Blame view
DECODA_binary_BOW_MINIAEUNFIXED_MODELS.py
7.68 KB
b6d0165d1 Initial commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# coding: utf-8 # In[2]: # Import import pandas # Alignement import nltk import codecs import gensim from scipy import sparse import itertools from sklearn.feature_extraction.text import CountVectorizer import scipy.sparse import scipy.io from sklearn import preprocessing from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation,AutoEncoder from keras.optimizers import SGD,Adam from keras.layers import containers from mlp import * import mlp import sklearn.metrics import shelve import pickle from utils import * import sys import json # In[4]: db=shelve.open("{}.shelve".format(sys.argv[2]),writeback=True) sparse_model=shelve.open("{}.shelve".format(sys.argv[1])) #['ASR', 'TRS', 'LABEL'] # In[6]: do_do=False try: do_do = True if sys.argv[3] == 1 else False hidden_size = int(sys.argv[4]) if sys.argv[4] else 100 w1_size = int(sys.argv[5]) if sys.argv[5] else 300 except IndexError : do_do = False hidden_size = 100 w1_size = 300 ASR=sparse_model["ASR"] TRS=sparse_model["TRS"] LABEL=sparse_model["LABEL"] db["ASR_SPARSE"]=ASR db["TRS_SPARSE"]=TRS db["LABEL"]=LABEL print "todo label" def select(elm): return int(elm.split("_")[-1]) #z.apply(select) label_bin={} lb = preprocessing.LabelBinarizer(neg_label=0) lb.fit(LABEL["TRAIN"].apply(select)) for i in ASR.keys(): label_bin=lb.transform(LABEL[i].apply(select)) input_activation="tanh" out_activation="tanh" loss="mse" epochs=500 batch=1 patience=60 sgd = Adam(lr=0.0001)#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True) try : sgd_repr=sgd.get_config() except AttributeError : sgd_repr=sgd json.dump({ "h1" : hidden_size, "inside_activation" : input_activation, "out_activation" : out_activation, "hidden_size" : hidden_size, "w1_size" : w1_size, "do dropout": do_do, "loss" : loss, "epochs" : epochs , "batch_size" : batch, "patience" : patience, "sgd" : sgd_repr}, open("{}.json".format(sys.argv[2]),"w"), indent=4) print "gogo autoencoder ASR" autoencode=Sequential() autoencode.add(Dense(hidden_size,input_dim=ASR["TRAIN"].shape[1],init='glorot_uniform',activation=input_activation)) if do_do : autoencode.add(Dropout(0.5)) autoencode.add(Dense(ASR["DEV"].todense().shape[1],input_dim=hidden_size,init="glorot_uniform",activation=out_activation)) #autoencode.compile(optimizer=sgd,loss=loss) autoencode.compile(optimizer=sgd,loss=loss) # In[ ]: autoencode.fit(ASR["TRAIN"].todense(),ASR["TRAIN"].todense(),nb_epoch=epochs,batch_size=batch, callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=0)],validation_data=(ASR["DEV"].todense(),ASR["DEV"].todense()),verbose=1) # In[ ]: auto_decoder=Sequential() auto_decoder.add(Dense(hidden_size,input_dim=ASR["DEV"].todense().shape[1],init='uniform',activation=input_activation,weights=autoencode.get_weights()[:2])) auto_decoder.compile(optimizer=sgd,loss=loss) # In[77]: #autoencode.predict(ASR["DEV"].todense()) # In[ ]: print "auto encoder et auto decoder asr okay" ASR_AE_H1={} for i in ASR.keys(): ASR_AE_H1[i]=auto_decoder.predict(ASR[i].todense()) #TRS[i]=dico.transform(TRS[i][2]) db["ASR_AE_H1"]=ASR_AE_H1 print "auto encoder trs learning" # In[68]:/ autoencode_trs=Sequential() autoencode_trs.add(Dense(hidden_size,input_dim=TRS["DEV"].todense().shape[1],init='glorot_uniform',activation=input_activation)) autoencode_trs.add(Dense(TRS["DEV"].todense().shape[1],input_dim=hidden_size,init="glorot_uniform",activation=out_activation)) #autoencode_trs.compile(optimizer=sgd_trs,loss=loss) autoencode_trs.compile(optimizer=sgd,loss=loss) # In[69]: autoencode_trs.fit(TRS["TRAIN"].todense(),TRS["TRAIN"].todense(),nb_epoch=epochs,batch_size=batch, callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=0)], validation_data=(TRS["DEV"].todense(),TRS["DEV"].todense()),verbose=1) # In[87]: auto_decoder_trs=Sequential() auto_decoder_trs.add(Dense(hidden_size,input_dim=ASR["DEV"].todense().shape[1],activation=input_activation,weights=autoencode_trs.get_weights()[:2])) auto_decoder_trs.compile(optimizer=sgd,loss=loss) # In[88]: print "auto encoder trs okay" TRS_AE_H1={} for i in TRS.keys(): TRS_AE_H1[i]=auto_decoder_trs.predict(TRS[i].todense()) #TRS[i]=dico.transform(TRS[i][2]) db["TRS_AE_H1"]=TRS_AE_H1 db.sync() # In[261]: #pred_dev= model_TRS_AE.predict(TRS_AE["DEV"],batch_size=1) TRS_AE={} ASR_AE={} for i in TRS.keys(): TRS_AE[i]=autoencode_trs.predict(TRS[i].todense()) ASR_AE[i]=autoencode.predict(ASR[i].todense()) db["TRS_AE_OUT"]=TRS_AE db["ASR_AE_OUT"]=ASR_AE db.sync() # # Transfert de couche # ICI # In[138]: print "learn transform ae H1({})".format(hidden_size) model_TRANS = Sequential() model_TRANS.add(Dense(hidden_size,input_dim=ASR["TRAIN"].shape[1],init='glorot_uniform',activation=input_activation,weights=autoencode.get_weights()[:2])) model_TRANS.add(Dense( w1_size,input_dim=hidden_size, init='glorot_uniform', activation=input_activation)) model_TRANS.add(Dense( hidden_size,input_dim=w1_size, init='glorot_uniform', activation=input_activation)) model_TRANS.add(Dense(TRS["TRAIN"].shape[1],input_dim=hidden_size,init='glorot_uniform',activation=out_activation,weights=autoencode_trs.get_weights()[2:4])) sgd_TRANS = SGD(lr=0.01, decay=1e-4, momentum=0.9, nesterov=True) #model_TRANS.compile(loss='mse', optimizer=sgd_TRANS) model_TRANS.compile(loss='mse', optimizer=sgd) # In[146]: model_TRANS.fit(ASR["TRAIN"].todense(),TRS["TRAIN"].todense(),nb_epoch=epochs,batch_size=batch, callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=0)], validation_data=(ASR["DEV"].todense(),TRS["DEV"].todense()),verbose=1) # In[140]: print "make trans projection H1" asr_transformer={} for i in ASR_AE.keys(): asr_transformer[i]=model_TRANS.predict(ASR[i].todense()) db["ASR_TRANFORMED_OUT"]=asr_transformer # In[ ]: db.sync() auto_decoder_trans=Sequential() auto_decoder_trans.add(Dense(hidden_size,input_dim=ASR["TRAIN"].shape[1],activation=input_activation,weights=model_TRANS.get_weights()[:2])) auto_decoder_trans.compile(optimizer=sgd,loss=loss) asr_trans_h1={} for i in ASR_AE.keys(): asr_trans_h1[i]=auto_decoder_trans.predict(ASR[i].todense()) db["ASR_H1_TRANSFORMED"]=asr_trans_h1 print "shape",ASR_AE["TRAIN"].shape[1] auto_decoder_trans=Sequential() auto_decoder_trans.add(Dense(hidden_size,input_dim=ASR["TRAIN"].shape[1],activation=input_activation,weights=model_TRANS.get_weights()[:2])) auto_decoder_trans.add(Dense(w1_size,input_dim=hidden_size,activation=input_activation,weights=model_TRANS.get_weights()[2:4])) auto_decoder_trans.compile(optimizer=sgd,loss=loss) asr_trans_w1={} for i in ASR_AE.keys(): asr_trans_w1[i]=auto_decoder_trans.predict(ASR[i].todense()) db["ASR_W1_TRANSFORMED"]=asr_trans_w1 print "shape",ASR_AE["TRAIN"].shape[1] auto_decoder_trans=Sequential() auto_decoder_trans.add(Dense(hidden_size,input_dim=ASR["TRAIN"].shape[1],activation=input_activation,weights=model_TRANS.get_weights()[:2])) auto_decoder_trans.add(Dense(w1_size,input_dim=hidden_size,activation=input_activation,weights=model_TRANS.get_weights()[2:4])) auto_decoder_trans.add(Dense(hidden_size,input_dim=w1_size,activation=input_activation,weights=model_TRANS.get_weights()[4:6])) auto_decoder_trans.compile(optimizer=sgd,loss=loss) asr_trans_h2={} for i in ASR_AE.keys(): asr_trans_h2[i]=auto_decoder_trans.predict(ASR[i].todense()) db["ASR_H2_TRANSFORMED"]=asr_trans_h2 print "shape",ASR_AE["TRAIN"].shape[1] db.sync() db.close() |