Blame view

LDA/02b-lda_order.py 5.35 KB
b6d0165d1   Killian   Initial commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
  import gensim
  import os
  import sys
  import pickle
  from gensim.models.ldamodel import  LdaModel
  from gensim.models.ldamulticore import LdaMulticore
  from collections import Counter
  import numpy as np
  import codecs
  import shelve
  import logging
  import dill
  from tinydb import TinyDB, where, Query
  import time
  from joblib import Parallel, delayed
  
  def calc_perp(models,train):
  
  
      stop_words=models[1]
      name = models[0]
  
      logging.warning(" go {} ".format(name))
      logging.warning("TRS  to be done")
      entry = Query()
      value=db.search(entry.name == name)
      if len(value) > 0 :
          logging.warning("{} already done".format(name))
          return 
  
      dev_trs=[ [ (x,y) for x,y in Counter(z).items() if x not in stop_words] for z in train["TRS_wid"]["DEV"]]
      lda_trs = models[2]
      perp_trs = lda_trs.log_perplexity(dev_trs)
  
      logging.warning("ASR  to be done")
      dev_asr = [ [ (x,y) for x,y in Counter(z).items() if x not in stop_words] for z in train["ASR_wid"]["DEV"]]
      lda_asr = models[5]
      perp_asr = lda_asr.log_perplexity(dev_asr)
      logging.warning("ASR  saving")
      res_dict = {"name" : name, "asr" : perp_asr, "trs" : perp_trs }
      return res_dict
  
  
  
  
  def train_lda(out_dir,train,size,it,sw_size,alpha,eta,passes,chunk):
      name = "s{}_it{}_sw{}_a{}_e{}_p{}_c{}".format(size,it,sw_size,alpha,eta,passes,chunk)
      logging.warning(name)
      deep_out_dir = out_dir+"/"+name
      if os.path.isdir(deep_out_dir):
          logging.error(name+" already done")
          return 
      logging.warning(name+" to be done")
      asr_count=Counter([ x for y in train["ASR_wid"]["TRAIN"] for x in y])
      trs_count=Counter([ x for y in train["TRS_wid"]["TRAIN"] for x in y])
      asr_sw = [ x[0] for x in asr_count.most_common(sw_size) ]
      trs_sw = [ x[0] for x in trs_count.most_common(sw_size) ]
      stop_words=set(asr_sw) | set(trs_sw)
  
      logging.warning("TRS  to be done")
  
      lda_trs = LdaModel(corpus=[ [ (x,y) for x,y in Counter(z).items() if x not in stop_words] for z in train["TRS_wid"]["TRAIN"]], id2word=train["vocab"], num_topics=int(size), chunksize=chunk,iterations=it,alpha=alpha,eta=eta,passes=passes)
  
      logging.warning("ASR  to be done")
      lda_asr = LdaModel(corpus=[ [ (x,y) for x,y in Counter(z).items() if x not in stop_words] for z in train["ASR_wid"]["TRAIN"]], id2word=train["vocab"], num_topics=int(size), chunksize=chunk,iterations=it,alpha=alpha,eta=eta,passes=passes)
  
      dico = train["vocab"]
      word_list =  [ dico[x] for x in range(len(train["vocab"]))]
      asr_probs = []
      for line in lda_asr.expElogbeta:
          nline = line / np.sum(line)
          asr_probs.append([ str(x) for x in nline])
      trs_probs = []
      for line in lda_trs.expElogbeta:
          nline = line / np.sum(line)
          trs_probs.append([str(x) for x in nline])
  
      K = lda_asr.num_topics
      topicWordProbMat_asr = lda_asr.print_topics(K,10)
  
      K = lda_trs.num_topics
      topicWordProbMat_trs = lda_trs.print_topics(K,10)
      os.mkdir(deep_out_dir)
      dill.dump([x for x in stop_words],open(deep_out_dir+"/stopwords.dill","w"))
      lda_asr.save(deep_out_dir+"/lda_asr.model")
      lda_trs.save(deep_out_dir+"/lda_trs.model")
      dill.dump([x for x in asr_probs],open(deep_out_dir+"/lda_asr_probs.dill","w"))
      dill.dump([x for x in trs_probs],open(deep_out_dir+"/lda_trs_probs.dill","w"))
  
      return [name, stop_words, lda_asr , asr_probs , topicWordProbMat_asr, lda_trs, trs_probs, topicWordProbMat_trs]
  
  def train_one(name,train,s,i,sw,a,e,p,c):
      st=time.time()
      logging.warning(" ; ".join([str(x) for x in [s,i,sw,a,e,p,c]]))
      models = train_lda(name,train,s,i,sw,a,e,p,c)
      if models:
          m = calc_perp(models,train)
          #dill.dump(models,open("{}/{}.dill".format(name,models[0]),"wb"))
      else : 
          m = None
      e = time.time()
      logging.warning("fin en : {}".format(e-st))
      return m
  
  
  
  
  if __name__ == "__main__": 
      logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.WARNING)
  
      input_shelve = sys.argv[1]
      db_path = sys.argv[2]
      size = [ int(x) for x in sys.argv[3].split("_")]
      workers = int(sys.argv[4])
      name = sys.argv[5]
      it = [ int(x) for x in sys.argv[6].split("_")]
      sw_size = [ int(x) for x in sys.argv[7].split("_")]
      if sys.argv[8] != "None" :
          alpha = [ "symmetric", "auto" ] + [ float(x) for x in sys.argv[8].split("_")]
          eta = ["auto"] + [ float(x) for x in sys.argv[9].split("_")]
      else :
          alpha = ["symmetric"]
          eta = ["auto"]
      passes = [ int(x) for x in sys.argv[10].split("_")]
      chunk = [ int(x) for x in sys.argv[11].split("_")]
  
      #train=pickle.load(open("{}/newsgroup_bow_train.pk".format(input_dir)))
      train = shelve.open(input_shelve)
      try :
          os.mkdir(name)
      except :
          logging.warning(" folder already existe " )
      db  = TinyDB(db_path)
      nb_model = len(passes) * len(chunk) * len(it) * len(sw_size) * len(alpha) * len(eta) * len(size)
      logging.warning(" hey will train {} models ".format(nb_model))
  
      args_list=[]
      for p in passes:
          for c in chunk: 
              for i in it :
                  for sw in sw_size:
                      for a in alpha:
                          for e in eta:
                              for s in size: 
                                 args_list.append((name,train,s,i,sw,a,e,p,c))
      res_list= Parallel(n_jobs=15)(delayed(train_one)(*args) for args in args_list)
      for m in res_list :
          db.insert(m)