Blame view
DECODA_binary_BOW_AE_REALSPE_TANH_MODELS.py
3.84 KB
b6d0165d1 Initial commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# coding: utf-8 # In[2]: # Import import pandas # Alignement import nltk import codecs import gensim from scipy import sparse import itertools from sklearn.feature_extraction.text import CountVectorizer import scipy.sparse import scipy.io from sklearn import preprocessing from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation,AutoEncoder from keras.optimizers import SGD,Adam from keras.layers import containers from mlp import * import mlp import sklearn.metrics import shelve import pickle from utils import * import sys # In[4]: db=shelve.open("{}.shelve".format(sys.argv[2]),writeback=True) #['vocab', 'ASR_SPARSE', 'TRS_SPARSE', 'LABEL'] # In[6]: # In[10]: print "making sparse data" sparse_corp=shelve.open("{}.shelve".format(sys.argv[1])) ASR_sparse=sparse_corp["ASR"] TRS_sparse=sparse_corp["TRS"] db["LABEL"] = sparse_corp["LABEL"] db["ASR"] = ASR_sparse db["TRS"] = TRS_sparse # In[11]: #z.apply(select) hidden_size=3096 hidden_size2=2048 input_activation="relu" out_activation="relu" loss="mse" epochs=1000 batch=64 patience=40 print "gogo autoencoder ASR" sgd = 'adam'#SGD(lr=0.0001)#( momentum=0.9, nesterov=True) autoencode=Sequential() autoencode.add(Dense(hidden_size,input_dim=ASR_sparse["TRAIN"].shape[1],init='glorot_uniform',activation=input_activation)) autoencode.add(Dense(hidden_size2,input_dim=hidden_size,init='glorot_uniform',activation=input_activation)) autoencode.add(Dense(hidden_size,input_dim=hidden_size2,init="glorot_uniform",activation=out_activation)) autoencode.add(Dense(ASR_sparse["DEV"].todense().shape[1],input_dim=hidden_size,init="glorot_uniform",activation=out_activation)) #autoencode.compile(optimizer=sgd,loss=loss) autoencode.compile(optimizer=sgd,loss=loss) # In[ ]: autoencode.fit(ASR_sparse["TRAIN"].todense(),TRS_sparse["TRAIN"].todense(),nb_epoch=epochs,batch_size=batch, callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=0)], validation_data=(ASR_sparse["DEV"].todense(),TRS_sparse["DEV"].todense()),verbose=1) # In[ ]: auto_decoder=Sequential() auto_decoder.add(Dense(hidden_size,input_dim=ASR_sparse["DEV"].todense().shape[1],init='uniform',activation=input_activation,weights=autoencode.get_weights()[:2])) auto_decoder.add(Dense(hidden_size2,input_dim=hidden_size,init='glorot_uniform',activation=input_activation,weights=autoencode.get_weights()[2:4])) auto_decoder.add(Dense(hidden_size,input_dim=hidden_size2,init='glorot_uniform',activation=input_activation,weights=autoencode.get_weights()[4:6])) auto_decoder.compile(optimizer=sgd,loss=loss) # In[77]: #autoencode.predict(ASR_sparse["DEV"].todense()) # In[ ]: print "auto encoder et auto decoder asr okay" ASR_sparse_AE={} for i in ASR_sparse.keys(): ASR_sparse_AE[i]=auto_decoder.predict(ASR_sparse[i].todense()) #TRS_sparse[i]=dico.transform(TRS[i][2]) db["ASR_AE_H2"]=ASR_sparse_AE auto_decoder=Sequential() auto_decoder.add(Dense(hidden_size,input_dim=ASR_sparse["DEV"].todense().shape[1],init='uniform',activation=input_activation,weights=autoencode.get_weights()[:2])) auto_decoder.add(Dense(hidden_size2,input_dim=hidden_size,init='glorot_uniform',activation=input_activation,weights=autoencode.get_weights()[2:4])) auto_decoder.compile(optimizer=sgd,loss=loss) ASR_sparse_AE_H1={} for i in ASR_sparse.keys(): ASR_sparse_AE_H1[i]=auto_decoder.predict(ASR_sparse[i].todense()) #TRS_sparse[i]=dico.transform(TRS[i][2]) db["ASR_AE_H1"]=ASR_sparse_AE_H1 db.sync() # In[261]: #pred_dev= model_TRS_AE.predict(TRS_sparse_AE["DEV"],batch_size=1) TRS_AE={} ASR_AE={} for i in TRS_sparse.keys(): TRS_AE[i]=autoencode.predict(TRS_sparse[i].todense()) ASR_AE[i]=autoencode.predict(ASR_sparse[i].todense()) db["TRS_AE_OUT"]=TRS_AE db["ASR_AE_OUT"]=ASR_AE # # Transfert de couche # ICI db.sync() db.close() |