Blame view
LDA/04b-mini_ae.py
2.88 KB
b6d0165d1 Initial commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
# coding: utf-8 # In[2]: # Import import gensim from scipy import sparse import itertools from sklearn import preprocessing from keras.models import Sequential from keras.optimizers import SGD,Adam from mlp import * import mlp import sklearn.metrics import shelve import pickle from utils import * import sys import os import json # In[4]: sparse_model=shelve.open("{}".format(sys.argv[2])) in_dir = sys.argv[1] infer_model=shelve.open("{}/infer.shelve".format(in_dir)) #['ASR', 'TRS', 'LABEL'] # In[6]: ASR=sparse_model["ASR_wid"] TRS=sparse_model["TRS_wid"] LABEL=sparse_model["LABEL"] hidden_size=40 input_activation="tanh" out_activation="tanh" loss="mse" epochs=500 batch=1 patience=60 do_do=False sgd = Adam(lr=0.00001)#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True) try : sgd_repr=sgd.get_config()["name"] except AttributeError : sgd_repr=sgd params={ "h1" : hidden_size, "inside_activation" : input_activation, "out_activation" : out_activation, "do_dropout": do_do, "loss" : loss, "epochs" : epochs , "batch_size" : batch, "patience" : patience, "sgd" : sgd_repr} name = "_".join([ str(x) for x in params.values()]) try: os.mkdir("{}/{}".format(in_dir,name)) except: pass db = shelve.open("{}/{}/ae_model.shelve".format(in_dir,name),writeback=True) db["params"] = params db["LABEL"]=LABEL # json.dump(params, open("{}/{}/ae_model.json".format(in_dir,name),"w"), indent=4) keys = ["ASR","TRS"] mlp_h = [ 40 , 25 , 40] mlp_loss ="categorical_crossentropy" mlp_dropouts = [0,0,0,0] mlp_sgd = Adam(0.0001) mlp_epochs = 200 mlp_batch_size = 8 db["AE"] = {} for mod in keys : res=train_ae(infer_model["LDA"][mod]["TRAIN"],infer_model["LDA"][mod]["DEV"],infer_model["LDA"][mod]["TEST"],[params["h1"]],patience = params["patience"],sgd=sgd,in_activation="tanh",out_activation="tanh",loss=loss,epochs=epochs,batch_size=batch,verbose=0) mlp_res_list=[] for layer in res : mlp_res_list.append(train_mlp(layer[0],LABEL["TRAIN"],layer[1],LABEL["DEV"],layer[2],LABEL["TEST"],mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,sgd=mlp_sgd,epochs=mlp_epochs,batch_size=mlp_batch_size,fit_verbose=0)) db["AE"][mod]=mlp_res_list mod = "ASR" mod2= "TRS" mlp_res_list=[] res = train_ae(infer_model["LDA"][mod]["TRAIN"],infer_model["LDA"][mod]["DEV"],infer_model["LDA"][mod]["TEST"],[params["h1"]],dropouts=[0],patience = params["patience"],sgd=sgd,in_activation="tanh",out_activation="tanh",loss=loss,epochs=epochs,batch_size=batch,y_train=infer_model["LDA"][mod]["TRAIN"],y_dev=infer_model["LDA"][mod2]["DEV"],y_test=infer_model["LDA"][mod2]["TEST"]) for layer in res : mlp_res_list.append(train_mlp(layer[0],LABEL["TRAIN"],layer[1],LABEL["DEV"],layer[2],LABEL["TEST"],mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,sgd=mlp_sgd,epochs=mlp_epochs,batch_size=mlp_batch_size,fit_verbose=0)) db["AE"]["SPE"] = mlp_res_list db.close() |