Blame view

DECODA_binary_BOW_AE_REALSPE_TANH_MODELS.py 3.84 KB
b6d0165d1   Killian   Initial commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
  
  # coding: utf-8
  
  # In[2]:
  
  # Import
  import pandas
  # Alignement
  import nltk
  import codecs
  import gensim
  from scipy import sparse
  import itertools
  from sklearn.feature_extraction.text import CountVectorizer
  import scipy.sparse
  import scipy.io
  from sklearn import preprocessing
  from keras.models import Sequential
  from keras.layers.core import Dense, Dropout, Activation,AutoEncoder
  from keras.optimizers import SGD,Adam
  from keras.layers import containers
  from mlp import *
  import mlp
  import sklearn.metrics
  import shelve
  import pickle
  from utils import *
  import sys
  # In[4]:
  
  db=shelve.open("{}.shelve".format(sys.argv[2]),writeback=True)
  #['vocab', 'ASR_SPARSE', 'TRS_SPARSE', 'LABEL']
  # In[6]:
  # In[10]:
  print "making sparse data"
  sparse_corp=shelve.open("{}.shelve".format(sys.argv[1]))
  ASR_sparse=sparse_corp["ASR"]
  TRS_sparse=sparse_corp["TRS"]
  db["LABEL"] = sparse_corp["LABEL"]
  db["ASR"] = ASR_sparse
  db["TRS"] = TRS_sparse
  # In[11]:
  #z.apply(select)
  hidden_size=3096
  hidden_size2=2048
  input_activation="relu"
  out_activation="relu"
  loss="mse"
  epochs=1000
  batch=64
  patience=40
  
  print "gogo autoencoder ASR"
  sgd = 'adam'#SGD(lr=0.0001)#( momentum=0.9, nesterov=True)
  autoencode=Sequential()
  autoencode.add(Dense(hidden_size,input_dim=ASR_sparse["TRAIN"].shape[1],init='glorot_uniform',activation=input_activation))
  autoencode.add(Dense(hidden_size2,input_dim=hidden_size,init='glorot_uniform',activation=input_activation))
  autoencode.add(Dense(hidden_size,input_dim=hidden_size2,init="glorot_uniform",activation=out_activation))
  autoencode.add(Dense(ASR_sparse["DEV"].todense().shape[1],input_dim=hidden_size,init="glorot_uniform",activation=out_activation))
  
  #autoencode.compile(optimizer=sgd,loss=loss)
  
  autoencode.compile(optimizer=sgd,loss=loss)
  
  
  # In[ ]:
  
  autoencode.fit(ASR_sparse["TRAIN"].todense(),TRS_sparse["TRAIN"].todense(),nb_epoch=epochs,batch_size=batch,
                 callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss',
                                                          patience=patience, verbose=0)],           validation_data=(ASR_sparse["DEV"].todense(),TRS_sparse["DEV"].todense()),verbose=1)
  
  
  # In[ ]:
  
  auto_decoder=Sequential()
  auto_decoder.add(Dense(hidden_size,input_dim=ASR_sparse["DEV"].todense().shape[1],init='uniform',activation=input_activation,weights=autoencode.get_weights()[:2]))
  auto_decoder.add(Dense(hidden_size2,input_dim=hidden_size,init='glorot_uniform',activation=input_activation,weights=autoencode.get_weights()[2:4]))
  auto_decoder.add(Dense(hidden_size,input_dim=hidden_size2,init='glorot_uniform',activation=input_activation,weights=autoencode.get_weights()[4:6]))
  auto_decoder.compile(optimizer=sgd,loss=loss)
  
  
  # In[77]:
  
  #autoencode.predict(ASR_sparse["DEV"].todense())
  
  
  # In[ ]:
  
  print "auto encoder et auto decoder asr okay"
  
  ASR_sparse_AE={}
  for i in ASR_sparse.keys():
      ASR_sparse_AE[i]=auto_decoder.predict(ASR_sparse[i].todense())
      #TRS_sparse[i]=dico.transform(TRS[i][2])
  
  db["ASR_AE_H2"]=ASR_sparse_AE
  
  
  auto_decoder=Sequential()
  auto_decoder.add(Dense(hidden_size,input_dim=ASR_sparse["DEV"].todense().shape[1],init='uniform',activation=input_activation,weights=autoencode.get_weights()[:2]))
  auto_decoder.add(Dense(hidden_size2,input_dim=hidden_size,init='glorot_uniform',activation=input_activation,weights=autoencode.get_weights()[2:4]))
  auto_decoder.compile(optimizer=sgd,loss=loss)
  
  ASR_sparse_AE_H1={}
  for i in ASR_sparse.keys():
      ASR_sparse_AE_H1[i]=auto_decoder.predict(ASR_sparse[i].todense())
      #TRS_sparse[i]=dico.transform(TRS[i][2])
  
  db["ASR_AE_H1"]=ASR_sparse_AE_H1
  
  
  
  db.sync()
  
  
  
  
  # In[261]:
  
  #pred_dev= model_TRS_AE.predict(TRS_sparse_AE["DEV"],batch_size=1)
  
  TRS_AE={}
  ASR_AE={}
  for i in TRS_sparse.keys():
      TRS_AE[i]=autoencode.predict(TRS_sparse[i].todense())
      ASR_AE[i]=autoencode.predict(ASR_sparse[i].todense())
  
  
  db["TRS_AE_OUT"]=TRS_AE
  db["ASR_AE_OUT"]=ASR_AE
  
  # # Transfert de couche
  # ICI
  db.sync()
  db.close()