Blame view

LDA/vae.py 4.99 KB
7db73861f   Killian   add vae et mmf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
  '''This script demonstrates how to build a variational autoencoder with Keras.
  Reference: "Auto-Encoding Variational Bayes" https://arxiv.org/abs/1312.6114
  '''
  
  import itertools
  import sys
  import json
  
  import numpy as np
  import matplotlib.pyplot as plt
  from scipy import sparse
  import scipy.io
  
  from keras.layers import Input, Dense, Lambda
  from keras.models import Model
  from keras import backend as K
  from keras import objectives
  from keras.datasets import mnist
2af8e57f4   Killian   change all
19
  from keras.callbacks import EarlyStopping,Callback
7db73861f   Killian   add vae et mmf
20
21
22
23
  
  import pandas
  import shelve
  import pickle
2af8e57f4   Killian   change all
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
  class ZeroStopping(Callback):
      '''Stop training when a monitored quantity has stopped improving.
      # Arguments
          monitor: quantity to be monitored.
          patience: number of epochs with no improvement
              after which training will be stopped.
          verbose: verbosity mode.
          mode: one of {auto, min, max}. In 'min' mode,
              training will stop when the quantity
              monitored has stopped decreasing; in 'max'
              mode it will stop when the quantity
              monitored has stopped increasing.
      '''
      def __init__(self, monitor='val_loss', verbose=0, mode='auto', thresh = 0):
          super(ZeroStopping, self).__init__()
  
          self.monitor = monitor
          self.verbose = verbose
          self.thresh = thresh # is a rythme
  
          if mode not in ['auto', 'min', 'max']:
              warnings.warn('EarlyStopping mode %s is unknown, '
                            'fallback to auto mode.' % (self.mode),
                            RuntimeWarning)
              mode = 'auto'
  
          if mode == 'min':
              self.monitor_op = np.less
          elif mode == 'max':
              self.monitor_op = np.greater
          else:
              if 'acc' in self.monitor:
                  self.monitor_op = np.greater
              else:
                  self.monitor_op = np.less
  
      def on_epoch_end(self, epoch, logs={}):
          current = logs.get(self.monitor)
          if current is None:
              warnings.warn('Zero stopping requires %s available!' %
                            (self.monitor), RuntimeWarning)
  
          if self.monitor_op(current, self.thresh):
              self.best = current
              self.model.stop_training = True
7db73861f   Killian   add vae et mmf
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
  
  #batch_size = 16
  #original_dim = 784
  #latent_dim = 2
  #intermediate_dim = 128
  #epsilon_std = 0.01
  #nb_epoch = 40
  
  
  
  
  def train_vae(x_train,x_dev,x_test,y_train=None,y_dev=None,y_test=None,hidden_size=80,latent_dim=12,batch_size=8,nb_epochs=10,sgd="rmsprop",input_activation = "relu",output_activation = "sigmoid",epsilon_std=0.01):
  
  
  
      def sampling(args):
          z_mean, z_log_std = args
          epsilon = K.random_normal(shape=(batch_size, latent_dim),
                                    mean=0., std=epsilon_std)
          return z_mean + K.exp(z_log_std) * epsilon
  
      def vae_loss(x, x_decoded_mean):
          xent_loss = objectives.binary_crossentropy(x, x_decoded_mean)
          kl_loss = - 0.5 * K.mean(1 + z_log_std - K.square(z_mean) - K.exp(z_log_std), axis=-1)
          return xent_loss + kl_loss
  
      original_dim = x_train.shape[1]
  
  
      x = Input(batch_shape=(batch_size, original_dim))
      h = Dense(hidden_size, activation=input_activation)(x)
      z_mean = Dense(latent_dim)(h)
      z_log_std = Dense(latent_dim)(h)
  
  
      # note that "output_shape" isn't necessary with the TensorFlow backend
      # so you could write `Lambda(sampling)([z_mean, z_log_std])`
      z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_std])
  
      # we instantiate these layers separately so as to reuse them later
      decoder_h = Dense(hidden_size, activation=input_activation)
      decoder_mean = Dense(original_dim, activation=output_activation)
      h_decoded = decoder_h(z)
      x_decoded_mean = decoder_mean(h_decoded)
  
  
      vae = Model(x, x_decoded_mean)
      vae.compile(optimizer=sgd, loss=vae_loss)
  
      # train the VAE on MNIST digits
      if y_train is None or y_dev is None or y_test is None :
          y_train = x_train
          y_dev = x_dev
          y_test = x_test
  
      vae.fit(x_train, y_train,
              shuffle=True,
              nb_epoch=nb_epochs,
2af8e57f4   Killian   change all
127
              verbose = 1,
7db73861f   Killian   add vae et mmf
128
              batch_size=batch_size,
d1012a7a1   Killian   update LDA/.py
129
130
              validation_data=(x_dev, y_dev)
              #callbacks = [ZeroStopping(monitor='val_loss', thresh=0, verbose=0, mode='min')]
2af8e57f4   Killian   change all
131
              )
7db73861f   Killian   add vae et mmf
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
  
      # build a model to project inputs on the latent space
      encoder = Model(x, z_mean)
      pred_train = encoder.predict(x_train, batch_size=batch_size)
      pred_dev = encoder.predict(x_dev, batch_size=batch_size)
      pred_test = encoder.predict(x_test,batch_size=batch_size)
      return [ [ pred_train, pred_dev, pred_test ] ]
  # display a 2D plot of the digit classes in the latent space
      #x_test_encoded = encoder.predict(x_test, batch_size=batch_size)
      # build a digit generator that can sample from the learned distribution
      #decoder_input = Input(shape=(latent_dim,))
      #_h_decoded = decoder_h(decoder_input)
      #_x_decoded_mean = decoder_mean(_h_decoded)
      #generator = Model(decoder_input, _x_decoded_mean)
      #x_decoded = generator.predict(z_sample)