Blame view
DECODA_make_sparse_label.py
2.76 KB
b6d0165d1 Initial commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
# coding: utf-8 # In[2]: # Import import pandas # Alignement from alignment.sequence import Sequence from alignment.vocabulary import Vocabulary from alignment.sequencealigner import * import nltk import codecs import gensim from scipy import sparse import itertools from sklearn.feature_extraction.text import CountVectorizer import scipy.sparse import scipy.io from sklearn import preprocessing from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation,AutoEncoder from keras.optimizers import SGD from keras.layers import containers from mlp import * import mlp import sklearn.metrics import shelve import pickle from utils import * # In[4]: db=shelve.open("DECODA_sparse.shelve",writeback=True) # In[6]: ASR={} TRS={} ASR["TRAIN"]=pandas.read_table("./ASR/corpus_TRAIN_ASR.srl",sep="\t",header=None,na_values=None,keep_default_na=False) ASR["DEV"]=pandas.read_table("./ASR/corpus_DEV_ASR.srl",sep="\t",header=None,na_values=None,keep_default_na=False) ASR["TEST"]=pandas.read_table("./ASR/corpus_TEST_ASR.srl",sep="\t",header=None,na_values=None,keep_default_na=False) TRS["TRAIN"]=pandas.read_table("./TRS/corpus_TRAIN_TRS.srl",sep="\t",header=None,na_values=None,keep_default_na=False) TRS["DEV"]=pandas.read_table("./TRS/corpus_DEV_TRS.srl",sep="\t",header=None,na_values=None,keep_default_na=False) TRS["TEST"]=pandas.read_table("./TRS/corpus_TEST_TRS.srl",sep="\t",header=None,na_values=None,keep_default_na=False) # In[7]: tok2 = nltk.RegexpTokenizer(u'''(?x) \d+(\.\d+)?\s*% # les pourcentages | \w' # les contractions d', l', ... | \w+ # les mots pleins | [^\w\s] # les ponctuations ''') def yield_corpus(df_list): for corpus in df_list: for id,doc in corpus.iterrows(): try: yield tok2.tokenize(doc[2].decode("utf-8")) except: print doc[2] raise # In[8]: vocab=gensim.corpora.dictionary.Dictionary(documents=yield_corpus([ASR["TRAIN"]]+[TRS["TRAIN"]])) db["vocab"]=vocab # In[9]: dico=CountVectorizer(binary=True,vocabulary=vocab.values(),min_df=1,tokenizer=tok2.tokenize) # In[10]: db["vocab"]=vocab # In[10]: ASR_sparse={} TRS_sparse={} for i in ASR.keys(): ASR_sparse[i]=dico.transform(ASR[i][2]) TRS_sparse[i]=dico.transform(TRS[i][2]) db["ASR_SPARSE"]=ASR_sparse db["TRS_SPARSE"]=TRS_sparse # In[11]: def select(elm): return int(elm.split("_")[-1]) #z.apply(select) for i in ASR.keys(): ASR[i]["label"]=ASR[i][1].apply(select) TRS[i]["label"]=TRS[i][1].apply(select) lb = preprocessing.LabelBinarizer(neg_label=0) lb.fit(list(set(TRS["TRAIN"]['label']))) db["LABEL"]={} for i in ASR.keys(): db["LABEL"][i]=lb.transform(TRS[i]['label']) db.sync() db.close() |