Blame view

LDA/04d-mmf_dsae.py 9.11 KB
7db73861f   Killian   add vae et mmf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
  
  # coding: utf-8
  
  # In[2]:
  
  # Import
  import gensim
  from scipy import sparse
  import itertools
  from sklearn import preprocessing
  from keras.models import Sequential
  from keras.optimizers import SGD,Adam
  from mlp import *
  import mlp
  import sklearn.metrics
  import shelve
  import pickle
e5108393c   Killian   replace du mlp.p...
18

7db73861f   Killian   add vae et mmf
19
20
21
22
23
24
25
26
27
28
  from utils import *
  import sys
  import os
  import json
  # In[4]:
  
  infer_model=shelve.open("{}".format(sys.argv[2]))
  in_dir = sys.argv[1]
  #['ASR', 'TRS', 'LABEL']
  # In[6]:
2af8e57f4   Killian   change all
29
30
31
32
  if len(sys.argv) > 4 :
      features_key = sys.argv[4]
  else :
      features_key = "LDA"
7db73861f   Killian   add vae et mmf
33

e5108393c   Killian   replace du mlp.p...
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
  json_conf =json.load(open(sys.argv[3]))
  
  dsae_conf = json_conf["dsae"]
  
  hidden_size= dsae_conf["hidden_size"]
  input_activation=dsae_conf["input_activation"]
  output_activation=dsae_conf["output_activation"]
  loss=dsae_conf["loss"]
  epochs=dsae_conf["epochs"]
  batch_size=dsae_conf["batch"]
  patience=dsae_conf["patience"]
  do_do=dsae_conf["do"]
  try:
      k = dsae_conf["sgd"]
      if dsae_conf["sgd"]["name"] == "adam":
          sgd = Adam(lr=dsae_conf["sgd"]["lr"])#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True)
      elif dsae_conf["sgd"]["name"] == "sgd":
          sgd = SGD(lr=dsae_conf["sgd"]["lr"])
  except: 
      sgd = dsae_conf["sgd"]
  
  trans_conf = json_conf["dsae"]["transform"]
  trans_hidden_size=trans_conf["hidden_size"]
  trans_input_activation=trans_conf["input_activation"]
  trans_output_activation=trans_conf["output_activation"]
  trans_loss=trans_conf["loss"]
  trans_epochs=trans_conf["epochs"]
  trans_batch_size=trans_conf["batch"]
  trans_patience=trans_conf["patience"]
  trans_do=trans_conf["do"]
  try:
      k = trans_conf["sgd"]
      if trans_conf["sgd"]["name"] == "adam":
          trans_sgd = Adam(lr=trans_conf["sgd"]["lr"])#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True)
      elif trans_conf["sgd"]["name"] == "sgd":
          trans_sgd = SGD(lr=trans_conf["sgd"]["lr"])
  except e : 
      trans_sgd = trans_conf["sgd"]
  
  
  mlp_conf = json_conf["mlp"]
  mlp_h = mlp_conf["hidden_size"]
  mlp_loss = mlp_conf["loss"]
  mlp_dropouts = mlp_conf["do"]
  mlp_epochs = mlp_conf["epochs"]
  mlp_batch_size = mlp_conf["batch"]
  mlp_input_activation=mlp_conf["input_activation"]
  mlp_output_activation=mlp_conf["output_activation"]
7db73861f   Killian   add vae et mmf
82
  try:
e5108393c   Killian   replace du mlp.p...
83
84
85
86
87
88
89
90
91
92
93
94
      k = mlp_conf["sgd"]
      if mlp_conf["sgd"]["name"] == "adam":
          mlp_sgd = Adam(lr=mlp_conf["sgd"]["lr"])#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True)
      elif mlp_conf["sgd"]["name"] == "sgd":
          mlp_sgd = SGD(lr=mlp_conf["sgd"]["lr"])
  except: 
      mlp_sgd = mlp_conf["sgd"]
  
  
  name = json_conf["name"]
  try:
      os.mkdir("{}/{}".format(in_dir,name))
7db73861f   Killian   add vae et mmf
95
96
  except:
      pass
e5108393c   Killian   replace du mlp.p...
97
  db = shelve.open("{}/{}/ae_model.shelve".format(in_dir,name),writeback=True)
7db73861f   Killian   add vae et mmf
98
  #
7db73861f   Killian   add vae et mmf
99
100
101
102
103
104
105
106
107
  
  keys = ["ASR","TRS"]
  
  
  
  db["DSAE"] = {}
  
  db["DSAEFT"] = {}
  mod = "ASR"
2af8e57f4   Killian   change all
108
109
110
  res_tuple_ASR = train_ae(infer_model[features_key][mod]["TRAIN"],
                           infer_model[features_key][mod]["DEV"],
                           infer_model[features_key][mod]["TEST"],
7db73861f   Killian   add vae et mmf
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
                           hidden_size,dropouts=do_do,
                           patience = patience,sgd=sgd,
                           input_activation=input_activation,
                           output_activation=output_activation,loss=loss,epochs=epochs,
                           batch_size=batch_size,verbose=0,get_weights=True)
  mlp_res_list = []
  for layer in res_tuple_ASR[0]: 
      mlp_res_list.append(train_mlp(layer[0],infer_model['LABEL'][mod]["TRAIN"],
                                    layer[1],infer_model["LABEL"][mod]["DEV"],
                                    layer[2],infer_model["LABEL"][mod]["TEST"],
                                    mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,
                                    sgd=mlp_sgd,epochs=mlp_epochs,
                                    output_activation=mlp_output_activation,
                                    input_activation=mlp_input_activation,
                                    batch_size=mlp_batch_size,fit_verbose=0))
  
  db["DSAE"][mod] = mlp_res_list
  mod = "TRS"
2af8e57f4   Killian   change all
129
130
131
  res_tuple_TRS = train_ae(infer_model[features_key][mod]["TRAIN"],
                           infer_model[features_key][mod]["DEV"],
                           infer_model[features_key][mod]["TEST"],
7db73861f   Killian   add vae et mmf
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
                           hidden_size,dropouts=do_do,
                           sgd=sgd,input_activation=input_activation,
                           output_activation=output_activation,loss=loss,epochs=epochs,
                           batch_size=batch_size,patience=patience,
                           verbose=0,get_weights=True)
  
  mlp_res_list = []
  for layer in res_tuple_TRS[0]: 
      mlp_res_list.append(train_mlp(layer[0],infer_model['LABEL'][mod]["TRAIN"],
                                    layer[1],infer_model["LABEL"][mod]["DEV"],
                                    layer[2],infer_model["LABEL"][mod]["TEST"],
                                    mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,
                                    sgd=mlp_sgd,epochs=mlp_epochs,
                                    output_activation=mlp_output_activation,
                                    input_activation=mlp_input_activation,
                                    batch_size=mlp_batch_size,fit_verbose=0))
  
  db["DSAE"][mod] = mlp_res_list
  
  
  
  transfert = []
  
  print " get weight trans" 
e5108393c   Killian   replace du mlp.p...
156
157
  #for asr_pred, trs_pred in zip(res_tuple_ASR[0], res_tuple_TRS[0]):
   #   print "ASR", [ x.shape for x in asr_pred]
7db73861f   Killian   add vae et mmf
158

e5108393c   Killian   replace du mlp.p...
159
    #  print "TRS", [ x.shape for x in trs_pred]
7db73861f   Killian   add vae et mmf
160
161
  
  for asr_pred, trs_pred in zip(res_tuple_ASR[0], res_tuple_TRS[0]):
e5108393c   Killian   replace du mlp.p...
162
   #   print "ASR", [ x.shape for x in asr_pred]
7db73861f   Killian   add vae et mmf
163

e5108393c   Killian   replace du mlp.p...
164
165
    #  print "TRS", [ x.shape for x in trs_pred]
    #  print " TRANS SGD", trans_sgd
7db73861f   Killian   add vae et mmf
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
      transfert.append( train_ae(asr_pred[0],
                                 asr_pred[1],
                                 asr_pred[2],
                                 trans_hidden_size,
                                 dropouts=trans_do,
                                 y_train = trs_pred[0],
                                 y_dev=trs_pred[1],
                                 y_test = trs_pred[2],
                                 patience = trans_patience,sgd=trans_sgd,
                                 input_activation=trans_input_activation,
                                 output_activation=trans_output_activation,
                                 loss=trans_loss,
                                 epochs=trans_epochs,
                                 batch_size=trans_batch_size,verbose=0,get_weights=True) )
  mod = "ASR"
  mlp_res_bylvl = []
  print " MLP on transfert "
  for level, w  in transfert  :
      mlp_res_list = []
      for layer in level :
          mlp_res_list.append(train_mlp(layer[0],infer_model['LABEL'][mod]["TRAIN"],
                                        layer[1],infer_model["LABEL"][mod]["DEV"],
                                        layer[2],infer_model["LABEL"][mod]["TEST"],
                                        mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,
                                        sgd=mlp_sgd,epochs=mlp_epochs,
                                        output_activation=mlp_output_activation,
                                        input_activation=mlp_input_activation,
                                        batch_size=mlp_batch_size,fit_verbose=0))
      mlp_res_bylvl.append(mlp_res_list)
  db["DSAE"]["transfert"] = mlp_res_bylvl
  
  
  print " FT " 
  WA = res_tuple_ASR[1]
e5108393c   Killian   replace du mlp.p...
200
  #print "WA", len(WA), [ len(x) for x in WA]
7db73861f   Killian   add vae et mmf
201
  WT = res_tuple_TRS[1]
e5108393c   Killian   replace du mlp.p...
202
  #print "WT", len(WT), [ len(x) for x in WT]
7db73861f   Killian   add vae et mmf
203
  Wtr = [ x[1] for x in transfert]
e5108393c   Killian   replace du mlp.p...
204
  #print "Wtr", len(Wtr), [ len(x) for x in Wtr],[ len(x[1]) for x in Wtr]
7db73861f   Killian   add vae et mmf
205

2af8e57f4   Killian   change all
206
207
208
209
210
211
  ft_res = ft_dsae(infer_model[features_key]["ASR"]["TRAIN"],
                   infer_model[features_key]["ASR"]["DEV"],
                   infer_model[features_key]["ASR"]["TEST"],
                   y_train=infer_model[features_key]["TRS"]["TRAIN"],
                   y_dev=infer_model[features_key]["TRS"]["DEV"],
                   y_test=infer_model[features_key]["TRS"]["TEST"],
7db73861f   Killian   add vae et mmf
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
                   ae_hidden = hidden_size,
                   transfer_hidden = trans_hidden_size,
                   start_weights = WA,
                   transfer_weights = Wtr,
                   end_weights = WT,
                   input_activation = input_activation,
                   output_activation = output_activation,
                   ae_dropouts= do_do,
                   transfer_do = trans_do,
                   sgd =  sgd,
                   loss = loss ,
                   patience = patience,
                   batch_size = batch_size,
                   epochs= epochs)
  mlps_by_lvls= []
  for level  in ft_res  :
      mlp_res_list = []
      for layer in level :
          mlp_res_list.append(train_mlp(layer[0],infer_model['LABEL'][mod]["TRAIN"],
                                        layer[1],infer_model["LABEL"][mod]["DEV"],
                                        layer[2],infer_model["LABEL"][mod]["TEST"],
                                        mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,
                                        sgd=mlp_sgd,epochs=mlp_epochs,
                                        output_activation=mlp_output_activation,
                                        input_activation=mlp_input_activation,
                                        batch_size=mlp_batch_size,fit_verbose=0))
      mlps_by_lvls.append(mlp_res_list)
  
  
  db["DSAEFT"]["transfert"] = mlps_by_lvls
  
  db.close()