Blame view

LDA/04e-mm_vae.py 6.4 KB
7db73861f   Killian   add vae et mmf
1
2
  
  # coding: utf-8
7db73861f   Killian   add vae et mmf
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
  import gensim
  from scipy import sparse
  import itertools
  from sklearn import preprocessing
  from keras.models import Sequential
  from keras.optimizers import SGD,Adam
  from mlp import *
  from vae import *
  import sklearn.metrics
  import shelve
  import pickle
  from utils import *
  import sys
  import os
  import json
  # In[4]:
  
  infer_model=shelve.open("{}".format(sys.argv[2]))
  in_dir = sys.argv[1]
  #['ASR', 'TRS', 'LABEL']
  # In[6]:
2af8e57f4   Killian   change all
24
25
26
27
  if len(sys.argv) > 4 :
      features_key = sys.argv[4]
  else :
      features_key = "LDA"
7db73861f   Killian   add vae et mmf
28

2af8e57f4   Killian   change all
29
  save_projection = True
e5108393c   Killian   replace du mlp.p...
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
  json_conf =json.load(open(sys.argv[3]))
  vae_conf = json_conf["vae"]
  
  hidden_size= vae_conf["hidden_size"]
  input_activation=vae_conf["input_activation"]
  output_activation=vae_conf["output_activation"]
  epochs=vae_conf["epochs"]
  batch=vae_conf["batch"]
  patience=vae_conf["patience"]
  latent_dim = vae_conf["latent"]
  try:
      k = vae_conf["sgd"]
      if vae_conf["sgd"]["name"] == "adam":
          sgd = Adam(lr=vae_conf["sgd"]["lr"])#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True)
      elif vae_conf["sgd"]["name"] == "sgd":
          sgd = SGD(lr=vae_conf["sgd"]["lr"])
  except: 
      sgd = vae_conf["sgd"]
  
  mlp_conf = json_conf["mlp"]
  mlp_h = mlp_conf["hidden_size"]
  mlp_loss = mlp_conf["loss"]
  mlp_dropouts = mlp_conf["do"]
  mlp_epochs = mlp_conf["epochs"]
  mlp_batch_size = mlp_conf["batch"]
  mlp_input_activation=mlp_conf["input_activation"]
  mlp_output_activation=mlp_conf["output_activation"]
  
  
  try:
      k = mlp_conf["sgd"]
      if mlp_conf["sgd"]["name"] == "adam":
          mlp_sgd = Adam(lr=mlp_conf["sgd"]["lr"])#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True)
      elif mlp_conf["sgd"]["name"] == "sgd":
          mlp_sgd = SGD(lr=mlp_conf["sgd"]["lr"])
  except: 
      mlp_sgd = mlp_conf["sgd"]
  
  
  name = json_conf["name"]
2af8e57f4   Killian   change all
70
71
  try :
      print "make folder "
e5108393c   Killian   replace du mlp.p...
72
      os.mkdir("{}/{}".format(in_dir,name))
7db73861f   Killian   add vae et mmf
73
  except:
2af8e57f4   Killian   change all
74
      print "folder not maked"
7db73861f   Killian   add vae et mmf
75
      pass
e5108393c   Killian   replace du mlp.p...
76
77
78
  
  
  db = shelve.open("{}/{}/ae_model.shelve".format(in_dir,name),writeback=True)
7db73861f   Killian   add vae et mmf
79
80
  db["LABEL"]=infer_model["LABEL"]
  #
7db73861f   Killian   add vae et mmf
81

2af8e57f4   Killian   change all
82
83
  
  keys = infer_model[features_key].keys()
7db73861f   Killian   add vae et mmf
84
85
  
  db["VAE"] = {}
2af8e57f4   Killian   change all
86
  db[features_key] = {}
7db73861f   Killian   add vae et mmf
87
  for mod in keys : 
e5108393c   Killian   replace du mlp.p...
88
      #print mod
2af8e57f4   Killian   change all
89
90
91
      db[features_key][mod] = train_mlp(infer_model[features_key][mod]["TRAIN"],infer_model["LABEL"][mod]["TRAIN"],
                              infer_model[features_key][mod]["DEV"],infer_model["LABEL"][mod]["DEV"],
                              infer_model[features_key][mod]["TEST"],infer_model["LABEL"][mod]["TEST"],
7db73861f   Killian   add vae et mmf
92
93
94
95
96
97
98
                              mlp_h ,sgd=mlp_sgd,
                              epochs=mlp_epochs,
                              batch_size=mlp_batch_size,
                              input_activation=input_activation,
                              output_activation=mlp_output_activation,
                              dropouts=mlp_dropouts,
                              fit_verbose=0)
2af8e57f4   Killian   change all
99
      res=train_vae(infer_model[features_key][mod]["TRAIN"],infer_model[features_key][mod]["DEV"],infer_model[features_key][mod]["TEST"],
7db73861f   Killian   add vae et mmf
100
101
102
103
104
                   hidden_size=hidden_size[0],
                   latent_dim=latent_dim,sgd=sgd,
                   input_activation=input_activation,output_activation=output_activation,
                   nb_epochs=epochs,batch_size=batch)
      mlp_res_list=[]
2af8e57f4   Killian   change all
105
106
107
108
      for nb,layer in enumerate(res) :
          if save_projection:
              pd = pandas.DataFrame(layer[0])
              col_count = (pd.sum(axis=0) != 0)
d1012a7a1   Killian   update LDA/.py
109
              pd = pd.loc[:,col_count]
2af8e57f4   Killian   change all
110
111
112
113
114
115
116
117
              pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,mod),"TRAIN")
              pd = pandas.DataFrame(layer[1])
              pd = pd.loc[:,col_count]
              pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,mod),"DEV")
              pd = pandas.DataFrame(layer[2])
              pd = pd.loc[:,col_count]
              pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,mod),"TEST")
              del pd
7db73861f   Killian   add vae et mmf
118
119
120
121
122
123
124
125
          mlp_res_list.append(train_mlp(layer[0],infer_model['LABEL'][mod]["TRAIN"],
                                        layer[1],infer_model["LABEL"][mod]["DEV"],
                                        layer[2],infer_model["LABEL"][mod]["TEST"],
                                        mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,sgd=mlp_sgd,epochs=mlp_epochs,
                                        output_activation=mlp_output_activation,
                                        input_activation=input_activation,
                                        batch_size=mlp_batch_size,fit_verbose=0))
      db["VAE"][mod]=mlp_res_list
2af8e57f4   Killian   change all
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
  if "ASR" in keys and "TRS" in keys :
      mod = "ASR"
      mod2= "TRS"
      mlp_res_list=[]
  
      res = train_vae(infer_model[features_key][mod]["TRAIN"],
                      infer_model[features_key][mod]["DEV"],
                      infer_model[features_key][mod]["TEST"],
                      hidden_size=hidden_size[0],
                      sgd=sgd,input_activation=input_activation,output_activation=output_activation,
                      latent_dim=latent_dim,
                      nb_epochs=epochs,
                      batch_size=batch,
                      y_train=infer_model[features_key][mod2]["TRAIN"],
                      y_dev=infer_model[features_key][mod2]["DEV"],
                      y_test=infer_model[features_key][mod2]["TEST"])
  
      for nb,layer in enumerate(res) :
          if save_projection:
              pd = pandas.DataFrame(layer[0])
              col_count = (pd.sum(axis=0) != 0)
              pd = pd.loc[:,col_count]
              pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,"SPE"),"TRAIN")
              pd = pandas.DataFrame(layer[1])
              pd = pd.loc[:,col_count]
              pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,"SPE"),"DEV")
              pd = pandas.DataFrame(layer[2])
              pd = pd.loc[:,col_count]
              pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,"SPE"),"TEST")
              del pd
  
          mlp_res_list.append(train_mlp(layer[0],infer_model["LABEL"][mod]["TRAIN"],
                                        layer[1],infer_model["LABEL"][mod]["DEV"],
                                        layer[2],infer_model["LABEL"][mod]["TEST"],
                                        mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,sgd=mlp_sgd,epochs=mlp_epochs,
                                        output_activation=mlp_output_activation,
                                        input_activation=input_activation,
                                        batch_size=mlp_batch_size,fit_verbose=0))
  
      db["VAE"]["SPE"] = mlp_res_list
7db73861f   Killian   add vae et mmf
166
167
168
  
  db.sync()
  db.close()