Blame view
LDA/04e-mm_vae.py
6.4 KB
7db73861f add vae et mmf |
1 2 |
# coding: utf-8 |
7db73861f add vae et mmf |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
import gensim from scipy import sparse import itertools from sklearn import preprocessing from keras.models import Sequential from keras.optimizers import SGD,Adam from mlp import * from vae import * import sklearn.metrics import shelve import pickle from utils import * import sys import os import json # In[4]: infer_model=shelve.open("{}".format(sys.argv[2])) in_dir = sys.argv[1] #['ASR', 'TRS', 'LABEL'] # In[6]: |
2af8e57f4 change all |
24 25 26 27 |
if len(sys.argv) > 4 : features_key = sys.argv[4] else : features_key = "LDA" |
7db73861f add vae et mmf |
28 |
|
2af8e57f4 change all |
29 |
save_projection = True |
e5108393c replace du mlp.p... |
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
json_conf =json.load(open(sys.argv[3])) vae_conf = json_conf["vae"] hidden_size= vae_conf["hidden_size"] input_activation=vae_conf["input_activation"] output_activation=vae_conf["output_activation"] epochs=vae_conf["epochs"] batch=vae_conf["batch"] patience=vae_conf["patience"] latent_dim = vae_conf["latent"] try: k = vae_conf["sgd"] if vae_conf["sgd"]["name"] == "adam": sgd = Adam(lr=vae_conf["sgd"]["lr"])#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True) elif vae_conf["sgd"]["name"] == "sgd": sgd = SGD(lr=vae_conf["sgd"]["lr"]) except: sgd = vae_conf["sgd"] mlp_conf = json_conf["mlp"] mlp_h = mlp_conf["hidden_size"] mlp_loss = mlp_conf["loss"] mlp_dropouts = mlp_conf["do"] mlp_epochs = mlp_conf["epochs"] mlp_batch_size = mlp_conf["batch"] mlp_input_activation=mlp_conf["input_activation"] mlp_output_activation=mlp_conf["output_activation"] try: k = mlp_conf["sgd"] if mlp_conf["sgd"]["name"] == "adam": mlp_sgd = Adam(lr=mlp_conf["sgd"]["lr"])#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True) elif mlp_conf["sgd"]["name"] == "sgd": mlp_sgd = SGD(lr=mlp_conf["sgd"]["lr"]) except: mlp_sgd = mlp_conf["sgd"] name = json_conf["name"] |
2af8e57f4 change all |
70 71 |
try : print "make folder " |
e5108393c replace du mlp.p... |
72 |
os.mkdir("{}/{}".format(in_dir,name)) |
7db73861f add vae et mmf |
73 |
except: |
2af8e57f4 change all |
74 |
print "folder not maked" |
7db73861f add vae et mmf |
75 |
pass |
e5108393c replace du mlp.p... |
76 77 78 |
db = shelve.open("{}/{}/ae_model.shelve".format(in_dir,name),writeback=True) |
7db73861f add vae et mmf |
79 80 |
db["LABEL"]=infer_model["LABEL"] # |
7db73861f add vae et mmf |
81 |
|
2af8e57f4 change all |
82 83 |
keys = infer_model[features_key].keys() |
7db73861f add vae et mmf |
84 85 |
db["VAE"] = {} |
2af8e57f4 change all |
86 |
db[features_key] = {} |
7db73861f add vae et mmf |
87 |
for mod in keys : |
e5108393c replace du mlp.p... |
88 |
#print mod |
2af8e57f4 change all |
89 90 91 |
db[features_key][mod] = train_mlp(infer_model[features_key][mod]["TRAIN"],infer_model["LABEL"][mod]["TRAIN"], infer_model[features_key][mod]["DEV"],infer_model["LABEL"][mod]["DEV"], infer_model[features_key][mod]["TEST"],infer_model["LABEL"][mod]["TEST"], |
7db73861f add vae et mmf |
92 93 94 95 96 97 98 |
mlp_h ,sgd=mlp_sgd, epochs=mlp_epochs, batch_size=mlp_batch_size, input_activation=input_activation, output_activation=mlp_output_activation, dropouts=mlp_dropouts, fit_verbose=0) |
2af8e57f4 change all |
99 |
res=train_vae(infer_model[features_key][mod]["TRAIN"],infer_model[features_key][mod]["DEV"],infer_model[features_key][mod]["TEST"], |
7db73861f add vae et mmf |
100 101 102 103 104 |
hidden_size=hidden_size[0], latent_dim=latent_dim,sgd=sgd, input_activation=input_activation,output_activation=output_activation, nb_epochs=epochs,batch_size=batch) mlp_res_list=[] |
2af8e57f4 change all |
105 106 107 108 |
for nb,layer in enumerate(res) : if save_projection: pd = pandas.DataFrame(layer[0]) col_count = (pd.sum(axis=0) != 0) |
d1012a7a1 update LDA/.py |
109 |
pd = pd.loc[:,col_count] |
2af8e57f4 change all |
110 111 112 113 114 115 116 117 |
pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,mod),"TRAIN") pd = pandas.DataFrame(layer[1]) pd = pd.loc[:,col_count] pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,mod),"DEV") pd = pandas.DataFrame(layer[2]) pd = pd.loc[:,col_count] pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,mod),"TEST") del pd |
7db73861f add vae et mmf |
118 119 120 121 122 123 124 125 |
mlp_res_list.append(train_mlp(layer[0],infer_model['LABEL'][mod]["TRAIN"], layer[1],infer_model["LABEL"][mod]["DEV"], layer[2],infer_model["LABEL"][mod]["TEST"], mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,sgd=mlp_sgd,epochs=mlp_epochs, output_activation=mlp_output_activation, input_activation=input_activation, batch_size=mlp_batch_size,fit_verbose=0)) db["VAE"][mod]=mlp_res_list |
2af8e57f4 change all |
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
if "ASR" in keys and "TRS" in keys : mod = "ASR" mod2= "TRS" mlp_res_list=[] res = train_vae(infer_model[features_key][mod]["TRAIN"], infer_model[features_key][mod]["DEV"], infer_model[features_key][mod]["TEST"], hidden_size=hidden_size[0], sgd=sgd,input_activation=input_activation,output_activation=output_activation, latent_dim=latent_dim, nb_epochs=epochs, batch_size=batch, y_train=infer_model[features_key][mod2]["TRAIN"], y_dev=infer_model[features_key][mod2]["DEV"], y_test=infer_model[features_key][mod2]["TEST"]) for nb,layer in enumerate(res) : if save_projection: pd = pandas.DataFrame(layer[0]) col_count = (pd.sum(axis=0) != 0) pd = pd.loc[:,col_count] pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,"SPE"),"TRAIN") pd = pandas.DataFrame(layer[1]) pd = pd.loc[:,col_count] pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,"SPE"),"DEV") pd = pandas.DataFrame(layer[2]) pd = pd.loc[:,col_count] pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,"SPE"),"TEST") del pd mlp_res_list.append(train_mlp(layer[0],infer_model["LABEL"][mod]["TRAIN"], layer[1],infer_model["LABEL"][mod]["DEV"], layer[2],infer_model["LABEL"][mod]["TEST"], mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,sgd=mlp_sgd,epochs=mlp_epochs, output_activation=mlp_output_activation, input_activation=input_activation, batch_size=mlp_batch_size,fit_verbose=0)) db["VAE"]["SPE"] = mlp_res_list |
7db73861f add vae et mmf |
166 167 168 |
db.sync() db.close() |