Blame view
LDA/04c-mmf_sae.py
4.21 KB
7db73861f add vae et mmf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
# coding: utf-8 # In[2]: # Import import gensim from scipy import sparse import itertools from sklearn import preprocessing from keras.models import Sequential from keras.optimizers import SGD,Adam from mlp import * import mlp import sklearn.metrics import shelve import pickle from utils import * import sys import os import json # In[4]: infer_model=shelve.open("{}".format(sys.argv[2])) in_dir = sys.argv[1] #['ASR', 'TRS', 'LABEL'] # In[6]: hidden_size=[ 100, 80, 50 , 20 ] input_activation="relu" output_activation="relu" loss="mse" epochs=3000 batch=1 patience=20 do_do=[ 0 ] * len(hidden_size) sgd = Adam(lr=0.0001)#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True) try : sgd_repr=sgd.get_config()["name"] except AttributeError : sgd_repr=sgd params={ "h1" : "_".join([str(x) for x in hidden_size]), "inside_activation" : input_activation, "out_activation" : output_activation, "do_dropout": "_".join([str(x) for x in do_do]), "loss" : loss, "epochs" : epochs , "batch_size" : batch, "patience" : patience, "sgd" : sgd_repr} name = "_".join([ str(x) for x in params.values()]) try: os.mkdir("{}/SAE_{}".format(in_dir,name)) except: pass db = shelve.open("{}/SAE_{}/ae_model.shelve".format(in_dir,name),writeback=True) # json.dump(params, open("{}/SAE_{}/ae_model.json".format(in_dir,name),"w"), indent=4) keys = ["ASR","TRS"] mlp_h = [ 150 , 300 ] mlp_loss ="categorical_crossentropy" mlp_dropouts = [0,0,0,0] mlp_sgd = Adam(0.001) mlp_epochs = 2000 mlp_batch_size = 8 db["SAE"] = {} db["SAEFT"] = {} for mod in keys : print "MODE ", mod res_tuple=train_sae(infer_model["LDA"][mod]["TRAIN"],infer_model["LDA"][mod]["DEV"], infer_model["LDA"][mod]["TEST"], hidden_size,dropouts=do_do, patience = params["patience"],sgd=sgd,input_activation="tanh", output_activation="tanh",loss=loss,epochs=epochs, batch_size=batch,verbose=0) #print len(res), [len(x) for x in res[0]], [ len(x) for x in res[1]] for name , levels in zip(["SAE","SAEFT"],res_tuple): print "NAME", name mlp_res_by_level = [] for res in levels: mlp_res_list=[] for nb,layer in enumerate(res) : print "layer NB",nb mlp_res_list.append(train_mlp(layer[0],infer_model["LABEL"][mod]["TRAIN"], layer[1],infer_model["LABEL"][mod]["DEV"], layer[2],infer_model["LABEL"][mod]["TEST"], mlp_h,loss=mlp_loss,dropouts=mlp_dropouts, sgd=mlp_sgd,epochs=mlp_epochs,batch_size=mlp_batch_size, fit_verbose=0)) mlp_res_by_level.append(mlp_res_list) db[name][mod]=mlp_res_by_level mod = "ASR" mod2= "TRS" print "mode SPE " res_tuple = train_sae(infer_model["LDA"][mod]["TRAIN"], infer_model["LDA"][mod]["DEV"], infer_model["LDA"][mod]["TEST"], hidden_size,dropouts=[0],patience=params["patience"], sgd=sgd,input_activation=input_activation,output_activation=input_activation, loss=loss,epochs=epochs,batch_size=batch, y_train=infer_model["LDA"][mod2]["TRAIN"], y_dev=infer_model["LDA"][mod2]["DEV"], y_test=infer_model["LDA"][mod2]["TEST"]) for name , levels in zip(["SAE","SAEFT"],res_tuple): mlp_res_by_level = [] for res in levels : mlp_res_list=[] for layer in res : mlp_res_list.append(train_mlp(layer[0],infer_model["LABEL"][mod]["TRAIN"], layer[1],infer_model["LABEL"][mod]["DEV"],layer[2], infer_model["LABEL"][mod]["TEST"], mlp_h,loss=mlp_loss,dropouts=mlp_dropouts, sgd=mlp_sgd,epochs=mlp_epochs,batch_size=mlp_batch_size, fit_verbose=0)) mlp_res_by_level.append(mlp_res_list) db[name]["SPE"] = mlp_res_by_level db.close() |