Blame view
DECODA_binary_BOW_SPE.py
2.94 KB
b6d0165d1 Initial commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
# coding: utf-8 # In[2]: # Import import pandas # Alignement from alignment.sequence import Sequence from alignment.vocabulary import Vocabulary from alignment.sequencealigner import * import nltk import codecs import gensim from scipy import sparse import itertools from sklearn.feature_extraction.text import CountVectorizer import scipy.sparse import scipy.io from sklearn import preprocessing from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation,AutoEncoder from keras.optimizers import SGD,Adam from keras.layers import containers from mlp import * import mlp import sklearn.metrics import shelve import pickle from utils import * import sys # In[4]: db=shelve.open("DECODA_sparse.shelve") out_db=shelve.open("{}.shelve".format(sys.argv[1]),writeback=True) # In[6]: ASR_sparse=db["ASR_SPARSE"] TRS_sparse=db["TRS_SPARSE"] LABEL=db["LABEL"] def select(elm): return int(elm.split("_")[-1]) print "gogo autoencoder ASR" hidden_size=3076 hidden_size2=2048 input_activation="relu" out_activation="relu" loss="mse" epochs=500 patience=50 sgd = Adam(lr=0.001) #SGD(lr=0.05,momentum=0.9) autoencode=Sequential() autoencode.add(Dense(ASR_sparse["TRAIN"].shape[1],hidden_size,init='glorot_uniform',activation=input_activation)) autoencode.add(Dense(hidden_size,hidden_size2,init='glorot_uniform',activation=input_activation)) autoencode.add(Dense(hidden_size2,hidden_size,init="glorot_uniform",activation=out_activation)) autoencode.add(Dense(hidden_size,ASR_sparse["DEV"].todense().shape[1],init="glorot_uniform",activation=out_activation)) autoencode.compile(optimizer=sgd,loss=loss) # In[ ]: autoencode.fit(ASR_sparse["TRAIN"].todense(),TRS_sparse["TRAIN"].todense(),nb_epoch=epochs,batch_size=16, callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=0)], validation_data=(ASR_sparse["DEV"].todense(),TRS_sparse["DEV"].todense()),verbose=1) # In[ ]: auto_decoder=Sequential() auto_decoder.add(Dense(ASR_sparse["DEV"].todense().shape[1],hidden_size,init='glorot_uniform',activation=input_activation,weights=autoencode.get_weights()[:2])) auto_decoder.add(Dense(hidden_size,hidden_size2,init='glorot_uniform',activation=input_activation,weights=autoencode.get_weights()[2:4])) auto_decoder.compile(optimizer=sgd,loss=loss) # In[77]: #autoencode.predict(ASR_sparse["DEV"].todense()) # In[ ]: print "auto encoder et auto decoder asr okay" ASR_sparse_AE={} TRS_sparse_AE={} for i in ASR_sparse.keys(): ASR_sparse_AE[i]=auto_decoder.predict(ASR_sparse[i].todense()) TRS_sparse_AE[i]=auto_decoder.predict(TRS_sparse[i].todense()) #TRS_sparse[i]=dico.transform(TRS[i][2]) out_db["ASR_SPELIKE_H2_RELU"]=ASR_sparse_AE out_db["TRS_SPELIKE_H2_RELU"]=TRS_sparse_AE ASR_AE={} for i in TRS_sparse.keys(): ASR_AE[i]=autoencode.predict(ASR_sparse[i].todense()) out_db["ASR_SPELIKE_OUT_RELU"]=ASR_AE db.close() out_db.close() |