Blame view
STACKEDAE_MODELS.py
7.39 KB
b6d0165d1 Initial commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
# coding: utf-8 # In[2]: # Import import pandas # Alignement import nltk import codecs import gensim from scipy import sparse import itertools from sklearn.feature_extraction.text import CountVectorizer import scipy.sparse import scipy.io from sklearn import preprocessing from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation,AutoEncoder from keras.optimizers import SGD,Adam from keras.layers import containers from mlp import * import mlp import sklearn.metrics import shelve import pickle from utils import * import sys import json import itertools # In[4]: db=shelve.open("{}.shelve".format(sys.argv[2]),writeback=True) sparse_model=shelve.open("{}.shelve".format(sys.argv[1])) #['ASR', 'TRS', 'LABEL'] # In[6]: ASR=sparse_model["ASR"] TRS=sparse_model["TRS"] LABEL=sparse_model["LABEL"] db["ASR_SPARSE"]=ASR db["TRS_SPARSE"]=TRS db["LABEL"]=LABEL print "todo label" def select(elm): return int(elm.split("_")[-1]) #z.apply(select) label_bin={} lb = preprocessing.LabelBinarizer(neg_label=0) lb.fit(LABEL["TRAIN"].apply(select)) for i in ASR.keys(): label_bin=lb.transform(LABEL[i].apply(select)) hidden_size=50 input_activation="tanh" out_activation="tanh" loss="mse" epochs=500 batch=1 patience=60 w1_size=300 w2_size=500 do_do=True sgd = Adam(lr=0.0001)#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True) try : sgd_repr=sgd.get_config() except AttributeError : sgd_repr=sgd json.dump({ "h1" : hidden_size, "inside_activation" : input_activation, "out_activation" : out_activation, "do_dropout": do_do, "loss" : loss, "epochs" : epochs , "batch_size" : batch, "patience" : patience, "sgd" : sgd_repr}, open("{}.json".format(sys.argv[2]),"w"), indent=4) def fintuned(sized,x_data,y_data,input_activation,do_do): ae = Sequential() previous = x_data["TRAIN"].shape[1] for hidden_size,w in sized: ae.add(Dense(hidden_size,input_dim=previous,activation=input_activation,weights=w[:2])) if do_do : ae.add(Dropout(0.5)) previous = hidden_size ae.compile(sgd,loss) hist = ae.fit(x_data["TRAIN"].todense(),y_data["TRAIN"].todense(),nb_epoch=epochs,batch_size=batch, callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=0)],validation_data=(x_data["DEV"].todense(),y_data["DEV"].todense()),verbose=1) return (ae.get_weights(),hist) def get_projection(weights,x_data): proj_list=[x_data] lappend=proj_list.append for w in zip(weights[0::2],weights[1::2]) : decoder =Sequential() decoder.add(Dense(w[1].shape[0],input_dim=proj_list[-1]["TRAIN"].shape[1],weights=w)) decoder.compile(sgd,loss) lappend({}) for key in proj_list[-2].keys(): try : proj_list[-1][key]=decoder.predict(proj_list[-2][key]) except : proj_list[-1][key]=decoder.predict(proj_list[-2][key].todense()) return proj_list def learn_ae(hidden_size,data,do_do,input_activation,output_activation): autoencode=Sequential() autoencode.add(Dense(hidden_size,input_dim=data["TRAIN"].shape[1],init='glorot_uniform',activation=input_activation)) if do_do : autoencode.add(Dropout(0.5)) try : autoencode.add(Dense(data["DEV"].todense().shape[1],input_dim=hidden_size,init="glorot_uniform",activation=out_activation)) autoencode.compile(optimizer=sgd,loss=loss) hist =autoencode.fit(data["TRAIN"].todense(),data["TRAIN"].todense(),nb_epoch=epochs,batch_size=batch, callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=0)],validation_data=(data["DEV"].todense(),data["DEV"].todense()),verbose=1) auto_decoder=Sequential() auto_decoder.add(Dense(hidden_size,input_dim=data["DEV"].todense().shape[1],init='uniform',activation=input_activation,weights=autoencode.get_weights()[:2])) auto_decoder.compile(optimizer=sgd,loss=loss) data_proj={} for i in data.keys(): data_proj[i]=auto_decoder.predict(data[i].todense()) return (data_proj,(hist.epoch,hist.history),autoencode.get_weights()) except AttributeError : autoencode.add(Dense(data["DEV"].shape[1],input_dim=hidden_size,init="glorot_uniform",activation=out_activation)) autoencode.compile(optimizer=sgd,loss=loss) hist =autoencode.fit(data["TRAIN"],data["TRAIN"],nb_epoch=epochs,batch_size=batch, callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=0)],validation_data=(data["DEV"],data["DEV"]),verbose=1) auto_decoder=Sequential() auto_decoder.add(Dense(hidden_size,input_dim=data["DEV"].shape[1],init='uniform',activation=input_activation,weights=autoencode.get_weights()[:2])) auto_decoder.compile(optimizer=sgd,loss=loss) data_proj={} for i in data.keys(): data_proj[i]=auto_decoder.predict(data[i]) return (data_proj,(hist.epoch,hist.history),autoencode.get_weights()) print "gogo autoencoder ASR" hist = {} ASR_AE_H1,hist["ASR_AE_H1"],wa1=learn_ae(hidden_size,ASR,do_do,input_activation,out_activation) db["ASR_AE_H1"]=ASR_AE_H1 ASR_AE_H2,hist["ASR_AE_H2"],wa2=learn_ae(w1_size,ASR_AE_H1,do_do,input_activation,out_activation) db["ASR_AE_H2"]=ASR_AE_H2 ASR_AE_H3,hist["ASR_AE_H3"],wa3=learn_ae(hidden_size,ASR_AE_H2,do_do,input_activation,out_activation) db["ASR_AE_H3"]=ASR_AE_H3 ASR_AE_H4,hist["ASR_AE_H4"],wa4=learn_ae(ASR["TRAIN"].shape[1],ASR_AE_H3,do_do,input_activation,out_activation) db["ASR_AE_OUT"]=ASR_AE_H4 db.sync() print "fine_tuning" w,h=fintuned([(hidden_size,wa1),(w1_size,wa2),(hidden_size,wa3),(ASR["TRAIN"].shape[1],wa4)],ASR,ASR,input_activation,do_do) hist["finetuning_a2a"] = (h.epoch,h.history) for k,proj in enumerate(get_projection(w,ASR)): db["ASR_AE_FTA2A_H"+str(k)]=proj w,h=fintuned([(hidden_size,wa1),(w1_size,wa2),(hidden_size,wa3),(ASR["TRAIN"].shape[1],wa4)],ASR,TRS,input_activation,do_do) hist["finetuning_a2t"] = (h.epoch,h.history) for k,proj in enumerate(get_projection(w,ASR)): db["ASR_AE_FTA2T_H"+str(k)]=proj print "auto encoder trs learning" TRS_AE_H1,hist["TRS_AE_H1"],wt1=learn_ae(hidden_size,TRS,do_do,input_activation,out_activation) db["TRS_AE_H1"]=TRS_AE_H1 TRS_AE_H2,hist["TRS_AE_H2"],wt2=learn_ae(w1_size,TRS_AE_H1,do_do,input_activation,out_activation) db["TRS_AE_H2"]=TRS_AE_H2 TRS_AE_H3,hist["TRS_AE_H3"],wt3,=learn_ae(hidden_size,TRS_AE_H2,do_do,input_activation,out_activation) db["TRS_AE_H3"]=TRS_AE_H3 TRS_AE_H4,hist["TRS_AE_H4"],wt4=learn_ae(TRS["TRAIN"].shape[1],TRS_AE_H3,do_do,input_activation,out_activation) db["TRS_AE_OUT"]=TRS_AE_H4 db.sync() w,h=fintuned([(hidden_size,wt1),(w1_size,wt2),(hidden_size,wt3),(ASR["TRAIN"].shape[1],wt4)],TRS,TRS,input_activation,do_do) hist["finetuning_t2t"] = (h.epoch,h.history) for k,proj in enumerate(get_projection(w,ASR)): db["ASR_AE_FTT2T_H"+str(k)]=proj # In[261]: #pred_dev= model_TRS_AE.predict(TRS_AE["DEV"],batch_size=1) db.sync() db.close() json.dump({ "h1" : hidden_size, "inside_activation" : input_activation, "out_activation" : out_activation, "do_dropout": do_do, "loss" : loss, "epochs" : epochs , "batch_size" : batch, "patience" : patience, "sgd" : sgd_repr, "hist" : hist}, open("{}.json".format(sys.argv[2]),"w"), indent=4) |