Blame view

STACKEDAE_MODELS.py 7.39 KB
b6d0165d1   Killian   Initial commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
  
  # coding: utf-8
  
  # In[2]:
  
  # Import
  import pandas
  # Alignement
  import nltk
  import codecs
  import gensim
  from scipy import sparse
  import itertools
  from sklearn.feature_extraction.text import CountVectorizer
  import scipy.sparse
  import scipy.io
  from sklearn import preprocessing
  from keras.models import Sequential
  from keras.layers.core import Dense, Dropout, Activation,AutoEncoder
  from keras.optimizers import SGD,Adam
  from keras.layers import containers
  from mlp import *
  import mlp
  import sklearn.metrics
  import shelve
  import pickle
  from utils import *
  import sys
  import json
  import itertools
  # In[4]:
  
  db=shelve.open("{}.shelve".format(sys.argv[2]),writeback=True)
  
  sparse_model=shelve.open("{}.shelve".format(sys.argv[1]))
  #['ASR', 'TRS', 'LABEL']
  # In[6]:
  
  ASR=sparse_model["ASR"]
  TRS=sparse_model["TRS"]
  LABEL=sparse_model["LABEL"]
  
  db["ASR_SPARSE"]=ASR
  db["TRS_SPARSE"]=TRS
  db["LABEL"]=LABEL
  print "todo label"
  def select(elm):
      return int(elm.split("_")[-1])
  #z.apply(select)
  label_bin={}
  lb = preprocessing.LabelBinarizer(neg_label=0)
  lb.fit(LABEL["TRAIN"].apply(select))
  for i in ASR.keys():
      label_bin=lb.transform(LABEL[i].apply(select))
  
  hidden_size=50
  input_activation="tanh"
  out_activation="tanh"
  loss="mse"
  epochs=500
  batch=1
  patience=60
  w1_size=300
  w2_size=500
  do_do=True
  sgd = Adam(lr=0.0001)#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True)
  try :
      sgd_repr=sgd.get_config()
  except AttributeError :
      sgd_repr=sgd
  json.dump({ "h1" : hidden_size,
  	"inside_activation" : input_activation,
  	"out_activation" : out_activation,
          "do_dropout": do_do,
  	"loss" : loss,
  	"epochs" : epochs ,
  	"batch_size" : batch,
  	"patience" : patience,
          "sgd" : sgd_repr},
  	open("{}.json".format(sys.argv[2]),"w"),
  	indent=4)
  def fintuned(sized,x_data,y_data,input_activation,do_do):
      ae = Sequential()
      previous = x_data["TRAIN"].shape[1]
      for hidden_size,w in sized:
          ae.add(Dense(hidden_size,input_dim=previous,activation=input_activation,weights=w[:2]))
          if do_do :
              ae.add(Dropout(0.5))
          previous = hidden_size
      ae.compile(sgd,loss)
      hist = ae.fit(x_data["TRAIN"].todense(),y_data["TRAIN"].todense(),nb_epoch=epochs,batch_size=batch,
              callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss',
              patience=patience, verbose=0)],validation_data=(x_data["DEV"].todense(),y_data["DEV"].todense()),verbose=1)
      return (ae.get_weights(),hist)
  def get_projection(weights,x_data):
      proj_list=[x_data]
      lappend=proj_list.append
      for w in zip(weights[0::2],weights[1::2]) :
          decoder =Sequential()
          decoder.add(Dense(w[1].shape[0],input_dim=proj_list[-1]["TRAIN"].shape[1],weights=w))
          decoder.compile(sgd,loss)
          lappend({})
          for key in proj_list[-2].keys():
              try : 
                  proj_list[-1][key]=decoder.predict(proj_list[-2][key])
              except :
                  proj_list[-1][key]=decoder.predict(proj_list[-2][key].todense())
      return proj_list
  def learn_ae(hidden_size,data,do_do,input_activation,output_activation):
      autoencode=Sequential()
      autoencode.add(Dense(hidden_size,input_dim=data["TRAIN"].shape[1],init='glorot_uniform',activation=input_activation))
      if do_do :
          autoencode.add(Dropout(0.5))
      try : 
          autoencode.add(Dense(data["DEV"].todense().shape[1],input_dim=hidden_size,init="glorot_uniform",activation=out_activation))
          autoencode.compile(optimizer=sgd,loss=loss)
          hist =autoencode.fit(data["TRAIN"].todense(),data["TRAIN"].todense(),nb_epoch=epochs,batch_size=batch,
                             callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss',
                             patience=patience, verbose=0)],validation_data=(data["DEV"].todense(),data["DEV"].todense()),verbose=1)
  
          auto_decoder=Sequential()
          auto_decoder.add(Dense(hidden_size,input_dim=data["DEV"].todense().shape[1],init='uniform',activation=input_activation,weights=autoencode.get_weights()[:2]))
          auto_decoder.compile(optimizer=sgd,loss=loss)
          data_proj={}
          for i in data.keys():
              data_proj[i]=auto_decoder.predict(data[i].todense())
          return (data_proj,(hist.epoch,hist.history),autoencode.get_weights())
  
  
      except AttributeError :
          autoencode.add(Dense(data["DEV"].shape[1],input_dim=hidden_size,init="glorot_uniform",activation=out_activation))
          autoencode.compile(optimizer=sgd,loss=loss)
          hist =autoencode.fit(data["TRAIN"],data["TRAIN"],nb_epoch=epochs,batch_size=batch,
                             callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss',
                             patience=patience, verbose=0)],validation_data=(data["DEV"],data["DEV"]),verbose=1)
  
          auto_decoder=Sequential()
          auto_decoder.add(Dense(hidden_size,input_dim=data["DEV"].shape[1],init='uniform',activation=input_activation,weights=autoencode.get_weights()[:2]))
          auto_decoder.compile(optimizer=sgd,loss=loss)
  
          data_proj={}
          for i in data.keys():
              data_proj[i]=auto_decoder.predict(data[i])
          return (data_proj,(hist.epoch,hist.history),autoencode.get_weights())
  
  
  
  print "gogo autoencoder ASR"
  hist = {} 
  
  ASR_AE_H1,hist["ASR_AE_H1"],wa1=learn_ae(hidden_size,ASR,do_do,input_activation,out_activation)
  db["ASR_AE_H1"]=ASR_AE_H1
  ASR_AE_H2,hist["ASR_AE_H2"],wa2=learn_ae(w1_size,ASR_AE_H1,do_do,input_activation,out_activation)
  db["ASR_AE_H2"]=ASR_AE_H2
  ASR_AE_H3,hist["ASR_AE_H3"],wa3=learn_ae(hidden_size,ASR_AE_H2,do_do,input_activation,out_activation)
  db["ASR_AE_H3"]=ASR_AE_H3
  ASR_AE_H4,hist["ASR_AE_H4"],wa4=learn_ae(ASR["TRAIN"].shape[1],ASR_AE_H3,do_do,input_activation,out_activation)
  db["ASR_AE_OUT"]=ASR_AE_H4
  db.sync()
  print "fine_tuning"
  
  w,h=fintuned([(hidden_size,wa1),(w1_size,wa2),(hidden_size,wa3),(ASR["TRAIN"].shape[1],wa4)],ASR,ASR,input_activation,do_do)
  hist["finetuning_a2a"] = (h.epoch,h.history)
  for k,proj in enumerate(get_projection(w,ASR)):
      db["ASR_AE_FTA2A_H"+str(k)]=proj
  
  
  w,h=fintuned([(hidden_size,wa1),(w1_size,wa2),(hidden_size,wa3),(ASR["TRAIN"].shape[1],wa4)],ASR,TRS,input_activation,do_do)
  hist["finetuning_a2t"] = (h.epoch,h.history)
  for k,proj in enumerate(get_projection(w,ASR)):
      db["ASR_AE_FTA2T_H"+str(k)]=proj
  
  print "auto encoder trs learning"
  TRS_AE_H1,hist["TRS_AE_H1"],wt1=learn_ae(hidden_size,TRS,do_do,input_activation,out_activation)
  db["TRS_AE_H1"]=TRS_AE_H1
  TRS_AE_H2,hist["TRS_AE_H2"],wt2=learn_ae(w1_size,TRS_AE_H1,do_do,input_activation,out_activation)
  db["TRS_AE_H2"]=TRS_AE_H2
  TRS_AE_H3,hist["TRS_AE_H3"],wt3,=learn_ae(hidden_size,TRS_AE_H2,do_do,input_activation,out_activation)
  db["TRS_AE_H3"]=TRS_AE_H3
  TRS_AE_H4,hist["TRS_AE_H4"],wt4=learn_ae(TRS["TRAIN"].shape[1],TRS_AE_H3,do_do,input_activation,out_activation)
  db["TRS_AE_OUT"]=TRS_AE_H4
  db.sync()
  
  w,h=fintuned([(hidden_size,wt1),(w1_size,wt2),(hidden_size,wt3),(ASR["TRAIN"].shape[1],wt4)],TRS,TRS,input_activation,do_do)
  hist["finetuning_t2t"] = (h.epoch,h.history)
  for k,proj in enumerate(get_projection(w,ASR)):
      db["ASR_AE_FTT2T_H"+str(k)]=proj
  
  
  # In[261]:
  
  #pred_dev= model_TRS_AE.predict(TRS_AE["DEV"],batch_size=1)
  
  db.sync()
  db.close()
  json.dump({ "h1" : hidden_size,
  	"inside_activation" : input_activation,
  	"out_activation" : out_activation,
          "do_dropout": do_do,
  	"loss" : loss,
  	"epochs" : epochs ,
  	"batch_size" : batch,
  	"patience" : patience,
          "sgd" : sgd_repr,
          "hist" : hist},
  	open("{}.json".format(sys.argv[2]),"w"),
  	indent=4)