Blame view

LDA/04e-mm_vae.py 4.85 KB
7db73861f   Killian   add vae et mmf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
  
  # coding: utf-8
  
  # In[2]:
  
  # Import
  import gensim
  from scipy import sparse
  import itertools
  from sklearn import preprocessing
  from keras.models import Sequential
  from keras.optimizers import SGD,Adam
  from mlp import *
  from vae import *
  import sklearn.metrics
  import shelve
  import pickle
  from utils import *
  import sys
  import os
  import json
  # In[4]:
  
  infer_model=shelve.open("{}".format(sys.argv[2]))
  in_dir = sys.argv[1]
  #['ASR', 'TRS', 'LABEL']
  # In[6]:
  
  
  hidden_size= [60]
  input_activation="tanh"
  output_activation="sigmoid"
  epochs=300
  batch=1
  patience=60
  sgd = Adam(lr=0.0001)#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True)
  latent_dim = 30
  
  
  
  mlp_h = [ 256 ]
  mlp_loss = "categorical_crossentropy"
  mlp_dropouts = []
  mlp_sgd = Adam(lr=0.001)
  mlp_epochs = 1000
  mlp_batch_size = 16
  mlp_output_activation="softmax"
  
  try :
      sgd_repr=sgd.get_config()["name"]
  except AttributeError :
      sgd_repr=sgd
  
  try :
      mlp_sgd_repr=mlp_sgd.get_config()["name"]
  except AttributeError :
      mlp_sgd_repr=mlp_sgd
  
  
  params={ "h1" : "_".join([ str(x) for x in hidden_size ]),
  	"inside_activation" : input_activation,
  	"output_activation" : output_activation,
  	"epochs" : epochs ,
  	"batch_size" : batch,
  	"patience" : patience,
          "sgd" : sgd_repr,
          "mlp_h ": "_".join([str(x) for x in mlp_h]),
          "mlp_loss ": mlp_loss,
          "mlp_dropouts ": "_".join([str(x) for x in mlp_dropouts]),
          "mlp_sgd ": mlp_sgd_repr,
          "mlp_epochs ": mlp_epochs,
          "mlp_batch_size ": mlp_batch_size,
          "mlp_output" : mlp_output_activation
          }
  name = "_".join([ str(x) for x in params.values()])
  try:
      os.mkdir("{}/VAE_{}".format(in_dir,name))
  except:
      pass
  db = shelve.open("{}/VAE_{}/ae_model.shelve".format(in_dir,name),writeback=True)
  db["params"] = params
  db["LABEL"]=infer_model["LABEL"]
  #
  json.dump(params,
  	open("{}/VAE_{}/ae_model.json".format(in_dir,name),"w"),
  	indent=4)
  
  keys = ["ASR","TRS"]
  
  db["VAE"] = {}
  db["LDA"] = {}
  for mod in keys : 
      print mod
      db["LDA"][mod] = train_mlp(infer_model["LDA"][mod]["TRAIN"],infer_model["LABEL"][mod]["TRAIN"],
                              infer_model["LDA"][mod]["DEV"],infer_model["LABEL"][mod]["DEV"],
                              infer_model["LDA"][mod]["TEST"],infer_model["LABEL"][mod]["TEST"],
                              mlp_h ,sgd=mlp_sgd,
                              epochs=mlp_epochs,
                              batch_size=mlp_batch_size,
                              input_activation=input_activation,
                              output_activation=mlp_output_activation,
                              dropouts=mlp_dropouts,
                              fit_verbose=0)
  
      res=train_vae(infer_model["LDA"][mod]["TRAIN"],infer_model["LDA"][mod]["DEV"],infer_model["LDA"][mod]["TEST"],
                   hidden_size=hidden_size[0],
                   latent_dim=latent_dim,sgd=sgd,
                   input_activation=input_activation,output_activation=output_activation,
                   nb_epochs=epochs,batch_size=batch)
      mlp_res_list=[]
      for layer in res :
          mlp_res_list.append(train_mlp(layer[0],infer_model['LABEL'][mod]["TRAIN"],
                                        layer[1],infer_model["LABEL"][mod]["DEV"],
                                        layer[2],infer_model["LABEL"][mod]["TEST"],
                                        mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,sgd=mlp_sgd,epochs=mlp_epochs,
                                        output_activation=mlp_output_activation,
                                        input_activation=input_activation,
                                        batch_size=mlp_batch_size,fit_verbose=0))
      db["VAE"][mod]=mlp_res_list
  
  mod = "ASR"
  mod2= "TRS"
  mlp_res_list=[]
  
  res = train_vae(infer_model["LDA"][mod]["TRAIN"],
                  infer_model["LDA"][mod]["DEV"],
                  infer_model["LDA"][mod]["TEST"],
                  hidden_size=hidden_size[0],
                  sgd=sgd,input_activation=input_activation,output_activation=output_activation,
                  latent_dim=latent_dim,
                  nb_epochs=epochs,
                  batch_size=batch,
                  y_train=infer_model["LDA"][mod2]["TRAIN"],
                  y_dev=infer_model["LDA"][mod2]["DEV"],
                  y_test=infer_model["LDA"][mod2]["TEST"])
  
  for layer in res :
      mlp_res_list.append(train_mlp(layer[0],infer_model["LABEL"][mod]["TRAIN"],
                                    layer[1],infer_model["LABEL"][mod]["DEV"],
                                    layer[2],infer_model["LABEL"][mod]["TEST"],
                                    mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,sgd=mlp_sgd,epochs=mlp_epochs,
                                    output_activation=mlp_output_activation,
                                    input_activation=input_activation,
                                    batch_size=mlp_batch_size,fit_verbose=0))
  
  db["VAE"]["SPE"] = mlp_res_list
  
  db.sync()
  db.close()