Blame view
DECODA_binary_BOW_MINIAE_REAL_SPE.py
3.82 KB
b6d0165d1 Initial commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# coding: utf-8 # In[2]: # Import import pandas # Alignement import nltk import codecs import gensim from scipy import sparse import itertools from sklearn.feature_extraction.text import CountVectorizer import scipy.sparse import scipy.io from sklearn import preprocessing from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation,AutoEncoder from keras.optimizers import SGD,Adam from keras.layers import containers from mlp import * import mlp import sklearn.metrics import shelve import pickle from utils import * import sys import json # In[4]: db=shelve.open("{}.shelve".format(sys.argv[2]),writeback=True) #['vocab', 'ASR_SPARSE', 'TRS_SPARSE', 'LABEL'] # In[6]: # In[10]: print "making sparse data" sparse_corp=shelve.open("{}.shelve".format(sys.argv[1])) do_do=False try: do_do = True if sys.argv[3] == 1 else False hidden_size =[int(x) for x in sys.argv[4].split("_")] if sys.argv[4] else [100] except IndexError : do_do = False hidden_size=[100] ASR_sparse=sparse_corp["ASR"] TRS_sparse=sparse_corp["TRS"] db["LABEL"] = sparse_corp["LABEL"] db["ASR"] = ASR_sparse db["TRS"] = TRS_sparse # In[11]: #z.apply(select) input_activation="tanh" out_activation="tanh" loss="mse" epochs=500 batch=1 patience=60 sgd = Adam(lr=0.0001)#SGD(lr=0.0001)#( momentum=0.9, nesterov=True) try : sgd_repr=sgd.get_config() except AttributeError : sgd_repr=sgd json.dump({ "h1" : hidden_size, "inside_activation" : input_activation, "out_activation" : out_activation, "do_dropout": do_do, "loss" : loss, "epochs" : epochs , "batch_size" : batch, "patience" : patience, "sgd" : sgd_repr}, open("{}.json".format(sys.argv[2]),"w"), indent=4) print "gogo autoencoder ASR" done_do=False autoencode=Sequential() previous = ASR_sparse["TRAIN"].shape[1] for hs in hidden_size: autoencode.add(Dense(hs,input_dim=previous,init='glorot_uniform',activation=input_activation)) if do_do and not done_do: autoencode.add(Dropout(0.5)) done_do=True previous = hs autoencode.add(Dense(ASR_sparse["DEV"].todense().shape[1],input_dim=previous,init="glorot_uniform",activation=out_activation)) #autoencode.compile(optimizer=sgd,loss=loss) autoencode.compile(optimizer=sgd,loss=loss) # In[ ]: autoencode.fit(ASR_sparse["TRAIN"].todense(),TRS_sparse["TRAIN"].todense(),nb_epoch=epochs,batch_size=batch, callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=0)], validation_data=(ASR_sparse["DEV"].todense(),TRS_sparse["DEV"].todense()),verbose=1) # In[ ]: ASR_sparse_AE_H={} previous=[ASR_sparse["DEV"].todense().shape[1]] for i,size in enumerate(hidden_size): print previous,size print "i",i,range(i) auto_decoder=Sequential() for j in range(i): print "j",j auto_decoder.add(Dense(previous[j+1],input_dim=previous[j],init='glorot_uniform',activation=input_activation,weights=autoencode.get_weights()[j*2:j*2+2])) print "i",i,i*2,i*2+2 auto_decoder.add(Dense(size,input_dim=previous[-1],init="glorot_uniform",activation=input_activation,weights=autoencode.get_weights()[i*2:i*2+2])) auto_decoder.compile(optimizer=sgd,loss=loss) previous.append(size) ASR_sparse_AE_H["H"+str(i)]={} for key in ASR_sparse.keys(): ASR_sparse_AE_H["H"+str(i)][key]=auto_decoder.predict(ASR_sparse[key].todense()) db["ASR_AE_H"+str(i)]=ASR_sparse_AE_H["H"+str(i)] del auto_decoder db.sync() # In[261]: #pred_dev= model_TRS_AE.predict(TRS_sparse_AE["DEV"],batch_size=1) TRS_AE={} ASR_AE={} for i in TRS_sparse.keys(): TRS_AE[i]=autoencode.predict(TRS_sparse[i].todense()) ASR_AE[i]=autoencode.predict(ASR_sparse[i].todense()) db["TRS_AE_OUT"]=TRS_AE db["ASR_AE_OUT"]=ASR_AE # # Transfert de couche # ICI db.sync() db.close() |