Blame view
LDA/mlp.py
9.78 KB
e5108393c replace du mlp.p... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
# -*- coding: utf-8 -*- import keras import numpy as np #from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import SGD,Adam from keras.models import Sequential from keras.layers import Input, Dense, Dropout from keras.models import Model from keras.utils.layer_utils import layer_from_config from itertools import izip_longest import pandas from collections import namedtuple from sklearn.metrics import accuracy_score as perf save_tuple= namedtuple("save_tuple",["pred_train","pred_dev","pred_test"]) def ft_dsae(train,dev,test, y_train=None,y_dev=None,y_test=None, ae_hidden=[20],transfer_hidden=[20], start_weights=None,transfer_weights=None,end_weights=None, input_activation="tanh", output_activation="tanh", init="glorot_uniform", ae_dropouts=[None], transfer_do=[None], sgd="sgd", loss="mse", patience=5, verbose=0, epochs=5, batch_size=8): if not start_weights : start_weights = [ None ] * len(ae_hidden) if not transfer_weights : transfer_weights = [None ] * len(transfer_hidden) if not end_weights : end_weights = [ None ] * len(end_weights) if not transfer_do : transfer_do = [0] * len(transfer_hidden) predict_y = True if y_train is None or y_dev is None or y_test is None : y_train = train y_dev = dev y_test = test predict_y = False param_predict = [ train, dev, test ] if predict_y : param_predict += [ y_train, y_dev ,y_test ] pred_by_level = [] # Contient les prediction par niveaux de transfert layers = [Input(shape=(train.shape[1],))] #for w in transfer_weights: #print "TW",[ [ y.shape for y in x ] for x in w] #print "SW",[ [ y.shape for y in x] for x in start_weights] #print "EW",[ [ y.shape for y in x ] for x in end_weights] for cpt in range(1,len(ae_hidden)): #print ae_hidden,cpt #print cpt, "before" #print "before2", [ [ x.shape for x in y] for y in start_weights[:cpt] ] #print "before3", [ [ x.shape for x in y] for y in transfer_weights[cpt]] #print "before4", [ [ x.shape for x in y] for y in end_weights[cpt:]] sizes = ae_hidden[:cpt] + transfer_hidden + ae_hidden[cpt:] weights = start_weights[:cpt] + transfer_weights[(cpt-1)] + end_weights[cpt:] #print "SIZES", sizes #print "AW",[ [ y.shape for y in x ] for x in weights] #print "WEI", len(weights) , [ len(x) for x in weights ] if len(ae_dropouts) == len(ae_hidden): do = ae_dropouts[:cpt] + transfer_do + ae_dropouts[cpt:] else : do = [ 0 ] * (len(ae_hidden) + len(transfer_hidden)) for w in weights[:-1]: #print "STEP", size layers.append(Dense(w[1].shape[0],activation=input_activation,init=init,weights=w)(layers[-1])) if do : d = do.pop(0) if d > 0 : layers.append(Dropout(d)(layers[-1])) layers.append(Dense(y_train.shape[1],activation=output_activation)(layers[-1])) models = [Model(input=layers[0] , output=x) for x in layers[1:]] models[-1].compile(optimizer=sgd,loss=loss) models[-1].fit(train,y_train,nb_epoch=epochs,batch_size=batch_size,callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=0)],validation_data=(dev,dev),verbose=verbose) predictions = [ [x.predict(y) for y in param_predict ] for x in models ] pred_by_level.append(predictions) return pred_by_level def train_mlp(x_train,y_train,x_dev,y_dev,x_test,y_test,hidden_size,input_activation="relu",hidden_activation="relu",output_activation="softmax",loss="mse",init="glorot_uniform",dropouts=None,sgd=None,epochs=1200,batch_size=16,fit_verbose=1,test_verbose=0,save_pred=False,keep_histo=False): |
e5108393c replace du mlp.p... |
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
layers = [Input(shape=(x_train.shape[1],))] for h in hidden_size: if dropouts: d = dropouts.pop(0) if d > 0 : layers.append(Dropout(d)(layers[-1])) layers.append(Dense(h,init=init,activation=input_activation)(layers[-1])) #if dropouts: # drop_prob=dropouts.pop(0) # if drop_prob > 0: # model.add(Dropout(drop_prob)) #if dropouts: # drop_prob=dropouts.pop(0) # if drop_prob > 0: # model.add(Dropout(drop_prob)) #if dropouts: # model.add(Dropout(dropouts.pop(0))) if dropouts: d = dropouts.pop(0) if d > 0 : layers.append(Dropout(d)(layers[-1])) layers.append(Dense( y_train.shape[1],activation=output_activation,init=init)(layers[-1])) model = Model(layers[0] , layers[-1]) if not sgd: sgd = SGD(lr=0.01, decay=0, momentum=0.9) model.compile(loss=loss, optimizer=sgd,metrics=['accuracy']) scores_dev=[] scores_test=[] scores_train=[] save=None for i in range(epochs): hist=model.fit(x_train, y_train, nb_epoch=1, batch_size=batch_size,verbose=fit_verbose,validation_data=(x_dev,y_dev)) pred_train=model.predict(x_train) pred_dev=model.predict(x_dev) pred_test=model.predict(x_test) scores_train.append(perf(np.argmax(y_train,axis=1),np.argmax(pred_train,axis=1))) scores_dev.append(perf(np.argmax(y_dev,axis=1),np.argmax(pred_dev,axis=1))) scores_test.append(perf(np.argmax(y_test,axis=1),np.argmax(pred_test,axis=1))) if fit_verbose : print "{} {} {} {}".format(i,scores_train[-1],scores_dev[-1],scores_test[-1]) if save is None or (len(scores_dev)>2 and scores_dev[-1] > scores_dev[-2]): save=save_tuple(pred_train,pred_dev,pred_test) arg_dev = np.argmax(scores_dev) best_dev=scores_dev[arg_dev] best_test=scores_test[arg_dev] max_test=np.max(scores_test) if fit_verbose: print " res : {} {} {}".format(best_dev,best_test,max_test) res=[scores_train,scores_dev,scores_test] if save_pred: res.append(save) if keep_histo: res.append(hist) return res def train_ae(train,dev,test,hidden_sizes,y_train=None,y_dev=None,y_test=None,dropouts=None,input_activation="tanh",output_activation="tanh",loss="mse",sgd=None,epochs=500,batch_size=8,verbose=1,patience=20,get_weights=False,set_weights=[]): input_vect = Input(shape=(train.shape[1],)) previous = [input_vect] if dropouts is None: dropouts = [ 0 ] * (len(hidden_sizes) +1) if sgd is None : sgd = SGD(lr=0.01, decay=0, momentum=0.9) did_do = False if dropouts : d = dropouts.pop(0) if d : previous.append(Dropout(d)(previous[-1])) did_do = True for h_layer,weight_layer in izip_longest(hidden_sizes,set_weights,fillvalue=None) : # ,weights=w if weight_layer : w = weight_layer[0] else : w = None #print "ADD SIZE" , h_layer if did_do : p = previous.pop() did_do = False else : p = previous[-1] previous.append(Dense(h_layer,activation=input_activation,weights=w)(previous[-1])) if dropouts: d = dropouts.pop(0) if d : previous.append(Dropout(d)(previous[-1])) did_do = True predict_y = True if y_train is None or y_dev is None or y_test is None : y_train = train y_dev = dev y_test = test predict_y = False previous.append(Dense(y_train.shape[1],activation=output_activation)(previous[-1])) models = [Model(input=previous[0] , output=x) for x in previous[1:]] print "MLP", sgd, loss models[-1].compile(optimizer=sgd,loss=loss) models[-1].fit(train,y_train,nb_epoch=epochs,batch_size=batch_size,callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=0)],validation_data=(dev,dev),verbose=verbose) param_predict = [ train, dev, test ] if predict_y : param_predict += [ y_train, y_dev ,y_test ] predictions = [ [x.predict(y) for y in param_predict ] for x in models ] if get_weights : weights = [ x.get_weights() for x in models[-1].layers if x.get_weights() ] return ( predictions , weights ) else : return predictions def train_sae(train,dev,test,hidden_sizes,y_train=None,y_dev=None,y_test=None,dropouts=None,input_activation="tanh",output_activation="tanh",loss="mse",sgd=None,epochs=500,batch_size=8,verbose=1,patience=20): weights = [] predictions = [[(train,dev,test),()]] ft_pred = [] past_sizes = [] for size in hidden_sizes : #print "DO size " , size , "FROM" , hidden_sizes res_pred, res_wght = train_ae(predictions[-1][-2][0], predictions[-1][-2][1],predictions[-1][-2][2],[size], dropouts=dropouts, input_activation=input_activation, output_activation=output_activation, loss=loss, sgd=sgd, epochs=epochs, batch_size=batch_size, verbose=verbose, patience=patience,get_weights=True) past_sizes.append(size) weights.append(res_wght) predictions.append(res_pred) #print "FINE TUNE " res_ftpred = train_ae(train,dev,test,past_sizes,y_train=y_train,y_dev=y_dev,y_test=y_test, dropouts=dropouts, input_activation=input_activation, output_activation=output_activation, loss=loss,sgd=sgd,epochs=epochs, batch_size=batch_size,verbose=verbose,patience=patience, set_weights=weights) ft_pred.append(res_ftpred) return ( predictions[1:] , ft_pred) |