Blame view

DECODA_binary_BOW_MINIAE_REAL_SPE.py 3.82 KB
b6d0165d1   Killian   Initial commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
  
  # coding: utf-8
  
  # In[2]:
  
  # Import
  import pandas
  # Alignement
  import nltk
  import codecs
  import gensim
  from scipy import sparse
  import itertools
  from sklearn.feature_extraction.text import CountVectorizer
  import scipy.sparse
  import scipy.io
  from sklearn import preprocessing
  from keras.models import Sequential
  from keras.layers.core import Dense, Dropout, Activation,AutoEncoder
  from keras.optimizers import SGD,Adam
  from keras.layers import containers
  from mlp import *
  import mlp
  import sklearn.metrics
  import shelve
  import pickle
  from utils import *
  import sys
  import json
  # In[4]:
  
  db=shelve.open("{}.shelve".format(sys.argv[2]),writeback=True)
  #['vocab', 'ASR_SPARSE', 'TRS_SPARSE', 'LABEL']
  # In[6]:
  # In[10]:
  print "making sparse data"
  sparse_corp=shelve.open("{}.shelve".format(sys.argv[1]))
  do_do=False
  try:
      do_do = True if sys.argv[3] == 1 else False
      hidden_size =[int(x) for x in sys.argv[4].split("_")] if sys.argv[4] else [100]
  except IndexError :
      do_do = False
      hidden_size=[100]
  
  ASR_sparse=sparse_corp["ASR"]
  TRS_sparse=sparse_corp["TRS"]
  db["LABEL"] = sparse_corp["LABEL"]
  db["ASR"] = ASR_sparse
  db["TRS"] = TRS_sparse
  # In[11]:
  #z.apply(select)
  input_activation="tanh"
  out_activation="tanh"
  loss="mse"
  epochs=500
  batch=1
  patience=60
  
  
  sgd = Adam(lr=0.0001)#SGD(lr=0.0001)#( momentum=0.9, nesterov=True)
  
  try :
      sgd_repr=sgd.get_config()
  except AttributeError :
      sgd_repr=sgd
  json.dump({ "h1" : hidden_size,
  	"inside_activation" : input_activation,
  	"out_activation" : out_activation,
          "do_dropout": do_do,
  	"loss" : loss,
  	"epochs" : epochs ,
  	"batch_size" : batch,
  	"patience" : patience,
          "sgd" : sgd_repr},
  	open("{}.json".format(sys.argv[2]),"w"),
  	indent=4)
  
  
  
  
  print "gogo autoencoder ASR"
  done_do=False
  autoencode=Sequential()
  previous = ASR_sparse["TRAIN"].shape[1]
  for hs in hidden_size:
      autoencode.add(Dense(hs,input_dim=previous,init='glorot_uniform',activation=input_activation))
      if do_do and not done_do:
          autoencode.add(Dropout(0.5))
          done_do=True
      previous = hs
  
  autoencode.add(Dense(ASR_sparse["DEV"].todense().shape[1],input_dim=previous,init="glorot_uniform",activation=out_activation))
  
  #autoencode.compile(optimizer=sgd,loss=loss)
  
  autoencode.compile(optimizer=sgd,loss=loss)
  
  
  # In[ ]:
  
  autoencode.fit(ASR_sparse["TRAIN"].todense(),TRS_sparse["TRAIN"].todense(),nb_epoch=epochs,batch_size=batch,
                 callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss',
                                                          patience=patience, verbose=0)],           validation_data=(ASR_sparse["DEV"].todense(),TRS_sparse["DEV"].todense()),verbose=1)
  
  
  # In[ ]:
  
  ASR_sparse_AE_H={}
  
  previous=[ASR_sparse["DEV"].todense().shape[1]]
  for i,size in enumerate(hidden_size):
      print previous,size
      print "i",i,range(i)
      auto_decoder=Sequential()
      for j in range(i):
          print "j",j
          auto_decoder.add(Dense(previous[j+1],input_dim=previous[j],init='glorot_uniform',activation=input_activation,weights=autoencode.get_weights()[j*2:j*2+2]))
      print "i",i,i*2,i*2+2
  
      auto_decoder.add(Dense(size,input_dim=previous[-1],init="glorot_uniform",activation=input_activation,weights=autoencode.get_weights()[i*2:i*2+2]))
      auto_decoder.compile(optimizer=sgd,loss=loss)
      previous.append(size)
      ASR_sparse_AE_H["H"+str(i)]={}
      for key in ASR_sparse.keys():
          ASR_sparse_AE_H["H"+str(i)][key]=auto_decoder.predict(ASR_sparse[key].todense())
  
      db["ASR_AE_H"+str(i)]=ASR_sparse_AE_H["H"+str(i)]
      del auto_decoder
  
  
  
  db.sync()
  
  
  
  
  # In[261]:
  
  #pred_dev= model_TRS_AE.predict(TRS_sparse_AE["DEV"],batch_size=1)
  
  TRS_AE={}
  ASR_AE={}
  for i in TRS_sparse.keys():
      TRS_AE[i]=autoencode.predict(TRS_sparse[i].todense())
      ASR_AE[i]=autoencode.predict(ASR_sparse[i].todense())
  
  
  db["TRS_AE_OUT"]=TRS_AE
  db["ASR_AE_OUT"]=ASR_AE
  
  # # Transfert de couche
  # ICI
  db.sync()
  db.close()