4YWZ9G63UmQspexGMCb8f+/AWBRsvTXRMRbRCoAqARgS1ZVMov8DGA/yR+SpT10
  7SEihRPOuBARHwDPwhywe6jaguR/SZYlWREmHqwl2RXAEjxE7eASWXUEFUArmLMSDgPo5+4julmw
  vTMBnAMQA+AUzD1l/ACsjm+HVQAKJMvfH+aI+wEALdxdfxe3RSMAVpizkkIB7IjfHwo+bO0BoEb8
  9ocC2AXgP/HpD11bJNu+Jkg6O+WhbYe7fenFPkoplY3pgU2llMrGNIgrpVQ2pkFcKaWyMQ3iSimV
  jWkQV0qpbEyDuFJKZWMaxJVSKhvTIK6UUtnY/wMFcHQjp/06BAAAAABJRU5ErkJggg==
  ",
        "text/plain": [
         "<matplotlib.figure.Figure at 0x7fc251dff390>"
        ]
       },
       "metadata": {},
       "output_type": "display_data"
      },
      {
       "data": {
        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEACAYAAABF+UbAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz
  AAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcFMf7B/DPgIAgRbGBqIi9t0RjLzGJJLHFrrHFFI2/
  mBiTqPkmxovRGI0mxhpNbLH3rthRQbGiiBWwUQQpSpVyd8/vj+HgjnpwJyfwvF8vXtztzs7Ozu09
  Ozc7uyuICIwxxoonM1MXgDHGWOFxEGeMsWKMgzhjjBVjHMQZY6wY4yDOGGPFGAdxxhgrxvQK4kII
  dyHEHSHEPSHE1BzmlxdC7BJCXBdC+AghGhu/qIwxxrLKN4gLIcwALAHQE0ATAMOEEA2zJPsfAF8i
  agFgNIBFxi4oY4yx7PRpibcFEEBEj4goDcAWAH2zpGkM4CQAENFdALWEEJWNWlLGGGPZ6BPEXQAE
  a70PSZ+m7TqA/gAghGgLoCaA6sYoIGOMsdwZ68TmbwAqCCGuAvg/AL4AVEbKmzHGWC7K6JEmFLJl
  rVE9fVoGIooHMFbzXgjxAMD9rBkJIfhGLYwxVghEJHKark9L/BKAukIIVyGEJYChAPZpJxBCOAgh
  LNJffwrgNBEl5FIQ/iPCjBkzTF6GV+WP64Lrgusj77+85NsSJyKVEOILAEfTg/4qIrothBgnZ9NK
  AI0ArBNCqAHcBPBxfvkyxhgznD7dKSAiDwANskxbofXaJ+t8xhhjLx9fsWki3bp1M3URXhlcF5m4
  LnRxfeRP5NffYtSVCUFFuT7GtG3cCAwbBphx06VESkoC9u8HhgwxdUmMTwgByuXEJgdxViqkpADW
  1sCDB4Crq6lLw16GkyeBHj2AqCigYkVTl8a48gri3CZhpUJwMEAEPHxo6pIUH6dOAXv3vtx1LFgA
  XLpknLyeP5f/+/YFoqONk2dxwEGclQqPHun+Z/nbsgVYt+7l5Z+WBnz7LfDvv8bJLyICGDwYiI8H
  rl83Tp7FgV6jUxh71X3zDdCnD9C1a/Z5p08Db70lX5siiH/+uezOMTMzXsAqCteuya4JABg1CggN
  BY4dM845BSKgYfpt9CwsgNRUoHt3ICQEWLoU8PUFWrUCevXSP8/wcJmnlVXJOVgHBAAKRd5puCVe
  ShEBarWpS2E4pTLzi3/yZM5prlyR/8uUkd0p2tutea1SAbGxMpgAsn6y0l4ut1M7mnpNSpL/iYBt
  24A1a4BVqwq0aS8NUWb5c9sHVCrA3x8ICwPOnwc8PGRL18NDHpC0JSXJuouNlcvpIykJuH8f2LxZ
  fiaabptRo4BDh4A//wR8fAq2DRERgJOTPOdhSLdZWlre2xIXl7m9sbFyHwRk+hcvMvel2Fj5PiuV
  KnP/iI2V69OmVsv9MDYW+PtvYNOmvMvLQbyU2rABGDnS1KUwXP/+svXl6pr7T2hNa3LIENn/6uIC
  REbKoGpuLud99x1QpYpsDV65kr1Fr1IBzZsDV68CgYFAy5Y5r2vSJKBcOcDREfjyS9l6jYmR8ypV
  Mnx7jWHGDOD33+XrVq2Ay5ezpwkMlPXx1luAuzswcaL8tTNsGFC7NpCcLNM9fCgDZ82aQLVqwJgx
  +pUhOhqoXh1o1Ag4eFAG76+/Bjp3BtaulYEyr0A8fTowa5YMoE2bys8+PFyWpVYtw1ri77wj8xk7
  Nvu8detkvdSsKf9cXIABA+S8Dz+U89zdZV3UrAlUrQo8fqybx9dfy/3j/fflejp0yDwgeXsDr78O
  NG4sl9+0CRg4MO/ycndKDkJC5A4WGio/JH1ERwM2NnIERGERyXVWL8T9H7OWNTkZSEjIPXD884+c
  r1LJwNa6texLjI4GHBxk60C7HETAxYuZrYaWLQFbW/lauw/ytddkHTx6JL9gderkvP6QEN0vqaUl
  0KSJbOU5OmZPW726DLyVK8t84+OBu3flTh8VJb8oPXvK9CqVLKtKBdSvL8vy338yAFWvLltsp09n
  BjIAuHAB2LlT9ql6ewO3bsnpCQky0G/bBty8KU/Evfce4Ocny1CmjFwPkfz/8KGs+5Ej5ZDGrl2B
  ChWAZ8+AevVy+/Sy07TmNHWhVss8Cjrqgkh+ptr7gY+PPNA8eCC3Y80aGTi0Xb8uP+Pdu3Wnf/SR
  DOyLFwPt2wNbt8oAvGSJPLHo6gqcOCG7NCpXBhpkuQQwKgq4c0duW8WKmSOF/v1XBquICNl6HTNG
  diVcuCDr+LXXdPO5dUseUF97Dbh9W34uQUEyaNrZAcuXA4mJcjuDg+U+0LixTJOSkr1sV67I9T59
  Kver4GC57548KffNKlWA8uXldu/cKQMwIJdxcZHTPDyAd98FDhyQBxR7e9mVtmABMGiQTO/gILep
  RQvg6FG5b3fsKIO1q6v8BeLrC7RtKw+kgNwXyuQVqYv4+n961cXGyh9qt28TWVkRpaTot9yIEUR/
  /WXYun18iFxdC75cSAhRuXJESmXmtBkziAYPzjl9UBCRrS2RoyPRwoVEZmZEDRsS1akjt7l2bSIL
  C6LQ0Mxl1q4lcnYm6thRlnH27Mx5gwcTNWlCVL8+0YQJRElJRPb2RLVq5bz+tDSZV4cOMr+OHYmc
  nIgaNCAaO1Y3bXAwkaUl0alTskzh4USzZsl12dnJ8hPJbS9Xjuj5c/k51KhB9PrrRC1ayPWcPi3T
  rVxJ1K4dkbk5Ufv28rNOTpZ5xcQQ1a1L1KmTnB4fTzR8uKybypWJli4latqUyMFBzvf2Jho3jujD
  D2V5WrUieu89+T8oiMjdnahePaLJk2UeXbvq/5n+/jvRG29kvl+0SOZbUFu3ElWvnrlvqNVyW8zN
  5V+NGkQVK8o60Pa//8l9KCcnTmR+bl27Et26lTlv1qzMeXZ2ct/U1q6d3M9sbIjefFNOe/NNooSE
  zDSffkrk5yfr2NlZ7pNZ82ndWn7e9eoRTZtG1KMHUffuRJGRRBERRM2bE40ZQ5SaSlS1qvxcu3SR
  +32HDkQVKsi6IJKflY1NZrlXrpTTZ87U3ZY6dYh695Z5avvzT5lm7lyi69eJ5s3LnHfzpqwjTT7l
  y8t6v3KFSKGQadavz5zfsyfR4sVE+/bpriM9duYcV3Ob8TL+ikMQv3tX1sqIEfL/9u3yy+3rSxQd
  LdOcOCE/rMBAokuX5LT27YkGDSK6fDl7nomJRGfPEnl56QZab2+ie/fkTnT+PNHy5XKd0dFEjx/L
  oHH0KJGnp3y9dCmRh4fMKylJ5nXiBNGZM3K5W7eINm6U6WrUkDs4kdxZz5zJXO/PP8tga20tg88v
  v8jlLS3lju/mJt8fOiS/XCtWyACyY4dcfuNGuTP/84/cSR0cZB09eiQDwpdfyi+mrS3Rs2fZ6+PQ
  Id0ARUS0aZNcZ9ZAtX+/nO7iIsv3xx9yuywtib7+WjftG2/IL0DDhkTHjxOpVPKAY24uy6axapUs
  W2IiUc2aRMeOyfoiIhowQK5PCKJz5+TBSAi5rZqya+aPGCEPhPb2clrz5kSNG8sARES0eXNmg8DH
  h6hNG6KwMPn57N2rW/boaKIbN2Q9Ll8ut9HKiui332T6hg3lNv/9N5G/P1FUlFxu7165P+zalbmP
  aP+1bSuXmzZNvp8/X5bZ2lpO//hjom7diHbuJLp/X+6PRPJgtGtX9s+uID75RAY2zT45d648WPv6
  ynoZODD3ZdPSZJpNm2TA1nzPNBwdib77Th7YNXWhLTxcBsxvvpFB+9Qpmd+QIXJ+tWpEGzbI7f3l
  F7k/52XsWLmvqFQFqoJsZsyQ36+C4iBeAKdPZwY0zf/Vq4nef18GiOhoOb17d/mFbdNGLletmpzu
  5CR3QG07d8ovupkZ0YEDclpkpNwBHR1l4LOxyTxwnDwpg8l778nlHByIxo8n+vzzzFbg1q1Ee/bI
  1//9J/+PGyd3tM8/lzumjY1sTfr4ZAZ5tVq2KC5elIGhRg15MFi6VAbMgAB5oOjbl2jOHNkifO01
  GQQ0rTV/f5mfpjU/aFDmti5aJNd/6ZJsdWlawNqGDpXr05aUJOvX2lq3pfPLL0QffCAPDOvXy7pq
  0IBo9255oNP22WeyXF9/nXmwPHiQaMoU3YPnkyfyC0xE1LmzrOvhw+X748eJJk2SracvvpAHo9Wr
  ZT0SyV8nANHEiXI7Fy+WAX7MGBnEy5WTv+aIiF68yGzV3bgh95c//5S/DhwdZSNA45tv5K+Z776T
  LbIZM+Q2fv65/Js+XQbsatXkspMmyeUB+YvDykp+/pr0mr8pU+TnqT1t2TJ5MDh0SDYeVq+Wn/cX
  XxD16iUP3OXLy3oyxK5dclusrTPXvXs3UVxc5v6al8WL5T737rty39SIi5N5RkfLfSI3f/8t1+nt
  LQ+OANGvv8p5774r3zdpIv//+GPeZQkIkPVlKO19ryA4iJM8oj99mn26Uilbd2q1DHKjR8sWXeb5
  b/mFeu01+VNn8mQ5zdFR/re2lgHIwkIG6YoVZVBbuzZzHT/9JNNq5v37r2yVVKwov/SWlvK1EHKn
  +vFHGayfPZMth3ffzcxr1CiZ199/y5/xgAxwlpZy+QULMtO+9prs6mjbVub//fdyh27YUG6vu7uc
  lpP//iNq1EgG+ayBOC1NBo21a2UrV/sLpm38eHkgOnZMBtZnz2RQc3DIufVEJAO0n58M5JMny/cb
  N8p5KpUsj3ZXjrZly+TPZs3PZH2MHCnr0MNDd7rmgDh5su50TXeEt7fu9KgomU/58jmvJyhIdi9N
  nSoDycSJ8kAxfrz8q1hR/tnayoNkbmbNkvueo6Nc3t1dLmdvr/82ZxUbKz+TJk3k59m7t+4+V1i+
  vvJ70bx59nmOjrLLRh8ffSS/MxoKhdyHC6pmTXlQJ5KNEu3v+PbtBc+vKJX6IP78OVHZsrJVl5Wm
  NXP1qgzggOxqcHSUARaQ011cdD907b/9++UX9Phx2b0wfbrujtu3r/zi3rol+9Y0Lfy9e4kuXJCt
  ocBA2aLbtk3O0/zsCw6WP3M1wsJkq+/772VAc3CQLbuffpLLa/ctenvLwLZihWy1d+okW6ua1oiv
  b+7B9PlzeaDYvDnnn5AnT8oDoLe3bitXW0CA7Ie0tJT9spqD09GjuX1S8qCzfr3sM6xZU5ZB07LV
  lFnTKs4qOjrn7qy83LghW0ZZt3HDBvk5rVuXfZkzZ7L/2lKrZfouXXJeT3i4DP6jR8vunKgo2W2y
  bJn8271bbnN+XRhxcbIO9u6Vy9+/L9er6TorrOHDM4PZsmXyoGMoTes3p66K1q11Gxx5mTZNHryI
  ZPdH5cpy/ysoL6/MX5PBwbJbEZD7W2JiwfMrSqUiiH/7rW6/54ABcmfs1k0GvHr15J+mlTZ9ugwy
  J07IWvjii8y+zZkzid56S3ahlC8vWzwWFkRlysg8zM1lOgsL+aWtUUN2r2hER8u8hg2TrY0aNWRf
  O5FsiTdsKH8WZw0ERPJEaqVKmS2GnKxfL1tgdnZE/frl3JLMKipKpnd0zN4N8TIdPizXeeCA/KUy
  cmTe6WfPlp/l6tXyl4apJCTI+tL0b+sDyDzRmlVcnGwU9OyZ92dbUGq1/DXYubNh+Rw5IhsqxqRW
  y+/BxInZ5w0cmHdXiLaFC+Vn0aGD/KU1aZJxynfvnmxUGNrPXRRKfBBXKuWOrDnb+/Ch3LIaNeTP
  U0C2cOrXlyernj6VAXnbNhksqleXZ6ubNpVnsleskGe4ExJkK9neXgbz4GC57CefyP7mkBDZwvLy
  kvM01Gq509nYyPU3aJB58IiLk32lkZG5b09e84gyT2R26JDZpZJb61Sbi4s8i1/UNNtz9aruL4Wc
  HDggD6BffaV7lt8UtD9TfYSE5N6Vo1TK7q4WLQr+ayE/bm55nyTUh1pd8O3VR7Nm8mRqVpGR2UfE
  5GbjRrmPb9mi25o2hqyjXl5VeQXxEjFOPCBA/v/vPzlAv0UL+T44GPj5Z3lhy/vvAzduADt2yIsB
  lErgp5/kmNUJE4Bly+T438REOT60ShWZR6tW8sIDF5fMcdOurnI8qmZcdtWquuURQqZxcACaNZNj
  lUX6/cfs7OT/smVz3578LgrRjDdu21aOTa9TJ3PMdl7atcu8MKEoabanVav807ZuDZw5A3h6AseP
  v9Ri5aug4/XzuqbA3FyON9ZcHGNMVasanqcQhbs+IT9Nmsjx2VkV5MInzXfxZdxiVt/rQF5lJSKI
  X78ur5K6e1cOlu/QQV5kMW2anP7jj/J+D82ayQsbzpwBOnUCvLzk8o0ayR24ZUt5VZrQuuGjlZUM
  kKFaj4Z2csr/S1OrlrziavFi49+/2slJHmzKlpV5z5ql33Lbtxu3HC+Ds7O8qEWt1u/AVJyULSsv
  ctEEJWPRZ380lc2bDc/jrbdKxi0iXpYScdn9nTvyaK+5cqx1a8DNTc5zdc0MorVqyftAPHwIDB+e
  uXyrVvKKqm7ddAO4xtKluq2AFi1k2ry8+aa8gvBlPYDAxiYz75zKnBMh9E9rSjY2JS+AA/IXHSBv
  +GRMnTtnv6KxpCkO+62plIiHQkyaJIP1oEGy9bt1q/zfrZu80YxmB4iJkZf69uwpu1D69pWXX3fp
  YvQiMZaNpssiONjUJWHFTV4PhSgR3SmxsfK+BtWryz7wLl3kPROmTtU9gleoIPukW7TI7Mfmp7yw
  olS3rqlLwEqaYh/EDx6UN81xcJDvp0/PnJf1PryaE44tWsg+RHPzknFigxUfHMSZsRX7IP7ZZ/Lu
  ad9+q1/6X3+VJzXt7eVoljzvDsaYER08KEcIMWZMevWJCyHcASyEPBG6iojmZplfEcAGAM4AzAEs
  IKK1OeRToD7xAweA9euBN94AJk/OPl/z8FsieSvJ1q31zpoxxooNgx6ULIQwA7AEQE8ATQAME0I0
  zJLsCwDXiKglgO4AFgghDG7jbt0q7/s7c6a8z29WmoffApndKYwxVproMwCuLYAAInpERGkAtgDo
  myVNOID0y1hgByCaiJSGFu7hQznipE8f3fGm8+cDv/yi+/SO8uUNXRtjjBU/+gRxFwDag6JC0qdp
  +wdAEyFEGIDrAL4yRuEePZInIkeNko9F0gz4X7ZMXm358GHm6BNuiTPGSiNjndb7HsB1IuouhKgD
  4JgQojkRJWRNqNAaMtKtWzd0y+WqmYYNZXdJ9epAjRrysWCdO8sHiGqC+fHj8iKfhw/5BCVjrOTw
  9PSEp6enXmnzPbEphGgHQEFE7unvp0HejGWuVppDAGYTkXf6+xMAphLR5Sx56XViMzxcXn4NZPZ5
  v3ghx3lrnrTt5iaff9i7N3DkiHxWXWl3LOgYIhIjMKL5iEIt7xPig+r21VHd/iXcRMPEroRdgZOt
  E1zsDR9TmpSWhAshF9DdrXuh8wiLD0NoXCjauLTJmOb50BOXw+RXpmq5qhjRfASEiS5VPHH/BDrV
  7ASrMlYmWT/TZdCJTQCXANQVQrgKISwBDAWwL0ua2wDeSl9ZVQD1AdwvbIGvX5cX42jfrMnaOvNS
  ekC2yiMj5b1R+vcv7JqM69mLZzhx/0S+6Xbf3o00VRr2390PpVqJfXf3IUWZku9yhwMOIyE124+b
  DBMOTcDI3SMRlRSFRRcWwfuxt95lD40LhfsGd/TZ3AdHAo/ovVxxMfX4VGzx31KoZTff2IzZZ2bD
  /6k/AGDKsSkYuH0gDLn6eM7ZOXhnwzuYdWYWZp+ZjZmnZ2LgtoEIiw9DeEI4vjv2HW48vZFtufCE
  cMw5Owezz8zGr2d/RWhcaA65Z5eUloTDAYdznZ+iTMHeO3sBAF6PvfD2+rdxPuR84TaOFal8gzgR
  qSBHnxwFcBPAFiK6LYQYJ4T4LD3ZHACvCyGuAzgGYAoRxRS2UNevyyeT79ihO71FC9lCd3aWdwYE
  5D0jFi0q7JqMa8etHZh8NIexkFoiEiIwcPtA/HDyB/TZ0gfXw69j5O6ROP3oNOJS4vDr2V9x9cnV
  bMudCz6H9ze9jw1+G3LNNzIxEp1rdsbg7YOh8FRgwfkFepfd86En3q7zNnrX753vNuTnWvi1jICn
  L6VaiS3+W3Dw3kE8T35eoGXD4sPg+dAzz7x9QnwQGBOYZz7xKfHYd1e3fZKmSsOn+z9FWHwYem3q
  hclHJmPf3X0gIoQnhBeonBoqtQrbb23H9C7T8SLtBZLSkpCiTMHG/hvxR88/MP+d+RjdYjS+O/Yd
  ZpyagRmnZuCP83/gSOAR9N3SF1fDryIpLQnewd749eyveq1z3919eG/Te/B67JXj/HPB59Bvaz+E
  xYdh9J7RcLF3wZP4J0hTpWH7zVf7zmm7b+/G6YenMevMLCQrk01dnCKnV08yEXkAaJBl2gqt11EA
  ehurUAEBOd/Q57PP5EnOhw/liUwzs5dz+8zC8g72xp2oO0hTpcHCPPtdjnbc2oGA6ACoSY3fz/0O
  ADgfch5xKXH40+dPpKpSkaZKw/LLy3Fzwk3subMHtyNvo2yZsgiICUAX1y7Y4r8F418fDyAz8I1o
  PgJnH59F+xrt0dqpNZZdXoZ/e/+L37x/AwCoSY1119bho1YfAQD2392P21G38U37b2BuZg4AeJLw
  BDXta2J61+lYcH4B5p+bjy/f+BKW5pY5buv2m9vRt2HfHOfP854HGwsb/NvnX2zx34Je9XvB1lL3
  jlbbbm6De1132FvZAwD8IvwwbOcwAMDmAZsxtOnQbPnef3YfwbHB6Fqra7ay7LqzCxs+2IC/L/+N
  j1t/jNoVamfM94vwQ2JaIoKeBeW4LRq7bu/CmL1jcHD4QbxIe4EBjQfAN9wXdRzrYOn7S9Herz2C
  YoKwb9g+fH3ka/g/9Yeznez3uxFxA8nKZLRxaYOdt3birdpvwaGsA25F3kJCagLaurTNWE/QsyDY
  WNhgcvvcD5aT20/GyisroSZ5Amjrza24EXEDM7vPxKR2k1DGrAyCYoLQYXUH/PXuXyhjlvtX+WLo
  Rfxz9R+4lXfDL2d+wbjXxkGpVqKidUVUsqmEFk4tEBwnxy6M2TMGdR3romHFhniS8ATngs9h8I7B
  +PT+p2hRtQUcrR0R/SIa/9fm/4qkq4eIsPHGRgxtOjTHbYxMjMSg7YNAIDhaO6KyTWW0cWmD1s6t
  sefOHrxV+y2YC3MsOL8A79V7D62dS97FJCY/Hbh2LTBypLwEXiMiIrNPXNubb2a+9vICqlWT92g2
  lZC4ECz0WYjPXvsMdR3r4uzjszATZgiMCUSjyo2ypR+0fRAAYFrHaVh6aSkGNh6Iw4GHYWluCY9A
  D8zsNhOT20/GB1s/wIn7JzDx8ER80/4beAR64HzIeZwZcwZ9t/RFWHwYqtlVw52oO/ho70f4oOEH
  +PHkj5j15iy0r94efRv2hYudC4Jj5RfzTtQdjN03Fm/XeRuJqYkYu28s3Mq7wSfEBy2dWuL7Tt9n
  5FnGrAzS1Gn47th3OP3oNBb2XIg6jnV0tuNx7GMM3jEYe4bsQd+GmaNNvR97w97KHt7B3khWJmP9
  9fUYf3A8lr63FGNajgEAxCbHYr3fekw5NgU/dP4B3d26o0ONDjotdzOR8w/EN/59A1FJUaAZlFH/
  fhF+8H/qD/+n/th0YxM2+W+CR5AHfuz8IxpXbowGlRrA94kv2lVvh6BnQTj98DRc7F1Q17Eu1viu
  wZCmQ2BjYQOvx15YeXUl6jnWw+Dtg1HBugIGNB4A78fe6FC9AwDonGtoWrkp/CL8UMG6AogIv3n/
  hnIW5fB3r78xes9ofNfhO8SmxOJPnz/h6uCKQx8eQlRSFLq4dsGNiBtoVrVZnvtWVduqmN418x4S
  414fh9uRt3X64es41oGrgytOPTiFt+u8nWte3xz9Bl6PvbBnyB4M3D4Qpx+ehlKthIpU6FW/F/YP
  24+gmCC86fYmjt8/jrX91uJJ/BM8iX8Cb6U3etfvDbfyblh6aSmeJT9DReuK8AnxQZVyVdDVtSuu
  PrmK+NT4jPVVtqmMKR2nZDQQAOBQwCEcv38c7au3x73oe2hSpQn6NeyXMd8j0AP1HOtl7GunHpyC
  s50zLoZexOg9o9GmWhs0qKTTjgQgD27v1nsX418bj403NuK7Y9/B1tIWXmO9MGTHECx7bxlsLGzw
  x/k/cPLBSZwcfTLPes/No+ePsOjCIjhaO+KHLj/kmu7h84e4EnYFAxoX3Y37TRrE1Wrgk09k/3Yd
  rTgRHp79QQtZtW0LrF6ddxrfJ76IeREDZztnPIl/gh61e+RbJpVahWWXluHzNp/rHPk9Aj1Qu0Jt
  1K8o+3EO3juIgwEHsfzycpQtUxYudi6oUq4KmlVphqNBR3E94rpOa1LTl3185HG0r9EePWr3wKXQ
  S1hzbQ0mvD4B/Rv1zyhfp5qdsPLqSlQtVxU/df0JLZ1aYuiOoWhXvR36NuyLT/d/inX91iEoJghK
  tRIegR5IUaVgYOOBAAAXexeo1Co8S36GFGUKzgWfAyB/Mj978Qx9G/TF7DdnY9ONTdh9Zzcuhl5E
  eEI4vm73NQDg4icXYSbMMNd7LiYenoh6jvWgIhVaO7fGO3XewfgD41HJphJmeM5ADYcaaO3cGk/i
  n6DPlj5oU60NktKSEJUUhVF7RsFMmGGL/5aMID75yGT85/cflGolFKcVuBdzLyOIT3h9Aq5FXMux
  O+W/6/8hKikKdR0zbz6y/+5+TDoyCU62Toh5EYOdt3diTo85WO+3HoN3DIZbeTfM7D4T/k/90ate
  L8w8MxPjDoxDxxodMa3TNIzdNxb+T/2xoOcCfHP0G1wMvYgDww6g75a+CIkLwfPk5zgXcg59G2S9
  LALoWqsr5p+bjwXnF6B51ebwfOiJxpUb48C9A0hMS8Sss7PQr2E//Nj5R2y7tQ1NljUBANAMgv9T
  fzSt3DTffVGbk60TnGyz3zR8aNOh2OK/JVsQX+izEIExgehZpyduRd7CgWEH0LNuTxz+8DDmec+D
  tYU1RrcYjY/2foSniU8R9CwIo5qPwvedvkenmp2w7eY2bLixAamqVMzpMQf9G/XH0KZDEZsSi/Jl
  y2PX7V1IVaViyI4h6OLaBe513TPWvfXmVliaW+K9eu/hcexjvF3nbYw7MA5jW47FJ/s/gZ2lHWqV
  r4V+DftcHcA/AAAgAElEQVTBI9AD++/ux5prazCy+Uis6C1/4M86OwutnFrh5AMZdIPjgnWCOBFh
  /rn5mH9+Pg4MO4A2Lm3gE+KD+NR4NKvaDF3XdoW9lT3mnZsHCzMLzH1rLqYcn4LHsY9R06Fmgeoe
  AOZ6z0VkUiTWXV+HEc1HYOWVlYhPjce3Hb5FTYeaCIwJhP9Tf8zzngffcF/UdKipc9L6pcrtkT8v
  4w9ZHs8WGSkfu3TihO6jiGrWJHrwQJ+HFuWt9l+1CQrQjFMzyO5XO3rwLP9MjwcdJyhA87x0nw0G
  BQgK0Kqrq2i+93xqvaI1QQH6cOeH1H1td+q0uhMdCTxCf/n8RWVnlaX6i+vT0otLKS45jhacW0D+
  Ef5U+6/aOnmuv76eoADtub0nxzKM2TOGiIjSVGl0POg4ERGFxoVSs2XNaP/d/TTfez5BAfp478fU
  dU3XbNtS5fcq9NXhr2jMnjFUd1Fd+vLQlzTj1Az66eRPGWkiEyOpz+Y+BAXoxH3dD+Lx88cEBWjc
  /nG0yGcRuSxwoQaLG9DHez+m+zH3acyeMTR+/3giIuq3pR/129KPoAAN3zmcvB55Ua9NvWjI9iFU
  bnY5+svnL3rw7AHZz7Gna0+u0Q8nfiAoQB1XdaSLIRfJbaEb7bm9h7498i2N2DWCjgZmPk35zMMz
  5Dzfmf53/H/U6u9W9LXH17Tz1k6afnI6NVzSkKAAtVjegqAABccGU1RiFPkE+9DiC4up/uL61GNd
  Dzp07xAN2zGMKs2rRI5zHenHEz/Sexvfo2oLqlFQTBBVnleZjgUdI5VaRWcfnaXWK1rT2UdnyXm+
  M92PuU9ZJaYmku2vthnb3H1td7KeZU19NvehHut6EBSg88HnKUWZkrHvdF4tH4TZZ3Mf2ui3Mc/9
  UF+XQy9T8+W6j5MPjA6kyvMq09AdQ6nSvEo0ePtgnflBMUH0+Ll80Oq3R76lNivbkPN8Zzr76GxG
  mqOBRwkK0IQDEygxNfenCHs98qLnL55ny7/SvEoZ233i/glqtqwZERFdDLlIV8KukNN8J1p4fiG5
  LXQjxSkFbfTbSOV/K0+f7P2EJh6aSFCA7OfYk9N8JxqxawSturpKZx3rr6+npsua6uwna3zXEBSg
  0LhQWnl5Jd2Lukerr66mf678Q8lpyTTj1Azqu7mvXvV6JewK7by1k4iIklKTqPK8yhQUE0QfbPmA
  fjr5EznPd6YBWwdQ70296bN9n1H9xfWp7KyyVOevOrT5xmaqtbAWfbL3E/ra42tKSMnnmYTp1Go1
  LTi3gKKTonWm77y189V9xuaNG7IEq7Q+H7VaPh09KUmv7c5T23/aEhSgz/Z9Rk2WNqEe6/J/wOSn
  +z6lD3d+SDX/rElzveaSSq2i2WdmU7UF1eh379+p4tyKBAXI/GdzggJ0NewqWf5iSVCA4pLjKDQu
  lIRCkNnPZgQFyH2DO0EBWnh+IXVc1VFnXYfuHSIoQMlpug8NTFWm0hrfNRQQHZBjGT/b9xktu7iM
  Pj/wOVWeV5mc5zvTyF3Zn0Cs+RJVnFuRfjn9C/Xa1Is+2/cZLb+0XCfdvjv7CArQrae3suVx9tFZ
  Uqnlk2RvPr1JG/02klIlH29/IeQClf+tPK24vIKsZ1lTbHIs2f5qS/vv7iciovsx9+nBswfUfHlz
  ggL07oZ3qf/W/kQkg4/Zz2bkNN+JPtv3GX205yNKTE2kWadnkfnP5jR853AiIlp8YTFV/6M67b2z
  lwKjA8lmtg1BAXr7v7fpk72f0IrLK8jrkRddDr1M2/y36ZRdqVKS9SxrEgpBj58/ptjkWPJ94ktd
  1nQhq1+syOuRV8b6JxyYoLPs2D1jacrRKeQ034nUuTw480LIBXqR9oKq/l6VNvptJLeFbmQx04I8
  H3iS1S9WlKJM0fkc3De409lHZ8llgQvFJMXkmGdBPXvxjMrNLkchsSH08d6PadTuUdRxVUeacGAC
  +QT7EBSgv3z+ynX55LRkWndtHa3xXZNRXiKia0+uERTIFqD1dSHkAi27uIwc5zpS46WNaZPfpox5
  KrWKrH6xIihA9RbVy6jfQ/cO0crLKzP2FyhAC84toB9P/EiKUwpaeH5hRr298c8bdDjgsM46zz46
  S9UWVMu1TAkpCWQ9y5rSVDk8oTydT7APrb66mtwWupHDHAfyj/CnSYcn0ZDtQ4iIaL73fBIKQcN3
  DqdbT28RFKApR6fQNv9t1OrvVvTDiR+IiGj37d208vJK6rWpV8bnEZccR0ExQbT04lKddarUKpp+
  cjr13tSbrH6xotdXvk6jdo/K+Ks8r/KrG8SPH5clAIicnORf5crppTKC9ze+T1CAem/qTTtu7iCn
  +U50J/JOtnTXw6/Trlu7iIiozl91yD/CnxotaURQIKNVbDHTgpQqJflH+NO0Y9Oo7T9tyfuxN6nV
  auq8ujNBkVnoq2FXqemyptT+3/ZUa2EtggI0aNsgGrhN92m2qcpUuhByocDb9cvpX+j7499TlzVd
  aMKBCQQF6H/H/5ct3e3I29RjXQ+yn2NPZx+dpbb/tKVem3pla/lHJUYRFKBnL54VqBypytSML1vd
  RXWJiOh88PmMIK8xfv94KjOzDEGBjECrUqvo3ONzVHZWWXJb6EaXQi8REdGSC0syWrYeAR5U88+a
  GV/WmKQYggJkPcuaav9Vm97b+B7tu7MvzzLa/mqbLRAvu7iMav5Zk1RqFfXf2p+gAJ15eEZnuaUX
  l1KF3yrQgK0D8q2HiyEXKUWZQl6PvOjMwzOkVqvpfPD5jPn+Ef7kEeBBnVZ3ouE7h9OSC0vyzbMg
  Ks6tSOP2j6N+W/rRWt+1tNZ3LUUnRVOKMoWsZ1ln1G1BqNQqnW0oDLVaTRXnVqTWK1pnOxA2WtKI
  3ln/Dt18ejPbcgkpCeQf4U+XQi+RSq2ilZdXZnxOLZa3oMHbB1PleZWzBeM0VRpdDLmYZ5nqLqpL
  Zx+dpd/O/qYz/UrYFRq6Yyg5z3emsrPK0sd7P6aVl1eS65+u5LLAJaN1HBYXpvNL/Xzw+Yxtuxd1
  j2KTY3XyjU+Jp/XX11P/rf2pzco2VG9RPbKZbUOLfBbRiF0jaOiOofTO+neozco2tNZ3LQXFBNEm
  v00Zn+Na37V0+uHpVzeIb9iQGcR9fYnCwojatjVeEB+0bRBBAWqwuAH5BPvQl4e+pJmeM7Ol07S8
  R+0eReVmlyOVWkX3ou7R6ytfz8ij/uL6GenjU+J1Wq2JqYl0L+qeTp7DdgyjGadm0MNnD2nMnjHk
  PN+ZJh6aaJTtWuu7lir8VoHqLqpLwbHBBAWyta415nnNo57re1JgdCDVWliLXlvxWo4HjithVwpV
  Fr9wP3Jb6Eb9tvTLNU1oXChtvrGZys0ul+2neeOljUkoBKUqU4mIaMP1DQQFqNbCWlT9j+oZ3UhE
  MrAIhaA3171Jlr9YUrNlzfINUA+ePcjWmkxRptDdqLtERBQQHUAH7x3MFmQ0LdEF5xbkXwl6uBp2
  lRouaUgOcxwoIiHCKHlqtPq7FUEB8gn2yTbvcujlXH9JFIVua7tl65okIuq9qTf9ce4PvfLwCPAg
  KEAdVnWg7Te30ya/TXTtybVClaffln5UbUE1ggI0fv94+mDLBzRo2yBq/297+urwV3Ty/km6EXGD
  ElMTSa1W04G7BzL2FY27UXcpKbVgXQWJqYm01X8r7b2zl049OEVCIeibI9/QJr9NtMlvE4XHh+e5
  fF5B3KQnNsPD5VDC58/lQ4oB+SCHKVOMk39cinyo4d3ou3C2c4Z7XXf8fu53TO86HX+e/xP9GvaD
  Q1kHHLh3APZW9vjv+n+oZFMJZsIM9SrWQzuXdlhyaQmaV22ucxWjraWtzugTGwsb1KtYT2fdc9+a
  C1tLW1SwroA21dpg7bW1qGZXzSjbVcOhBp4lP8NC94Wobl8dTSo3gatDzo8oGvf6OAxqMggVrSsi
  MjESqapUONtmH/pT2KFXzao2QxfXLqhhXyPXNNXsqmFwk8FoXLkxbCxsdOZt7L8RL9JeZAzJLF9W
  3sns4fOHaFalmc7JaDNhhvJly6OWQy0E2QbhxtMbOW6Ltlrla2WbZmlumXGCuq5jXZ2TpRpNqzSF
  vZU9OtbomGf++rKzskNQTBCc7ZxRpZxxn5SclJYEO0s7nWGMGq9VM+3DN//p/U+O+/1f7n+hko1+
  j7zv4iqfn9i4UuOMk/eF1axKMwREB+D9eu/D85EnZr85G1efXMWeO3twYPgBOFo76qR/v/772fLQ
  7DsFYWNhg8FNBme8vzb+GppWaZrrSKyCMGkQj4iQdymcOjVz2rvvyj9jiEuJQ0unlrgWfg1Otk6w
  s7TDpbBLSFOlYY7XHFwMuwi/CD+MbjEak9tPhp2Vnc6Vk5oA4PGhB1JVqQVadw2HzKDmVl5eajqs
  6TDDNwrICJiaIVp7h+7N9Yy7vZU97K3sQURIUaUgLD4MVW3zGfpTQHPfmpvjuHhtZsIMzas2zza9
  pVNLnfeaIA4gx2F4jtaOcLZzRl3HungU+8joAVHD3MwcFz65gAYVsw9rKwxbS1ukqdNQ0bqiUfLT
  dnrMaZSzLGeyS/TzktMBEgDcKrjlOD0n1hbWCP8mPFsDoDC+af8NJradCEtzS7xQvoCTrRM+aPgB
  RrcYnS2Av0w5fRcKy6RBPCoKaGCc70g2I3aNgF+EH2Z2n4lr4ddgaW4JS2tL1CpfC61WtEJkUiS2
  +G/BT11+wg9dfsjxopWJb0zE8GbDMy7oKCz3uu54POmxTmA3RL2K9RA4MTDjQpms47hzIoSAUq2E
  jYVNrhfwFJYxDwqaIF61XNUch+FVsK4AZ1tn/NP7H0QlReV78DBEw0pZb5tfeHaW8k7N+rY+C8LY
  B+VXkbG20aFs5u1OHSBfCyGy/ZIuTgxvyxsgIUE+uNiYgmKC8OGuD7HxxkYkpiViYOOBeDQp88bj
  +4buQ0JqAmwtbWFlboWv23+da1CzNLc0OIADcicxVgDX0Cdw56Se46u9s1ayqYRKNpVQv2L9HFsr
  VcpVQQ2HGnCr4FZ043CNwMbCBgLipQRxVrqZtCWekADY2uafTh+RiZGYdnwaHsc9xq3IWxnTHawc
  dI6+bhXccG/iPbxIe4HEtESdn++lwVu13zJ1EfJU1bYqbnx+AwIClctVzjZ/bd+1qGBdwQQlM4wQ
  AraWti+lO4WVbiYN4omJQLlyuc9fcnEJXqS9wHcdv8s3r4uhF7H62mpUtK6Ih5MeYsnFJfj+xPew
  s8re1Lc0t4SluaVOcC8NYqbE5Fgfr5qcrkzUyCmwFxd2VnbcEmdGZ/LulLxa4ksuLsGU41MQlRSV
  b17+T/1hXcYag5sMhq2lbcZJSWOc/S0pKlhXyPNGSezlsrW0RUUbbokz43qlu1OSlcmoULYCAmMC
  823B+Ef6Y9G7izC6xWgAxj0pxZgx2FlyS5wZ3yvbEo9LiUNkUiS61uqKx7GP88xnje8abPDbgNer
  vZ4xWqGlU0sk/S/J2EVmrNCq2lbNczw9Y4Vh8pZ41j5x/6f+mOM1BwMaDUCzKs1Qy6FWxi1Vc3Mz
  8iamdpyabcyxtYW1sYvMWKHtGbKHu7OY0ZmsJU6U84lNvwg/7Lq9C5M8JmFOjzmo4VADwXHBOBZ0
  LOOhAVk9T36OOhUKN+SOsaJiYW7xSl6Qw4o3kwXxlBTAvAyh7epWeBL/JGN6cGwwkpXJqGRTCd3d
  uqOGfQ1cj7iOMXvH5Pr8yufJz4vlsDPGGDOUyYJ4QgJgUzUU18KvYfst+Qw/IkJwXDCqlquKsa3G
  ApAnKL0ee2F40+GITYnFi7QX2fJ6nvy81I33ZowxwIR94gkJgGV1f1QoWwHLLi2DlbkVll9ejirl
  qmD5+8vxQaMPAMj7Z6RNTwMA7Ly9EyFxIfj+xPcgEHYO3gki4iDOGCu1TBrEUfUGRrUYhbiUOMzw
  nIHGlRvj2P1j+LVHzk/w1vSPHw06ivjUeBARzGbKHxMcxBljpZHJgnhiIkAVAtGgYkt83uZzAEDM
  ixj039o/1zuf1XSoicexj+Fs54z46Hj4hPhkzOMgzhgrjUzaEjezSoKtZeZAcUdrR3iO8cx1GVcH
  Vzx49iDj/hN77+7NmOdgVbouoWeMMUDPE5tCCHchxB0hxD0hxNQc5n8rhPAVQlwVQtwQQiiFEHk2
  jRMSADPLZJQtU1bvwjap3AS3om4hPjUeAOD12Cvj8vqXeUtSxhh7VeUbxIUQZgCWAOgJoAmAYUII
  nWvaiWg+EbUiotYAvgfgSUTP88o3IQEws0iBVRkrvQvbtEpT+D/1R1RSFBpWaojrEdfRuHJjvZdn
  jLGSRp+WeFsAAUT0iIjSAGwB0DeP9MMAbM4v04QEAGUK1hJvUKkBHj5/iPCEcDSr0gwJqQkY0mRI
  tis1GWOstNAniLsA0L7uPSR9WjZCCGsA7gB25pdpYiIKHMQtzS0znnWpeaZku+rt4DvOV+88GGOs
  JDH2ic3eALzy6kpRKBQAgNOngWTXSFiZ69+dAgDdXLshMCYw4+GrL+sZi4wxZiqenp7w9PTUK60+
  QTwUgPZTeKunT8vJUOTTlaIJ4lOmAHdtdxeoJQ4AUztNhYpUcLZzhoWZBY9KYYyVON26dUO3bt0y
  3v/888+5ptWnO+USgLpCCFchhCVkoN6XNZEQwgFAVwB7s87LSUICoDIrWHcKIJ+evbrvajjbOqNK
  uSp8QyHGWKmWb0uciFRCiC8AHIUM+quI6LYQYpycTSvTk/YDcISIst/cJAeJiYAKBRudoq151eaY
  0GZCoZZljLGSQhBR0a1MCNKsb8AA4GRrJ9z+6lqez1RkjLHSTggBIsqx28GkdzFMo4J3pzDGGMtk
  4iCeUuDRKYwxxjKZLIjHJxDS1IXvE2eMMWbCIJ74IhVlzMrATJj0Wc2MMVasma4l/iIFVubcH84Y
  Y4YwXUs8lU9qMsaYoUwWxFVI5v5wxhgzkMmCuJJSYM0tccYYM4hJgjgRoBLcncIYY4YySRBXqwFh
  yd0pjDFmKJME8bQ0wNwyhVvijDFmIJMEcaUSMLfiljhjjBnKdEG87AtYl7E2xeoZY6zEMFkQN7N8
  AWsLDuKMMWYI0wVxqyTYWNiYYvWMMVZimCyIC0vuTmGMMUOZtjuFgzhjjBnEdC1xC+4TZ4wxQ5ks
  iMOS+8QZY8xQpm2Jc3cKY4wZxGRXbKIMd6cwxpihTNedYsHdKYwxZiiTBXEqw90pjDFmKL2CuBDC
  XQhxRwhxTwgxNZc03YQQvkIIfyHEqbzyywji3J3CGGMGKZNfAiGEGYAlAHoACANwSQixl4juaKVx
  ALAUwDtEFCqEqJRXntwSZ4wx49CnJd4WQAARPSKiNABbAPTNkmY4gJ1EFAoARBSVV4ZKJUDm3CfO
  GGOG0ieIuwAI1nofkj5NW30AjkKIU0KIS0KIkXllqFQCanPuTmGMMUPl251SgHxaA3gTQDkA54UQ
  54koMGtChUKBu3eB5OBg3OhwA637tTZSERhjrGTw9PSEp6enXmkFEeWdQIh2ABRE5J7+fhoAIqK5
  WmmmAihLRD+nv/8XwGEi2pklLyIi7N4NfHi5Jm5/dxau5V0LsGmMMVb6CCFARCKnefp0p1wCUFcI
  4SqEsAQwFMC+LGn2AugkhDAXQtgAeAPA7dwyTEsDVGbcncIYY4bKtzuFiFRCiC8AHIUM+quI6LYQ
  YpycTSuJ6I4Q4ggAPwAqACuJ6FZueSqVgJqfds8YYwbTq0+ciDwANMgybUWW9/MBzNcnP6USIKGC
  uTDXt5yMMcZyYLorNoUK5mYcxBljzBCmC+JQckucMcYMZKK7GBJIqLklzhhjBjJNEFeqARIwEyZZ
  PWOMlRgmiaKpShXMwK1wxhgzlIla4ioIDuKMMWYwbokzxlgxZrIgzi1xxhgznMm6U8x4eCFjjBnM
  dEGcW+KMMWYw0wRxFQdxxhgzBu5OYYyxYsx0LXEO4owxZjDuTmGMsWKMu1MYY6wYM81dDFV8L3HG
  GDMGkwRxFXFLnDHGjMF0QZz7xBljzGAmCeJq4u4UxhgzBtO0xNXcncIYY8bAfeKMMVaMcXcKY4wV
  Y9wSZ4yxYkyvIC6EcBdC3BFC3BNCTM1hflchxHMhxNX0vx/zyo9b4owxZhxl8ksghDADsARADwBh
  AC4JIfYS0Z0sSc8QUR99VsotccYYMw59WuJtAQQQ0SMiSgOwBUDfHNIJfVdK4JY4Y4wZgz5B3AVA
  sNb7kPRpWbUXQlwTQhwUQjTOK0MVlDAX+f4IYIwxlg9jRdIrAGoSUZIQ4l0AewDUzymhQqFAiN89
  IDoInq080a1bNyMVgTHGSgZPT094enrqlVYQUd4JhGgHQEFE7unvpwEgIpqbxzIPALxGRDFZphMR
  ofWwvbBstwo+X+3Tq5CMMVaaCSFARDl2WevTnXIJQF0hhKsQwhLAUAA60VcIUVXrdVvIg0MMcqHi
  0SmMMWYU+XanEJFKCPEFgKOQQX8VEd0WQoyTs2klgIFCiM8BpAF4AWBIXnmqoYK5GQdxxhgzlF59
  4kTkAaBBlmkrtF4vBbBU35XyOHHGGDMO01x2DxXMuCXOGGMG43unMMZYMWayljj3iTPGmOFM1hIv
  wy1xxhgzGLfEGWOsGDNJEOd7pzDGmHGY7sQmt8QZY8xg3J3CGGPFGAdxxhgrxkzWJ86jUxhjzHDc
  EmeMsWLMdC1xDuKMMWYwbokzxlgxxi1xxhgrxrglzhhjxRi3xBljrBgz3WX35hzEGWPMUKYJ4oJb
  4owxZgwmCuJKWJjp9WQ4xhhjeTDZic0y3J3CGGMG4xObjDFWjJmsT5xPbDLGmOG4Jc4YY8WYXkFc
  COEuhLgjhLgnhJiaR7o2Qog0IUT/vPIjoYKFOZ/YZIwxQ+UbxIUQZgCWAOgJoAmAYUKIhrmk+w3A
  kfzyJKHkIM4YY0agT0u8LYAAInpERGkAtgDom0O6iQB2AHiaX4YklNydwhhjRqBPEHcBEKz1PiR9
  WgYhRDUA/YhoOQCRX4bcEmeMMeMwViRdCEC7rzzXQK5QKKC+cRN7/9mBGvGV0K1bNyMVgTHGSgZP
  T094enrqlVYQUd4JhGgHQEFE7unvpwEgIpqrlea+5iWASgASAXxGRPuy5EVEBPORvbBtyngMaNZL
  z01ijLHSSwgBIsqxcaxPS/wSgLpCCFcATwAMBTBMOwER1dZa2RoA+7MGcJ30QgnLMtydwhhjhso3
  khKRSgjxBYCjkH3oq4jothBinJxNK7Muku9azbhPnDHGjEGvSEpEHgAaZJm2Ipe0Y/PNj09sMsaY
  UZjkik2YcXcKY4wZQ5EHcSJwdwpjjBlJkQdxtRqAmRJl+H7ijDFmMA7ijDFWjJkkiAtzDuKMMWYM
  3BJnjLFizGRB3FzwDbAYY8xQJgriKm6JM8aYEZhsiCEHccYYMxz3iTPGWDHGQZwxxoox0wRxoRvE
  a9WqBSFEifirVatWUVcpY6wUK/LmcE4t8UePHiG/+5oXF0Lk+2AjxhgzGpO0xIm7UxhjzCi4T5wx
  xoqxIg/iKhXJi334afeMMWawIg/iSpUaUJvBTJjmVuaMMVaSFHkkTVUpAeKuFMYYM4YiD+JpSiUE
  Fa+ulGfPnuGDDz6Ara0t3NzcsHnzZlMXiTHGAJhgiGGaSgmoi1dLfMKECShbtiwiIyNx9epVvP/+
  +2jZsiUaNWpk6qIxxkq5om+Jq1QQxag7JSkpCbt27cKsWbNgbW2Njh07om/fvli/fr2pi8YYY6YI
  4spiFcTv3bsHCwsL1KlTJ2NaixYtcPPmTROWijHGJJN0pxQmiBvjQsjCXBSakJAAe3t7nWn29vaI
  j483vECMMWYgvVriQgh3IcQdIcQ9IcTUHOb3EUJcF0L4CiEuCyHezC2vwgZxIsP/CsPW1hZxcXE6
  02JjY2FnZ1e4DBljzIjyDeJCCDMASwD0BNAEwDAhRMMsyY4TUQsiagXgIwArc8svrZgNMaxfvz6U
  SiWCgoIypl2/fh1NmjQxYakYY0zSpyXeFkAAET0iojQAWwD01U5ARElab20BROWWWXHrE7exsUH/
  /v3x008/ISkpCV5eXti/fz9Gjhxp6qIxxpheQdwFQLDW+5D0aTqEEP2EELcBHALwZW6ZpamUMCtG
  QRwAli5diqSkJFSpUgUjRozA33//zcMLGWOvBKNFUyLaA2CPEKITgPUAGuSUbvPqxVDei4ZCoUC3
  bt3QrVs3YxXhpalQoQJ2795t6mIwxkoJT09PeHp66pVW5HcfbyFEOwAKInJPfz8NABHR3DyWCQLQ
  loiis0yndUev4PPDnyDxj6va00vU/cRLyrYwxl4N6XElxzF6+nSnXAJQVwjhKoSwBDAUwL4sK6ij
  9bo1AGQN4BrFrU+cMcZeZflGUyJSCSG+AHAUMuivIqLbQohxcjatBDBACDEKQCqARABDcstPqeYg
  zhhjxqJXNCUiD2Tp4yaiFVqv5wGYp09eSrUSZiheN8BijLFXVdHfT1ytgij6C0UZY6xEMsFDIbg7
  hTHGjKXIg/jqBz/BjCyKerWMMVYiFXmTeEj1qTh8Ksch5IwxxgqoyFvi7Sv0g10KX+3IGGPGUORB
  XK0GzIrZM5KXLl2KNm3aoGzZshg7dqypi8MYYxmKvDslJaX4BXEXFxdMnz4dR44cwYsXL0xdHMYY
  y1DkQfzgQaBz56Jeq2H69esHALh06RJCQ0NNXBrGGMtU5EF882bA37+o18oYYyVTkQfxsDDA1rbg
  y4mfDX8+G83gG1MxxkqWIg/ihQngAAdgxhjLSTE7xcgYY0wbB3E9qFQqJCcnQ6VSQalUIiUlBSqV
  ytTFYowxDuL6mDVrFmxsbDB37lxs3LgRNjY2mD17tqmLxRhj+T/Zx6grE4JyWl9JehpOSdoWxtir
  wdAn+zDGGHtFcRBnjLFijIM4Y4wVYxzEGWOsGOMgzhhjxRgHccYYK8ZeiYddurq6QgjD743yKnB1
  dXTDg+sAAAQxSURBVDV1ERhjpYhe48SFEO4AFkK23FcR0dws84cDmJr+Nh7A50R0I4d8chwnzhhj
  LHcGjRMXQpgBWAKgJ4AmAIYJIRpmSXYfQBciagFgFoB/DCtyyefp6WnqIrwyuC4ycV3o4vrInz59
  4m0BBBDRIyJKA7AFQF/tBETkQ0Sx6W99ALgYt5glD++cmbguMnFd6OL6yJ8+QdwFQLDW+xDkHaQ/
  AXDYkEIxxhjTj1FPbAohugP4CEAnY+bLGGMsZ/me2BRCtAOgICL39PfTAFAOJzebA9gJwJ2IgnLJ
  i89qMsZYIeR2YlOflvglAHWFEK4AngAYCmCYdgIhRE3IAD4ytwCeVyEYY4wVTr5BnIhUQogvABxF
  5hDD20KIcXI2rQQwHYAjgGVCDvhOI6K2L7PgjDHGivh+4owxxoyryC67F0K4CyHuCCHuCSGm5r9E
  8SaEWCWEiBBC+GlNqyCEOCqEuCuEOCKEcNCa970QIkAIcVsI8Y5pSv1yCCGqCyFOCiFuCiFuCCG+
  TJ9e6upDCGElhLgghPBNr49f06eXuroA5HUoQoirQoh96e9LZT0YhIhe+h/kwSIQgCsACwDXADQs
  inWb6g9yhE5LAH5a0+YCmJL+eiqA39JfNwbgC9m9VSu9roSpt8GIdeEEoGX6a1sAdwE0LMX1YZP+
  3xzyuoqOpbguvgawAcC+9Pelsh4M+Suqlni+FwyVNETkBeBZlsl9AaxLf70OQL/0130AbCEiJRE9
  BBAAWWclAhGFE9G19NcJAG4DqI7SWx9J6S+tIBs4z1AK60IIUR3AewD+1Zpc6urBUEUVxAt6wVBJ
  VYWIIgAZ2ABUSZ+etX5CUULrRwhRC/IXig+AqqWxPtK7EHwBhAPwJKJbKJ118SeA7wBon5grjfVg
  EL4VrWmVqrPKQghbADsAfJXeIs+6/aWiPohITUStIH+NdBZCdEMpqwshxPsAItJ/oeU19LhE14Mx
  FFUQDwVQU+t99fRppU2EEKIqAAghnAA8TZ8eCqCGVroSVz9CiDKQAXw9Ee1Nn1xq6wMAiCgOwCEA
  r6P01UVHAH2EEPcBbAbwphBiPYDwUlYPBiuqIJ5xwZAQwhLygqF9RbRuUxLQbWXsAzAm/fVoAHu1
  pg8VQlgKIdwA1AVwsagKWURWA7hFRH9pTSt19SGEqKQZcSGEsAbwNuQJu1JVF0T0PyKqSUS1IePB
  SSIaCWA/SlE9GEVRnUEF4A45KiEAwDRTn9Etgu3dBCAMQAqAx5D3lKkA4Hh6PRwFUF4r/feQZ9xv
  A3jH1OU3cl10BKCCHJXkC+Bq+v7gWNrqA0Cz9O33BXAdwLfp00tdXWhtX1dkjk4ptfVQ2D++2Icx
  xooxPrHJGGPFGAdxxhgrxjiIM8ZYMcZBnDHGijEO4owxVoxxEGeMsWKMgzhjjBVjHMQZY6wY+38Z
  uUqAGdlr2wAAAABJRU5ErkJggg==
  ",
        "text/plain": [
         "<matplotlib.figure.Figure at 0x7fc252bb85d0>"
        ]
       },
       "metadata": {},
       "output_type": "display_data"
      }
     ],
     "source": [
      "data=shelve.open(\"scores/RAW_ASR_TRAIN.shelve\")
  ",
      "scores={}
  ",
      "#del scores_ordoned
  ",
      "for key,table in data.iteritems():
  ",
      "    scores[key]=round(table[1][np.argmax([x[0] for x in table[0]])][0],3)
  ",
      "    print key,scores[key]
  ",
      "    pandas.DataFrame(zip([x[0] for x in data[key][0] ],[x[0] for x in data[key][1] ])).plot()
  ",
      "data.close()"
     ]
    },
    {
     "cell_type": "code",
     "execution_count": null,
     "metadata": {
      "collapsed": true
     },
     "outputs": [],
     "source": []
    }
   ],
   "metadata": {
    "kernelspec": {
     "display_name": "Python 2",
     "language": "python",
     "name": "python2"
    },
    "language_info": {
     "codemirror_mode": {
      "name": "ipython",
      "version": 2
     },
     "file_extension": ".py",
     "mimetype": "text/x-python",
     "name": "python",
     "nbconvert_exporter": "python",
     "pygments_lexer": "ipython2",
     "version": "2.7.10"
    }
   },
   "nbformat": 4,
   "nbformat_minor": 0
  }