Blame view
Untitled.ipynb
27.5 KB
b6d0165d1 Initial commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 |
{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import shelve ", "import numpy ", "import pandas ", "import sklearn.manifold ", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "data=shelve.open(\"./Sparse_mat.shelve\")" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "array_test=data[\"ASR\"][\"DEV\"].toarray()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(175, 1060)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "array_test.shape" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "max_list=numpy.max(array_test,axis=1)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "a=pandas.DataFrame([numpy.divide(x,numpy.float(max(x))) for x in array_test])" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div> ", "<table border=\"1\" class=\"dataframe\"> ", " <thead> ", " <tr style=\"text-align: right;\"> ", " <th></th> ", " <th>0</th> ", " <th>1</th> ", " <th>2</th> ", " <th>3</th> ", " <th>4</th> ", " <th>5</th> ", " <th>6</th> ", " <th>7</th> ", " <th>8</th> ", " <th>9</th> ", " <th>...</th> ", " <th>1050</th> ", " <th>1051</th> ", " <th>1052</th> ", " <th>1053</th> ", " <th>1054</th> ", " <th>1055</th> ", " <th>1056</th> ", " <th>1057</th> ", " <th>1058</th> ", " <th>1059</th> ", " </tr> ", " </thead> ", " <tbody> ", " <tr> ", " <th>0</th> ", " <td>1.000000</td> ", " <td>0.700000</td> ", " <td>0.100000</td> ", " <td>0.1</td> ", " <td>0.000000</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0.100000</td> ", " <td>0</td> ", " <td>...</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " </tr> ", " <tr> ", " <th>1</th> ", " <td>0.500000</td> ", " <td>0.000000</td> ", " <td>0.250000</td> ", " <td>0.0</td> ", " <td>0.000000</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0.000000</td> ", " <td>0</td> ", " <td>...</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " </tr> ", " <tr> ", " <th>2</th> ", " <td>0.000000</td> ", " <td>0.500000</td> ", " <td>0.000000</td> ", " <td>1.0</td> ", " <td>0.000000</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0.000000</td> ", " <td>0</td> ", " <td>...</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " </tr> ", " <tr> ", " <th>3</th> ", " <td>0.333333</td> ", " <td>0.166667</td> ", " <td>0.666667</td> ", " <td>0.0</td> ", " <td>0.333333</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0.333333</td> ", " <td>0</td> ", " <td>...</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " </tr> ", " <tr> ", " <th>4</th> ", " <td>0.500000</td> ", " <td>0.500000</td> ", " <td>0.000000</td> ", " <td>0.0</td> ", " <td>0.000000</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0.000000</td> ", " <td>0</td> ", " <td>...</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " <td>0</td> ", " </tr> ", " </tbody> ", "</table> ", "<p>5 rows × 1060 columns</p> ", "</div>" ], "text/plain": [ " 0 1 2 3 4 5 6 7 8 \\ ", "0 1.000000 0.700000 0.100000 0.1 0.000000 0 0 0 0.100000 ", "1 0.500000 0.000000 0.250000 0.0 0.000000 0 0 0 0.000000 ", "2 0.000000 0.500000 0.000000 1.0 0.000000 0 0 0 0.000000 ", "3 0.333333 0.166667 0.666667 0.0 0.333333 0 0 0 0.333333 ", "4 0.500000 0.500000 0.000000 0.0 0.000000 0 0 0 0.000000 ", " ", " 9 ... 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 ", "0 0 ... 0 0 0 0 0 0 0 0 0 0 ", "1 0 ... 0 0 0 0 0 0 0 0 0 0 ", "2 0 ... 0 0 0 0 0 0 0 0 0 0 ", "3 0 ... 0 0 0 0 0 0 0 0 0 0 ", "4 0 ... 0 0 0 0 0 0 0 0 0 0 ", " ", "[5 rows x 1060 columns]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a.head()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [], "source": [ "trans=sklearn.manifold.TSNE()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [], "source": [ "tsne=trans.fit_transform(a.values)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.collections.PathCollection at 0x7f0e612a9e90>" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEACAYAAAC3adEgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz AAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+MHHeZ5/H3M2Rnmd0Y4omDg+KQZJ3k4tzCZhwwkYzk 1mpnJqx0ThyjKEInnMBuTiQLe8ccZ3uDlGF3OHAkQwAp7PmWu0y4sFG0kYm5C9MzgfSefCIkl99g bzIcJBsbYnDCcRthsQ5+7o+qnqnqqequ6qqe7h5/XtLI3d+uqn66ZlxP1fP9fqvN3REREakb6HYA IiLSW5QYREQkRolBRERilBhERCRGiUFERGKUGEREJKZwYjCz3zaz75nZU2b2AzP7j2H7ajObNbPn zaxqZm+NrLPbzObN7LCZjRWNQUREymNlzGMws99x91+Z2ZuA/wVMAFuBV939DjPbCax2911mdjlw L/AeYB3wMHCJa0KFiEhPKKWU5O6/Ch/+drjNXwDXANNh+zRwbfh4K3Cfu7/h7i8C88CmMuIQEZHi SkkMZjZgZk8BrwA1dz8ErHX3YwDu/grwtnDx84CXI6sfDdtERKQHnFHGRtz9FDBiZm8BqmZWARpL QyoViYj0gVISQ527/z8zewh4N3DMzNa6+zEzOxf4WbjYUeD8yGrrwrYlzEzJRESkDe5u7a5bxqik NfURR2Y2BIwCTwEHgBvDxXYAD4aPDwA3mNmgmV0EXAw8lrZ9d+/5n9tvv73rMayEGBWn4uz1n36J s6gyrhjeDkybmREkmq+5+7fDPof7zezDwEvA9QDufsjM7gcOASeBW7yMTyIiIqUonBjc/TlgY0L7 a8AfpazzWeCzRd9bRETKp5nPJahUKt0OoaV+iBEUZ9kUZ7n6Jc6iSpng1ilmpiqTiEhOZoZ3s/NZ RERWFiUGERGJUWIQEZEYJQYREYlRYhARkRglBhERiVFiEBGRGCUGERGJUWIQEZEYJQYRkTZUq1XG xrYzNradarXa7XBKpVtiiIjkVK1W2bZtBydO7AFgaGgn+/dPMz4+3uXIAkVviaHEICKS09jYdubm thJ81QzANKOjB5idfaCbYS3QvZJERKRUpX61p4jI6WBi4mYOHtzBiRPB86GhnUxMTHc3qBKplCQi 0oZqtcrevfuAIFH0Sv8CqI9BREQaqI9BRERKVTgxmNk6M/uOmf3AzJ4zs4+H7avNbNbMnjezqpm9 NbLObjObN7PDZjZWNAYRESlP4VKSmZ0LnOvuT5vZmcATwDXATcCr7n6Hme0EVrv7LjO7HLgXeA+w DngYuCSpZqRSkohIfl0vJbn7K+7+dPj4deAwwQH/GqDeTT8NXBs+3grc5+5vuPuLwDywqWgcIiJS jlL7GMzsQuAK4FFgrbsfgyB5AG8LFzsPeDmy2tGwTUREekBpiSEsI/0d8OfhlUNjDUg1IRGRPlDK BDczO4MgKXzN3R8Mm4+Z2Vp3Pxb2Q/wsbD8KnB9ZfV3YlmhycnLhcaVSoVKplBGyiMiKUavVqNVq pW2vlHkMZnYPcNzdPxFp2wO85u57Ujqf30tQQppDnc8iIqXp+gQ3M9sM/E/gOYJykQN/ATwG3E9w dfAScL27/99wnd3AR4CTBKWn2ZRtKzGIiOTU9cTQSUoMIiL5dX24qoiIrCxKDCIiEqPEICIiMUoM IiISo8QgIiIxSgwiIhKjxCAiIjFKDCIiEqPEICIiMUoMIiISo8QgIiIxSgwiIhKjxCAiIjFKDCIi EqPEINKgWq0yNradsbHtVKvVbocjsuyUGEQiqtUq27btYG5uK3NzW9m2bUffJQclNilKX9QjEjE2 tp25ua3AjrBlmtHRA8zOPtDNsDKrJ7YTJ/YAMDS0k/37pxkfH+9yZLKcin5RzxllBiMi3bV3774w KQSJ7cSJoE2JQfJQYhCJmJi4mYMHd3DiRPB8aGgnExPT3Q1KZJmV0sdgZl81s2Nm9mykbbWZzZrZ 82ZWNbO3Rl7bbWbzZnbYzMbKiEGkDOPj4+zfH5SPRkcP9F0ZZmLiZoaGdgLTwHSY2G7udljSZ0rp YzCz9wGvA/e4+7vCtj3Aq+5+h5ntBFa7+y4zuxy4F3gPsA54GLgkqTNBfQwi+VWrVfbu3QcEiaKf EpuUo2gfQylXDO5+EPhFQ/M1BKcthP9eGz7eCtzn7m+4+4vAPLCpjDgkoFEpi1b6vkj6fOPj48zO PsDs7ANKCtIedy/lB7gAeDby/LWG118L//0y8MFI+98A16Vs0yWfmZkZHxpa63C3w90+NLTWZ2Zm uh1WV6z0fbHSP5+0Lzx2tn08X87O57ZqQpOTkwuPK5UKlUqlpHBWJo1KWbTS98VK/3ySXa1Wo1ar lba9TiaGY2a21t2Pmdm5wM/C9qPA+ZHl1oVtiaKJQaSXLEctX/0FkkXjSfOnP/3pYhsscrkR/QEu BJ6LPN8D7Awf7wQ+Fz6+HHgKGAQuAn5I2AmesM3OXGetYKdjeWFmZsZHR6/z0dHrYp+1k/tiOfZz q/c4HX/Xkg0FS0llJYWvAz8Bfg38I3ATsJpgxNHzwCxwVmT53WFCOAyMNdlux3bcSpZ2oOx17cSd 5eDZ7r5otu7o6HXhe3r4c7ePjl5X6ufL8h79+ruWzuqJxNCpHyWG00e7Z795D9BZD6St4mnnffN+ vk59Nln5lBhkRWjnDDzvenkOzq22m/dA3+4VRtb3UFlJooomBt1dVXrWE08803L+QXym779nYGCC 48dfTVwnPoonuNFcvWM3r+WYIZ3nPfJ8tpU+t0NKUCSrdPoHXTGcNhrPeOEtDhOZzn5nZmZ8ZGSz DwysbnrGXPTqYmpqqlB/xeL2Jnxg4GwfGdlS2ln9yMiWJZ9tZGRLps+lK4uVB5WSZKWo18iHh9eH SSF72SVrR+3g4DkLB8XBwXNaJpx6Ipiamsp0QG1W58+awNoxMrLZYU0ksa7xkZHNS5Zrt2Qn/aVo YlApSXpG/VYOV175B8A7M61TL4s88cQzwHMZ1jgJ/HX4c7LpNvfu3cfExM3Mzj7A3//9ky1LNa2+ 5Gd8fJw1a9Zy6tQXmm4nKZZWZZ81a9aG2zwQ/uwI20TaUCSrdPoHXTGsGHlGzGQtd+QtP2W9qkh6 72DdCYfrwp+JJetm2X6nOsuzlqqabVOjmlYOVEqS5Zb3ANJOXbv+HiMjm31kZEvmuQTDw+tTyzhB ieoqh5ncB+6pqakw8SwmoampqUzrNtsXg4Pn+MjI5lLmSmQtVSX9/nqh70GJqTxKDLKslmM8ftb3 arfDNajFTySeLQfJY2ms+Q/6zc/ag6S3xQcHz0r9fO3st+UY9tsJvZCYVhIlBllWZR2s0s7s87xX kQ7X4eH1KWfLE7Erg3gpKX0bdXk6mPPOlRgYWL3kKqXxvdMSWyvdnmXd7cS00igxyLIqY6JWlqGo WUo/aXX/xgNYq5iXvj6xJHFluerIu4+Srngal5uamvKBgbPD/ZD8fvH4JmLJMuvoqW7fl0mJoVxK DLKssh6oGuUZitrqINysFJM0rLSxbWBgtY+MbF6IO+2glHTwzN5P0byjOhg6e1bsIJ40fDbrATO+ 3IzDVYlXNEn7t3G/ltHfkZdKSeVSYpBlk7e0EV2vfsAJyj/5R+7UD3KtOm+bHeRHRraESW1iyQGx VTJpVlJKOsvP3lE9EyaPqzKUwdIP+Fn7W9L2b6f6LvJQ53N5lBhk2ZRRRhocPCe1w7VVB3CrGNJq 7PXE0exqZWpqyoeH1/vw8PqFGc5J75PliqndYatpfRZZSkRZ+1uK/B6D39tVDlf54OBZOnj3MCUG WTZlnWnWh5+m1/CTO4CbxZB2AB0cPCs22zl4bSZl3cX3SzsDb3XFlLUDOE+fRZZtJpWvmg3dbWf4 cJ5Z49JdSgyybLIcUPJ2/Na16gBuNcQzOGO+KjwoTnm95LJ+/RVL3j9Yrnl5aGRkc0KyaF4Gy3J2 H90/9auUVn0Wyfun+QimVh38WeaJ5Hl/6S1KDNIxaROh0urAeWr1jes1OyNu1a8wMzMTGx4KwcE5 GDZ69pLtrlr1Dh8eXr/QAZ2WlEZGtrTsv4jW8Vv1ByRfmSQnm7yjhqK/m6z3mspz5aDE0F+UGKQj 2ik3ZB3dk/w+6WfZ+Yeb3r0wuSzY7uLnMDurxUim9DJWYzkF1sRq7fkSx+LrWZNpUrJI2q/tX6U1 vz2H+hj6hxKDdEQnRq4kHciyjLrJlhji9fV6eSRYb3Hkz9DQOQ3bil8dtKrlx0tWM7HX20kcSYkz y75vlrizJvX8iUF9DP1CiUE6otXon6Qz1XYOVlmHfzabSZw2PDTpQG22OvJ+M954lZLU6RxNVK36 QtISR/21Zp8jy6isLL+f6Laa9SGolLRy9W1iAK4G/gF4AdiZskzJu0uyajYJqtUM2TzljSzbWyw1 XeUDA2fnunnd0gP1ROTgfNWS9Ro7nZMm1zUrO7UezZR8D6Wso7Lqy7Yz8ql5J3S8P6VR2YlBcxY6 qy8TAzAA/BC4APgt4GngsoTlSt9hkl3r0k/2A0Sz+nuzg0T+OQHxclTaiKNmZ+aLB976aKH4Npud 2Z955ttjVylLO5izlsuSh5tm6ZPJs+/i22yeQJpdDeY5yLfTfyX59GtiuAr4VuT5rqSrBiWG3tNO B7N76/p747L1bWWZKd3sYNlsVFSzGcrx/onk9ZP2Rb1jNlq+aXdbSZ+zWcJq3H9Zb6iXJ4EkjVIr a5CClKdfE8N2YF/k+b8GvpSwXMm7S1rJcoBvZ0iqe/OO27TtN5spHY13ZGSzr1r1jqZJq7HentRp He1HCeJYWm5aukx0mOxM4vsGSTGpdLWlYZlWJbXk90pernlJqr581rkUSToxSEGKK5oYzmjnW9+W 0+Tk5MLjSqVCpVLpWiwrXf2rKYOvsISDB3ewf/804+PjC8uMj4+zf//0wtdRTkwEjxe/9hJOnIC9 e/fF1oP6109uXVgOppfE0Litf/5nGBn5r6xZc2Dh/erbbYx3YGAi8XPVl2/8bJdddjFwUeo6+/dP 88EP3sprr8VfO3781dgyH/jATbz++puAyyLLHIu93+Dgv2XVqp/wT/8U39Yzz3yfU6f2LiwTfNaz Y58zab8EJhka+jETE9NNlxse/iuuvPIPlmyzcf8F52c7GBr6b7Ftlm1i4mYOHtzBiRPB86GhnR19 v9NBrVajVquVt8EiWaXdH4JS0kzkuUpJPaDM/oMstezGu5xm2Va8zLSlYdmJ1FE/Sdtdv/6d3upm d61KYGmvx2MLSj6rVp0fu/oJYm09ES0t/jPOeFtb3yLXbNm0O7Kmabe/QJ3PnUWflpLexGLn8yBB 5/OGhOVK32GSrp3EkGUY5tLlk+9yWn8965DXpFnN9Y7lLKOistbgm5XA0jrV0/oVorO2l/afZL+/ Udq9ldJKfXlGikW3leXgrYN87+nLxBDEzdXA88A8sCtlmZJ3lzST9+yvsZ6d9lWWjdo9ICWN3Mky L2B09LrEfpBmX5STtQO89TDcrH0U5fUHtPrc7SRhjRzqL32bGDIFp8Sw7BoPKs3OBDtVesozFyLt CqHZmXN9zH5ah2+eDvBmI5vS5hsk3Ryw2dDZ6OfLOyqszH3d7Herq4beosQgHZHljDFPjbr8s9jm Vyitz+TrB/340NK0dZNuFb64bPq3tS0tASXf9TTtPbOMAGu2P5sd4JsdzPMkBl1d9B4lBumILAeG btW9s/RppG0nqRzVWNfPc2WSZXvxq4LkzuakfZT1zqutDv7tzmDX7TL6lxKDdESekUat6t55DhxZ 5jpk2V7a/ZXi6y69V1JyKems1DkGefoJWpWBkudZtO6cbr3dpbe7yJr4s5SHlBh6jxKDdESWoaV1 rQ4MeZJMltnRWa4q0u6vFP9czTuGFzuftzRdbmRkiw8Pr/czz3x7xriylYGyJp282826D7P2GaiU 1HuUGKRjWg0tjS5XRlkirc6eFFcZB70yOnwbk2ezUlG2q4J8sTYul2e7ZY5IUudzb1FikI7Kc7af Njoo6YBY5L2avV/emIt07ia9z+Lcimz1/KWlraX3Psq7b7IuX9aIJOk9SgzSUUUOEnnPPPOMOmpc L3qAa9bh2nggLDIcNO0KpzGWZn0w8bJX+t1Si+3L5h3+jZQY+p8Sg3RUkfpxOweYrKOOWsWXNVkU iTlvCa3Zje+yfr9C42dqdqCPvp71RoetPpdKRv1BiUE6rt2DQbtnnnnWy7psux3grb7CcmpqyoeH 1/vw8PpM9y0Kvl60/e9OiMaZJ2G3s/2kqyt1MveHoomh5++uKt03Pj6+5E6pWcTvovkcAwN3c/z4 71OtVnNv7/jxY4yNbV/Ybtb1q9Uqe/fu44knniG4s2sWJ4G/jjxO3/ZnPvPlhbuTfuYzO3n3u9/d NLbh4Z/z9a9PL1lmy5aNfPvb/45Tp4Lnre44mvWOtglRA/uAn3D8+JtSl0r6nbf/ntJ3imSVTv+g K4a+l7c0VF+nvXkE7c8xqCvzaiXrGXaz4bVp2rkCCG7rscazXg0VfU/pHlRKkl7Xbl9DlnkEjcs2 H12TfvfSdmLNO/Kn3dneafsnb1mn1X5sRaWk/lE0MaiUJD0pWsqol5CyLNvcO7nyyh8zO/tA6hKt vkSmXpqCoPxz8ODOpl84U48ty5cg5TE+Ps5tt32Mz3/+rwD4xCc+1nJba9ac3dZ7Rd+z8UuaVEZa oYpklU7/oCuGFaHomWa762dZL8sQ1mbbK2MIaLsTypZjHelPqJQk/aDoMMes6+cZ0tnpkT151s27 f9qNRcNNTw9KDCKhTh/os0xoKyu2VtQRLM0oMYiEOnHbiKilo6XSv8Anbf2sZatWVBaSZpQYpDT9 Xmbo9CSx+jqLo6XSv/IzizL6Xvr59yWdo8QgpVgJZ6BFD/R5P2/Rco7KQdIpXU0MwAeA7wO/ATY2 vLYbmAcOA2OR9o3As8ALwJ0ttt+h3SaNVspBajnPoosm05Wyz6X3FE0MRecxPAdsA/5TtNHMNgDX AxuAdcDDZnZJGPBXgI+4++Nm9pCZjbt7tWAcIkD7t+9o972KjOtvNWdCpFssOFYX3IjZI8CEuz8Z Pt9FkLH2hM+/BUwCLwHfcffLw/YbgC3u/tGU7XoZ8UlrjROwhoZ2FpqAJdlEJ8zluQeUSDNmhrtb u+t3aubzecB3I8+Phm1vAEci7UfCdukyzWrtjuW8whHJqmViMLM5YG20CXDgNnf/ZqcCq5ucnFx4 XKlUqFQqnX7L05YOUiL9qVarUavVStvecpWSZoDbCUpJj7j7hrBdpSQRkZIVLSUNlBlL5PEB4AYz GzSzi4CLgcfc/RXgl2a2ycwM+BDwYIkxiIhIQYUSg5lda2YvA1cB/z3sZMbdDwH3A4eAh4BbIqf+ twJfJRiuOu/uM0ViEBGRcpVSSuoUlZJERPLrpVLSiletVhkb287Y2HaqVU29EJGVSYkho/o4/7m5 rczNbWXbth1KDtJ1OlmRTlApKaOxse3MzW2l/kXoMM3o6IGm3wYm0kmalChpenWCm4h02N69+8Kk EJysnDgRtCkxSFFKDBnpvjYicrpQKSkH3ddGeolKSZKmaClJiUGkj+lkRZIoMYiISIzmMYiISKmU GEREJEaJQUREYpQYREQkRolBREql23T0P41KEpHSaG5Fb9BwVRHpGbqnWG/QcFURESmV7pUkIqXR PcVWBpWSRKRUuk1H96mPQUREYrrax2Bmd5jZYTN72sweMLO3RF7bbWbz4etjkfaNZvasmb1gZncW eX8RESlf0c7nWeBfuvsVwDywG8DMLgeuBzYA7wfuMrN69voK8BF3vxS41Mx0nSki0kMKJQZ3f9jd T4VPHwXWhY+3Ave5+xvu/iJB0thkZucCq9z98XC5e4Bri8QgIiLlKnO46oeBh8LH5wEvR147Grad BxyJtB8J20REpEe0HK5qZnPA2mgT4MBt7v7NcJnbgJPu/rdlBzg5ObnwuFKpUKlUyn4LEZG+VqvV qNVqpW2v8KgkM7sR+FPgD93912HbLsDdfU/4fAa4HXgJeMTdN4TtNwBb3P2jKdvWqCQRkZy6PSrp auCTwNZ6UggdAG4ws0Ezuwi4GHjM3V8Bfmlmm8LO6A8BDxaJQUREylV05vOXgUFgLhx09Ki73+Lu h8zsfuAQcBK4JXLqfytwN/Bm4CF3nykYg4iIlEgT3EREVhjdRE9EREqlxCAiIjFKDCIiEqPEICIi MUoMIiISo8QgIiIxSgwiIhKjxCAiIjFKDCIiEqPEICIiMUoMIiISo8QgIiIxSgwiIhKjxCAiIjFK DCIiEqPEICIiMUoMIiISo8QgIiIxSgwiIhJTKDGY2V+a2TNm9rSZPWxm6yKv7TazeTM7bGZjkfaN Zvasmb1gZncWeX8RESmfuXv7K5ud6e6vh48/BrzL3f/UzC4H7gXeA6wDHgYucXc3s+8Bf+buj5vZ Q8AX3b2asn0vEp+IyOnIzHB3a3f9QlcM9aQQ+l3g1fDxVuA+d3/D3V8E5oFNZnYusMrdHw+Xuwe4 tkgMIiJSrjOKbsDMpoAPAb8C3hs2nwd8N7LY0bDtDeBIpP1I2C4iIj2iZWIwszlgbbQJcOA2d/+m u38K+JSZ7QTuBG4qM8DJycmFx5VKhUqlUubmRUT6Xq1Wo1arlba9Qn0MsQ2ZnQ885O7vNLNdgLv7 nvC1GeB24CXgEXffELbfAGxx94+mbFN9DCIiOXW1j8HMLo48vRZ4Onx8ALjBzAbN7CLgYuAxd38F +KWZbTIzIyhBPVgkBhERKVfRPobPmdmlwG+AHwEfBXD3Q2Z2P3AIOAncEjn1vxW4G3gzwRXGTMEY RESkRKWVkjpBpSQRkfy6WkoSEZGVR4lBRERilBhERCRGiUFERGKUGEREJEaJQUREYpQYREQkRolB RERilBhERCRGiUFERGKUGEREJEaJQUREYpQYREQkRolBRERilBhERCRGiUFERGKUGKQU1WqVsbHt jI1tp1qtdjscESlA3+AmhVWrVbZt28GJE3sAGBrayf7904yPj3c5MpHTU098g5uZTZjZKTMbjrTt NrN5MztsZmOR9o1m9qyZvWBmd5bx/tJde/fuC5PCDiBIEHv37ut2WCLSpsKJwczWAaPAS5G2DcD1 wAbg/cBdZlbPXl8BPuLulwKXmplOK0VEekgZVwxfAD7Z0HYNcJ+7v+HuLwLzwCYzOxdY5e6Ph8vd A1xbQgzSRRMTNzM0tBOYBqYZGtrJxMTN3Q5LRNp0RpGVzWwr8LK7P7d4QQDAecB3I8+Phm1vAEci 7UfCdulj4+Pj7N8/vVA+mphQ/4JIP2uZGMxsDlgbbQIc+BTwFwRlJDnNjY+PKxmIrBAtE4O7Jx74 zez3gQuBZ8L+g3XAk2a2ieAK4R2RxdeFbUeB8xPaU01OTi48rlQqVCqVViGLiJxWarUatVqttO2V NlzVzH4MbHT3X5jZ5cC9wHsJSkVzwCXu7mb2KPBx4HHgfwBfcveZlG1quKqISE5Fh6sW6mNo4ARl Jtz9kJndDxwCTgK3RI7wtwJ3A28GHkpLCiIi0h2a4CYissL0xAQ3ERFZOZQYREQkRolBRERilBhE RCRGiUFERGKUGEREJEaJQUREYpQYREQkRolBRERilBhERCRGiUFERGKUGEREJEaJQUREYpQYREQk RolBRERilBhERCRGiUFERGKUGEREJEaJQUREYgolBjO73cyOmNmT4c/Vkdd2m9m8mR02s7FI+0Yz e9bMXjCzO4u8v4iIlK+MK4bPu/vG8GcGwMw2ANcDG4D3A3eZWf2Lqb8CfMTdLwUuNbPxEmLoqlqt 1u0QWuqHGEFxlk1xlqtf4iyqjMRgCW3XAPe5+xvu/iIwD2wys3OBVe7+eLjcPcC1JcTQVf3wx9IP MYLiLJviLFe/xFlUGYnhz8zsaTP7GzN7a9h2HvByZJmjYdt5wJFI+5GwTUREekTLxGBmc2GfQP3n ufDffwXcBfyeu18BvALs7XTAIiLSWebu5WzI7ALgm+7+LjPbBbi77wlfmwFuB14CHnH3DWH7DcAW d/9oyjbLCU5E5DTj7kll/kzOKPLGZnauu78SPr0O+H74+ABwr5l9gaBUdDHwmLu7mf3SzDYBjwMf Ar6Utv0iH0xERNpTKDEAd5jZFcAp4EXg3wC4+yEzux84BJwEbvHFS5NbgbuBNwMP1UcyiYhIbyit lCQiIitDT8x8NrM7wolwT5vZA2b2lshrPTNRzsw+YGbfN7PfmNnGSPsFZvaryES/u3oxzvC1ntmf DXHlnizZLWZ2tZn9Q7ivdnY7njoze9HMnjGzp8zssbBttZnNmtnzZlaNjBxczri+ambHzOzZSFtq XN36fafE2XN/l2a2zsy+Y2Y/CAcDfTxsL2+funvXf4A/AgbCx58DPhs+vhx4iqDkdSHwQxavcr4H vCd8/BAwvgxx/gvgEuA7wMZI+wXAsynr9FKcG3ppfzbEfDvwiYT21Ji79Lc6EMZwAfBbwNPAZd2K pyG2HwGrG9r2AP8hfLwT+FwX4nofcEX0/0haXM3+z3cpzp77uwTOBa4IH58JPA9cVuY+7YkrBnd/ 2N1PhU8fBdaFj7fSQxPl3P15d58neVLfkrYejLPXJx5mniy5rFHFbQLm3f0ldz8J3BfG2AuMpVWA a4Dp8PE0Xfi9uvtB4BcNzWlxJf6f72Kc0GN/l+7+irs/HT5+HThMcMwsbZ/2RGJo8GGCM1bor4ly F4aXmo+Y2fvCtl6Ls9f3Z57Jkt3SGE+3f6dRDsyZ2eNm9idh21p3PwbBAQV4W9eii3tbSly99vuG Hv67NLMLCa5yHiX9d5071qKjkjIzszlgbbSJ4A/5Nnf/ZrjMbcBJd//b5YqrUZY4E/wEeIe7/yKs 6X/DzC7vwTi7qlnMBJMl/9Ld3cymCCZL/snSrUgTm939p2Z2DjBrZs8T7N+oXh1t0qtx9ezfpZmd Cfwd8Ofu/rotnffV9j5dtsTg7qPNXjezG4E/Bv4w0nwUOD/yfF3Yltbe8ThT1jlJeAnq7k+a2f8B Lu21OJvCv92RAAABsUlEQVTE07E4o3LE/J+BenJblthyOAq8I/K82/EscPefhv/+3My+QVAuOGZm a939WFgy/FlXg1yUFldP/b7d/eeRpz3zd2lmZxAkha+5+4Nhc2n7tCdKSWFP/yeBre7+68hLB4Ab zGzQzC5icaLcK8AvzWyTmRnBRLkHl2y4w2EvPDBbY2YD4ePfC+P8Ua/FSQ/vz/APua5xsuSSmJcz tgaPAxdbMBJtELghjLGrzOx3wjNIzOx3gTHgOYLYbgwX28Hy//3VGUv/Fm8MH0fj6vbvOxZnD/9d /hfgkLt/MdJW3j5djl70DL3s8wS3y3gy/Lkr8tpugl70w8BYpP1Kgj/8eeCLyxTntQS1uhPAT4Fv he31P5gngf8N/HEvxtlr+7Mh5nuAZwlG+XyDoF7aNOYu/r1eTTASZB7Y1e14wpguCvfdU+HvcVfY Pgw8HMY7C5zVhdi+TlBu/TXwj8BNwOq0uLr1+06Js+f+LoHNwG8iv+8nw7/J1N913lg1wU1ERGJ6 opQkIiK9Q4lBRERilBhERCRGiUFERGKUGEREJEaJQUREYpQYREQkRolBRERi/j8qixgWMJZyuAAA AABJRU5ErkJggg== ", "text/plain": [ "<matplotlib.figure.Figure at 0x7f0e613b0fd0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter([x[0] for x in tsne],[y[1] for y in tsne])" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "plt.show()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "ename": "NameError", "evalue": "name 'title' is not defined", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-20-7cea0497790c>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m \u001b[0;32m 1\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m \u001b[0;32m 2\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0maxes\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m \u001b[1;32m----> 3\u001b[1;33m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtitle\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtitle\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m \u001b[0m", "\u001b[1;31mNameError\u001b[0m: name 'title' is not defined" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEACAYAAABWLgY0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz AAALEgAACxIB0t1+/AAADVRJREFUeJzt3GGI3PWdx/H3R3PecT0RVBAaq9xpRZBaKW0ucMKNtZxr n6T4pFGwVCgE7iz3rOqDkn1SPJ+VXmklJQh9UFKoB5e7U7SIQ/FObQo1ttfERHvYJFqLthVaENLw vQc7l4zbZGd2d3Y2+d77BQPzn/ntf3782H3vP7/ZSaoKSVJPF232BCRJG8fIS1JjRl6SGjPyktSY kZekxoy8JDU2MfJJ9iZ5K8nLK4z5WpKjSV5KcstspyhJWqtpruQfA+4415NJ7gSuq6oPA7uAR2c0 N0nSOk2MfFU9B/xmhSE7gG+Pxr4IXJbkqtlMT5K0HrPYk98KHBs7PjF6TJK0yXzjVZIa2zKDc5wA PjR2fPXosT+SxP8oR5LWoKqylq+b9ko+o9vZ7Ac+B5BkO/DbqnrrXCeqKm9V7N69e9PncL7cXAvX wrVY+bYeE6/kk3wHGABXJPkFsBu4ZKnXtaeqnkjy6SSvAr8H7lvXjCRJMzMx8lV1zxRj7p/NdCRJ s+Qbr5tkMBhs9hTOG67FGa7FGa7FbGS9+z2rerGk5vl6ktRBEmqD33iVJF2AjLwkNWbkJakxIy9J jRl5SWrMyEtSY0Zekhoz8pLUmJGXpMaMvCQ1ZuQlqTEjL0mNGXlJaszIS1JjRl6SGjPyktSYkZek xoy8JDVm5CWpMSMvSY0ZeUlqzMhLUmNGXpIaM/KS1JiRl6TGjLwkNWbkJakxIy9JjRl5SWrMyEtS Y0Zekhoz8pLUmJGXpMaMvCQ1NlXkkywkOZzkSJIHzvL8FUmeTPJSkp8k+fzMZypJWrVU1coDkouA I8DtwBvAAWBnVR0eG7Mb+LOqeijJlcArwFVV9Ydl56pJrydJer8kVFXW8rXTXMlvA45W1etVdRLY B+xYNuaXwKWj+5cC7ywPvCRp/rZMMWYrcGzs+DhL4R/3LeCZJG8AfwF8djbTkyStxzSRn8ZDwMGq ui3JdcD3k9xcVb9bPnBxcfH0/cFgwGAwmNEUJKmH4XDIcDicybmm2ZPfDixW1cLo+EGgquqRsTFP AF+pqv8cHT8DPFBVP1p2LvfkJWmVNnpP/gBwfZJrk1wC7AT2LxtzCPjUaDJXATcAP1/LhCRJszNx u6aqTiW5H3iapV8Ke6vqUJJdS0/XHuBh4LEkB4EAX6qqX2/kxCVJk03crpnpi7ldI0mrttHbNZKk C5SRl6TGjLwkNWbkJakxIy9JjRl5SWrMyEtSY0Zekhoz8pLUmJGXpMaMvCQ1ZuQlqTEjL0mNGXlJ aszIS1JjRl6SGjPyktSYkZekxoy8JDVm5CWpMSMvSY0ZeUlqzMhLUmNGXpIaM/KS1JiRl6TGjLwk NWbkJakxIy9JjRl5SWrMyEtSY0Zekhoz8pLUmJGXpMaMvCQ1NlXkkywkOZzkSJIHzjFmkOTHSX6a 5NnZTlOStBapqpUHJBcBR4DbgTeAA8DOqjo8NuYy4L+Av6uqE0murKq3z3KumvR6kqT3S0JVZS1f O82V/DbgaFW9XlUngX3AjmVj7gEer6oTAGcLvCRp/qaJ/Fbg2Njx8dFj424ALk/ybJIDSe6d1QQl SWu3ZYbn+RjwSeADwPNJnq+qV2d0fknSGkwT+RPANWPHV48eG3cceLuq3gPeS/ID4KPAH0V+cXHx 9P3BYMBgMFjdjCWpueFwyHA4nMm5pnnj9WLgFZbeeH0T+CFwd1UdGhtzI/DPwALwp8CLwGer6mfL zuUbr5K0Sut543XilXxVnUpyP/A0S3v4e6vqUJJdS0/Xnqo6nOQp4GXgFLBneeAlSfM38Up+pi/m lbwkrdpG/wmlJOkCZeQlqTEjL0mNGXlJaszIS1JjRl6SGjPyktSYkZekxoy8JDVm5CWpMSMvSY0Z eUlqzMhLUmNGXpIaM/KS1JiRl6TGjLwkNWbkJakxIy9JjRl5SWrMyEtSY0Zekhoz8pLUmJGXpMaM vCQ1ZuQlqTEjL0mNGXlJaszIS1JjRl6SGjPyktSYkZekxoy8JDVm5CWpMSMvSY0ZeUlqbKrIJ1lI cjjJkSQPrDDuE0lOJrlrdlOUJK3VxMgnuQj4OnAHcBNwd5IbzzHun4CnZj1JSdLaTHMlvw04WlWv V9VJYB+w4yzjvgh8D/jVDOcnSVqHaSK/FTg2dnx89NhpST4IfKaqvglkdtOTJK3HrN54/Sowvldv 6CXpPLBlijEngGvGjq8ePTbu48C+JAGuBO5McrKq9i8/2eLi4un7g8GAwWCwyilLUm/D4ZDhcDiT c6WqVh6QXAy8AtwOvAn8ELi7qg6dY/xjwL9V1b+c5bma9HqSpPdLQlWtaYdk4pV8VZ1Kcj/wNEvb O3ur6lCSXUtP157lX7KWiUiSZm/ilfxMX8wreUlatfVcyfuJV0lqzMhLUmNGXpIaM/KS1JiRl6TG jLwkNWbkJakxIy9JjRl5SWrMyEtSY0Zekhoz8pLUmJGXpMaMvCQ1ZuQlqTEjL0mNGXlJaszIS1Jj Rl6SGjPyktSYkZekxoy8JDVm5CWpMSMvSY0ZeUlqzMhLUmNGXpIaM/KS1JiRl6TGjLwkNWbkJakx Iy9JjRl5SWrMyEtSY0Zekhoz8pLU2FSRT7KQ5HCSI0keOMvz9yQ5OLo9l+Qjs5+qJGm1UlUrD0gu Ao4AtwNvAAeAnVV1eGzMduBQVb2bZAFYrKrtZzlXTXo9SdL7JaGqspavneZKfhtwtKper6qTwD5g x/iAqnqhqt4dHb4AbF3LZCRJszVN5LcCx8aOj7NyxL8APLmeSUmSZmPLLE+W5DbgPuDWc41ZXFw8 fX8wGDAYDGY5BUm64A2HQ4bD4UzONc2e/HaW9tgXRscPAlVVjywbdzPwOLBQVa+d41zuyUvSKm30 nvwB4Pok1ya5BNgJ7F82gWtYCvy95wq8JGn+Jm7XVNWpJPcDT7P0S2FvVR1Ksmvp6doDfBm4HPhG kgAnq2rbRk5ckjTZxO2amb6Y2zWStGobvV0jSbpAGXlJaszIS1JjRl6SGjPyktSYkZekxoy8JDVm 5CWpMSMvSY0ZeUlqzMhLUmNGXpIaM/KS1JiRl6TGjLwkNWbkJakxIy9JjRl5SWrMyEtSY0Zekhoz 8pLUmJGXpMaMvCQ1ZuQlqTEjL0mNGXlJaszIS1JjRl6SGjPyktSYkZekxoy8JDVm5CWpMSMvSY0Z eUlqzMhLUmNTRT7JQpLDSY4keeAcY76W5GiSl5LcMttpSpLWYmLkk1wEfB24A7gJuDvJjcvG3Alc V1UfBnYBj27AXFsZDoebPYXzhmtxhmtxhmsxG9NcyW8DjlbV61V1EtgH7Fg2ZgfwbYCqehG4LMlV M51pM34Dn+FanOFanOFazMY0kd8KHBs7Pj56bKUxJ84yRpI0Z77xKkmNpapWHpBsBxaramF0/CBQ VfXI2JhHgWer6ruj48PA31bVW8vOtfKLSZLOqqqylq/bMsWYA8D1Sa4F3gR2AncvG7Mf+Afgu6Nf Cr9dHvj1TFKStDYTI19Vp5LcDzzN0vbO3qo6lGTX0tO1p6qeSPLpJK8Cvwfu29hpS5KmMXG7RpJ0 4dqQN1798NQZk9YiyT1JDo5uzyX5yGbMcx6m+b4YjftEkpNJ7prn/OZpyp+RQZIfJ/lpkmfnPcd5 meJn5IokT45a8ZMkn9+EaW64JHuTvJXk5RXGrL6bVTXTG0u/OF4FrgX+BHgJuHHZmDuB/xjd/2vg hVnP43y4TbkW24HLRvcX/j+vxdi4Z4B/B+7a7Hlv4vfFZcB/A1tHx1du9rw3cS12Aw//3zoA7wBb NnvuG7AWtwK3AC+f4/k1dXMjruT98NQZE9eiql6oqndHhy/Q9/MF03xfAHwR+B7wq3lObs6mWYt7 gMer6gRAVb095znOyzRr8Uvg0tH9S4F3quoPc5zjXFTVc8BvVhiypm5uROT98NQZ06zFuC8AT27o jDbPxLVI8kHgM1X1TaDzX2JN831xA3B5kmeTHEhy79xmN1/TrMW3gJuSvAEcBP5xTnM736ypm9P8 CaXmIMltLP1V0q2bPZdN9FVgfE+2c+gn2QJ8DPgk8AHg+STPV9WrmzutTfEQcLCqbktyHfD9JDdX 1e82e2IXgo2I/AngmrHjq0ePLR/zoQljOphmLUhyM7AHWKiqlf65diGbZi0+DuxLEpb2Xu9McrKq 9s9pjvMyzVocB96uqveA95L8APgoS/vXnUyzFn8DfAWgql5L8j/AjcCP5jLD88eaurkR2zWnPzyV 5BKWPjy1/Id0P/A5OP2J2rN+eKqBiWuR5BrgceDeqnptE+Y4LxPXoqr+anT7S5b25f++YeBhup+R fwVuTXJxkj9n6Y22Q3Oe5zxMsxaHgE8BjPagbwB+PtdZzk84979g19TNmV/Jlx+eOm2atQC+DFwO fGN0BXuyqrZt3qw3xpRr8b4vmfsk52TKn5HDSZ4CXgZOAXuq6mebOO0NMeX3xcPAY0kOshTAL1XV rzdv1hsjyXeAAXBFkl+w9FdFl7DObvphKElqzP+FUpIaM/KS1JiRl6TGjLwkNWbkJakxIy9JjRl5 SWrMyEtSY/8LkDqzw0fZnlYAAAAASUVORK5CYII= ", "text/plain": [ "<matplotlib.figure.Figure at 0x7f0e612bef50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure() ", "plt.axes() ", "plt.title(title) " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "for i,pos in enumerate(zip([x[0] for x in tsne],[y[1] for y in tsne])): ", " plt.text(pos[0],pos[1],i) ", " if i > 30: ", " break" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "enumerate(zip([x[0] for x in tsne],[y[1] for y in tsne])).next()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "plt.axes()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 } |