Blame view

LDA/mlp.py 9.78 KB
e5108393c   Killian   replace du mlp.p...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  # -*- coding: utf-8 -*-
  import keras
  import numpy as np
  #from keras.layers.core import Dense, Dropout, Activation 
  from keras.optimizers import SGD,Adam
  from keras.models import Sequential
  from keras.layers import Input, Dense, Dropout
  from keras.models import Model
  from keras.utils.layer_utils import layer_from_config
  from itertools import izip_longest
  
  import pandas 
  from collections import namedtuple
  from sklearn.metrics import accuracy_score as perf
  save_tuple= namedtuple("save_tuple",["pred_train","pred_dev","pred_test"])
  
  
  def ft_dsae(train,dev,test,
          y_train=None,y_dev=None,y_test=None,
          ae_hidden=[20],transfer_hidden=[20],
          start_weights=None,transfer_weights=None,end_weights=None,
          input_activation="tanh", output_activation="tanh",
          init="glorot_uniform",
          ae_dropouts=[None], transfer_do=[None],
          sgd="sgd", loss="mse", patience=5, verbose=0, epochs=5, batch_size=8):
  
      if not start_weights :
          start_weights = [ None ] * len(ae_hidden)
      if not transfer_weights :
          transfer_weights = [None ] * len(transfer_hidden)
      if not end_weights :
          end_weights = [ None ] * len(end_weights)
      if not transfer_do :
          transfer_do = [0] * len(transfer_hidden) 
      predict_y = True
      if  y_train is None or y_dev is None or y_test is None :
          y_train = train
          y_dev = dev
          y_test = test
          predict_y = False
      param_predict = [ train, dev, test ]
      if predict_y :
          param_predict += [ y_train, y_dev ,y_test ]
  
      pred_by_level = [] # Contient les prediction par niveaux de transfert 
      layers = [Input(shape=(train.shape[1],))]
      #for w in transfer_weights:
          #print "TW",[ [ y.shape for y in x ]  for x in w] 
      #print "SW",[ [ y.shape for y in x] for x in start_weights]
      #print "EW",[ [ y.shape for y in x ]  for x in end_weights] 
      for cpt in range(1,len(ae_hidden)):
          #print ae_hidden,cpt
          #print cpt, "before" 
          #print "before2", [ [ x.shape for x in y] for y in start_weights[:cpt] ]
          #print "before3", [ [ x.shape for x in y] for y in transfer_weights[cpt]]
          #print "before4", [ [ x.shape for x in y] for y in end_weights[cpt:]]
          sizes = ae_hidden[:cpt] + transfer_hidden + ae_hidden[cpt:]
          weights =  start_weights[:cpt] + transfer_weights[(cpt-1)] + end_weights[cpt:]
          #print "SIZES", sizes
          #print "AW",[ [ y.shape for y in x ]  for x in weights] 
          #print "WEI", len(weights) , [ len(x) for x in weights ]
          if len(ae_dropouts) == len(ae_hidden):
                  do = ae_dropouts[:cpt] + transfer_do + ae_dropouts[cpt:]
          else : 
                  do = [ 0 ] * (len(ae_hidden) + len(transfer_hidden))
          for w in weights[:-1]:
              #print "STEP", size
              layers.append(Dense(w[1].shape[0],activation=input_activation,init=init,weights=w)(layers[-1]))
              if do :
                  d = do.pop(0)
                  if d > 0 : 
                      layers.append(Dropout(d)(layers[-1]))
                 
          layers.append(Dense(y_train.shape[1],activation=output_activation)(layers[-1]))
          models = [Model(input=layers[0] , output=x) for x in layers[1:]]
          models[-1].compile(optimizer=sgd,loss=loss)
          models[-1].fit(train,y_train,nb_epoch=epochs,batch_size=batch_size,callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=0)],validation_data=(dev,dev),verbose=verbose)
          predictions = [ [x.predict(y) for y in param_predict  ] for x in models ]
          pred_by_level.append(predictions)
    
      return pred_by_level
  
  def train_mlp(x_train,y_train,x_dev,y_dev,x_test,y_test,hidden_size,input_activation="relu",hidden_activation="relu",output_activation="softmax",loss="mse",init="glorot_uniform",dropouts=None,sgd=None,epochs=1200,batch_size=16,fit_verbose=1,test_verbose=0,save_pred=False,keep_histo=False):
e5108393c   Killian   replace du mlp.p...
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
      layers = [Input(shape=(x_train.shape[1],))]
  
      for h in hidden_size:
          if dropouts:   
              d = dropouts.pop(0)
              if d > 0 :
                  layers.append(Dropout(d)(layers[-1]))
  
          layers.append(Dense(h,init=init,activation=input_activation)(layers[-1]))
              #if dropouts:
              #    drop_prob=dropouts.pop(0)
              #    if drop_prob > 0:
              #        model.add(Dropout(drop_prob))
  
          #if dropouts:
          #    drop_prob=dropouts.pop(0)
          #    if drop_prob > 0:
          #        model.add(Dropout(drop_prob))
  
          #if dropouts:
          #    model.add(Dropout(dropouts.pop(0)))
      if dropouts:   
          d = dropouts.pop(0)
          if d > 0 :
              layers.append(Dropout(d)(layers[-1]))
  
      layers.append(Dense( y_train.shape[1],activation=output_activation,init=init)(layers[-1]))
  
      model =  Model(layers[0] , layers[-1])
      if not sgd:
          sgd = SGD(lr=0.01, decay=0, momentum=0.9)
  
      model.compile(loss=loss, optimizer=sgd,metrics=['accuracy'])
  
      scores_dev=[]
      scores_test=[]
      scores_train=[]
      save=None
      for i in range(epochs):
          hist=model.fit(x_train, y_train, nb_epoch=1, batch_size=batch_size,verbose=fit_verbose,validation_data=(x_dev,y_dev))
          pred_train=model.predict(x_train)
          pred_dev=model.predict(x_dev)
          pred_test=model.predict(x_test)
  
          scores_train.append(perf(np.argmax(y_train,axis=1),np.argmax(pred_train,axis=1)))
          scores_dev.append(perf(np.argmax(y_dev,axis=1),np.argmax(pred_dev,axis=1)))
          scores_test.append(perf(np.argmax(y_test,axis=1),np.argmax(pred_test,axis=1)))
          if fit_verbose :
              print "{} {} {} {}".format(i,scores_train[-1],scores_dev[-1],scores_test[-1])
          if save is None or (len(scores_dev)>2 and scores_dev[-1] > scores_dev[-2]):
              save=save_tuple(pred_train,pred_dev,pred_test)
      arg_dev = np.argmax(scores_dev)
      best_dev=scores_dev[arg_dev]
      best_test=scores_test[arg_dev]
      max_test=np.max(scores_test)
      if fit_verbose:
          print " res : {} {} {}".format(best_dev,best_test,max_test)
  
      res=[scores_train,scores_dev,scores_test]
      if save_pred:
          res.append(save)
      if keep_histo:
          res.append(hist)
      return res
  
  def train_ae(train,dev,test,hidden_sizes,y_train=None,y_dev=None,y_test=None,dropouts=None,input_activation="tanh",output_activation="tanh",loss="mse",sgd=None,epochs=500,batch_size=8,verbose=1,patience=20,get_weights=False,set_weights=[]):
       
      input_vect = Input(shape=(train.shape[1],))
  
      previous = [input_vect]
  
      if dropouts is None:
          dropouts = [ 0 ] * (len(hidden_sizes) +1)
      if sgd is None : 
          sgd = SGD(lr=0.01, decay=0, momentum=0.9)
      did_do = False
      if dropouts :
          d = dropouts.pop(0)
          if d :
              previous.append(Dropout(d)(previous[-1]))
              did_do = True
  
      for h_layer,weight_layer in izip_longest(hidden_sizes,set_weights,fillvalue=None) :
          # ,weights=w
          if weight_layer :
              w = weight_layer[0] 
          else :
              w = None
          #print "ADD SIZE" , h_layer
          if did_do : 
              p = previous.pop()
              did_do = False
          else :
              p = previous[-1]
          previous.append(Dense(h_layer,activation=input_activation,weights=w)(previous[-1]))
          if dropouts:
              d = dropouts.pop(0)
              if d :
                  previous.append(Dropout(d)(previous[-1]))
                  did_do = True
  
      predict_y = True
      if y_train is None or  y_dev is None or y_test is None :
          y_train = train
          y_dev = dev
          y_test = test
          predict_y = False
      previous.append(Dense(y_train.shape[1],activation=output_activation)(previous[-1]))
      models = [Model(input=previous[0] , output=x) for x in previous[1:]]
      print "MLP", sgd, loss
      models[-1].compile(optimizer=sgd,loss=loss)
      models[-1].fit(train,y_train,nb_epoch=epochs,batch_size=batch_size,callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=0)],validation_data=(dev,dev),verbose=verbose)
      param_predict = [ train, dev, test ]
      if predict_y :
          param_predict += [ y_train, y_dev ,y_test ]
      predictions = [ [x.predict(y) for y in param_predict  ] for x in models ]
      if get_weights : 
          weights = [ x.get_weights()  for x in models[-1].layers if x.get_weights() ]
          return ( predictions , weights )
      else :
          return predictions
  
  def train_sae(train,dev,test,hidden_sizes,y_train=None,y_dev=None,y_test=None,dropouts=None,input_activation="tanh",output_activation="tanh",loss="mse",sgd=None,epochs=500,batch_size=8,verbose=1,patience=20):
  
      weights = []
      predictions = [[(train,dev,test),()]]
      ft_pred = []
      past_sizes = []
  
  
      for size in hidden_sizes :
          #print "DO size " , size , "FROM" , hidden_sizes
          res_pred, res_wght = train_ae(predictions[-1][-2][0], predictions[-1][-2][1],predictions[-1][-2][2],[size],
                                        dropouts=dropouts, input_activation=input_activation,
                                        output_activation=output_activation, loss=loss, sgd=sgd,
                                        epochs=epochs, batch_size=batch_size, verbose=verbose,
                                        patience=patience,get_weights=True)
          past_sizes.append(size)
          weights.append(res_wght)
          predictions.append(res_pred)
          #print "FINE TUNE "
          res_ftpred = train_ae(train,dev,test,past_sizes,y_train=y_train,y_dev=y_dev,y_test=y_test,
                                dropouts=dropouts,
                                input_activation=input_activation,
                                output_activation=output_activation,
                                loss=loss,sgd=sgd,epochs=epochs,
                                batch_size=batch_size,verbose=verbose,patience=patience,
                                set_weights=weights)
          ft_pred.append(res_ftpred)
  
      return ( predictions[1:] , ft_pred)