Blame view
LDA/04b-mmf_mini_ae.py
4.9 KB
7db73861f add vae et mmf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# coding: utf-8 # In[2]: # Import import gensim from scipy import sparse import itertools from sklearn import preprocessing from keras.models import Sequential from keras.optimizers import SGD,Adam from mlp import * import sklearn.metrics import shelve import pickle from utils import * import sys import os import json # In[4]: infer_model=shelve.open("{}".format(sys.argv[2])) in_dir = sys.argv[1] #['ASR', 'TRS', 'LABEL'] # In[6]: hidden_size=[ 100 , 50, 100 ] input_activation="tanh" output_activation="tanh" loss="mse" epochs=1000 batch=1 patience=60 do_do=[False] sgd = Adam(lr=0.000001)#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True) mlp_h = [ 150 ,150 ,150 ] mlp_loss = "categorical_crossentropy" mlp_dropouts = [] mlp_sgd = Adam(lr=0.0001) mlp_epochs = 2000 mlp_batch_size = 8 mlp_output_activation="softmax" try : sgd_repr=sgd.get_config()["name"] except AttributeError : sgd_repr=sgd try : mlp_sgd_repr=mlp_sgd.get_config()["name"] except AttributeError : mlp_sgd_repr=mlp_sgd params={ "h1" : "_".join([ str(x) for x in hidden_size ]), "inside_activation" : input_activation, "output_activation" : output_activation, "do_dropout": "_".join([str(x) for x in do_do]), "loss" : loss, "epochs" : epochs , "batch_size" : batch, "patience" : patience, "sgd" : sgd_repr, "mlp_h ": "_".join([str(x) for x in mlp_h]), "mlp_loss ": mlp_loss, "mlp_dropouts ": "_".join([str(x) for x in mlp_dropouts]), "mlp_sgd ": mlp_sgd_repr, "mlp_epochs ": mlp_epochs, "mlp_batch_size ": mlp_batch_size, "mlp_output" : mlp_output_activation } name = "_".join([ str(x) for x in params.values()]) try: os.mkdir("{}/{}".format(in_dir,name)) except: pass db = shelve.open("{}/{}/ae_model.shelve".format(in_dir,name),writeback=True) db["params"] = params db["LABEL"]=infer_model["LABEL"] # json.dump(params, open("{}/{}/ae_model.json".format(in_dir,name),"w"), indent=4) keys = ["ASR","TRS"] db["AE"] = {} db["LDA"] = {} for mod in keys : print mod db["LDA"][mod] = train_mlp(infer_model["LDA"][mod]["TRAIN"],infer_model["LABEL"][mod]["TRAIN"], infer_model["LDA"][mod]["DEV"],infer_model["LABEL"][mod]["DEV"], infer_model["LDA"][mod]["TEST"],infer_model["LABEL"][mod]["TEST"], mlp_h ,sgd=mlp_sgd, epochs=mlp_epochs, batch_size=mlp_batch_size, input_activation=input_activation, output_activation=mlp_output_activation, dropouts=mlp_dropouts, fit_verbose=0) res=train_ae(infer_model["LDA"][mod]["TRAIN"],infer_model["LDA"][mod]["DEV"],infer_model["LDA"][mod]["TEST"], hidden_size,patience = params["patience"],sgd=sgd, dropouts=do_do,input_activation=input_activation,output_activation=output_activation, loss=loss,epochs=epochs,batch_size=batch,verbose=0) mlp_res_list=[] for layer in res : mlp_res_list.append(train_mlp(layer[0],infer_model['LABEL'][mod]["TRAIN"], layer[1],infer_model["LABEL"][mod]["DEV"], layer[2],infer_model["LABEL"][mod]["TEST"], mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,sgd=mlp_sgd,epochs=mlp_epochs, output_activation=mlp_output_activation, input_activation=input_activation, batch_size=mlp_batch_size,fit_verbose=0)) db["AE"][mod]=mlp_res_list mod = "ASR" mod2= "TRS" mlp_res_list=[] res = train_ae(infer_model["LDA"][mod]["TRAIN"], infer_model["LDA"][mod]["DEV"], infer_model["LDA"][mod]["TEST"], hidden_size,dropouts=do_do,patience = params["patience"], sgd=sgd,input_activation=input_activation,output_activation=output_activation,loss=loss,epochs=epochs, batch_size=batch, y_train=infer_model["LDA"][mod]["TRAIN"], y_dev=infer_model["LDA"][mod2]["DEV"], y_test=infer_model["LDA"][mod2]["TEST"]) for layer in res : mlp_res_list.append(train_mlp(layer[0],infer_model["LABEL"][mod]["TRAIN"], layer[1],infer_model["LABEL"][mod]["DEV"], layer[2],infer_model["LABEL"][mod]["TEST"], mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,sgd=mlp_sgd,epochs=mlp_epochs, output_activation=mlp_output_activation, input_activation=input_activation, batch_size=mlp_batch_size,fit_verbose=0)) db["AE"]["SPE"] = mlp_res_list db.sync() db.close() |