Compare View
Commits (3)
Changes
Showing 17 changed files Inline Diff
LDA/00-mmf_make_features.py
1 | import sys | 1 | import sys |
2 | import os | 2 | import os |
3 | 3 | ||
4 | import pandas | 4 | import pandas |
5 | import numpy | 5 | import numpy |
6 | import shelve | 6 | import shelve |
7 | 7 | ||
8 | from sklearn.preprocessing import LabelBinarizer | 8 | from sklearn.preprocessing import LabelBinarizer |
9 | 9 | ||
10 | from utils import select_mmf as select | 10 | from utils import select_mmf as select |
11 | 11 | ||
12 | input_dir = sys.argv[1] # Dossier de premire niveau contient ASR et TRS | 12 | input_dir = sys.argv[1] # Dossier de premire niveau contient ASR et TRS |
13 | level = sys.argv[2] # taille de LDA ( -5) voulu | 13 | level = sys.argv[2] # taille de LDA ( -5) voulu |
14 | output_dir = sys.argv[3] | 14 | output_dir = sys.argv[3] |
15 | 15 | ||
16 | lb=LabelBinarizer() | 16 | lb=LabelBinarizer() |
17 | #y_train=lb.fit_transform([utils.select(ligneid) for ligneid in origin_corps["LABEL"]["TRAIN"]]) | 17 | #y_train=lb.fit_transform([utils.select(ligneid) for ligneid in origin_corps["LABEL"]["TRAIN"]]) |
18 | 18 | ||
19 | 19 | ||
20 | data = shelve.open("{}/mmf_{}.shelve".format(output_dir,level),writeback=True) | 20 | data = shelve.open("{}/mmf_{}.shelve".format(output_dir,level),writeback=True) |
21 | data["LABEL"]= {} | 21 | data["LABEL"]= {} |
22 | data["LDA"] = {"ASR":{},"TRS":{}} | 22 | data["LDA"] = {"ASR":{},"TRS":{}} |
23 | for mod in ["ASR", "TRS" ]: | 23 | for mod in ["ASR", "TRS" ]: |
24 | train = pandas.read_table("{}/{}/train_{}.ssv".format(input_dir, mod, level), sep=" ", header=None ) | 24 | train = pandas.read_table("{}/{}/train_{}.tab".format(input_dir, mod, level), sep=" ", header=None ) |
25 | dev = pandas.read_table("{}/{}/dev_{}.ssv".format(input_dir, mod, level), sep=" ", header=None ) | 25 | dev = pandas.read_table("{}/{}/dev_{}.tab".format(input_dir, mod, level), sep=" ", header=None ) |
26 | test = pandas.read_table("{}/{}/test_{}.ssv".format(input_dir, mod, level), sep=" ", header=None ) | 26 | test = pandas.read_table("{}/{}/test_{}.tab".format(input_dir, mod, level), sep=" ", header=None ) |
27 | 27 | ||
28 | y_train = train.iloc[:,0].apply(select) | 28 | y_train = train.iloc[:,0].apply(select) |
29 | y_dev = dev.iloc[:,0].apply(select) | 29 | y_dev = dev.iloc[:,0].apply(select) |
30 | y_test = test.iloc[:,0].apply(select) | 30 | y_test = test.iloc[:,0].apply(select) |
31 | lb.fit(y_train) | 31 | lb.fit(y_train) |
32 | data["LABEL"][mod]={"TRAIN":lb.transform(y_train),"DEV":lb.transform(y_dev), "TEST": lb.transform(y_test)} | 32 | data["LABEL"][mod]={"TRAIN":lb.transform(y_train),"DEV":lb.transform(y_dev), "TEST": lb.transform(y_test)} |
33 | 33 | ||
34 | # data["LDA"][mod]={'ASR':[]} | 34 | # data["LDA"][mod]={'ASR':[]} |
35 | print data["LDA"][mod] | ||
36 | print train.values | 35 | print train.values |
37 | data["LDA"][mod]["TRAIN"]=train.iloc[:,1:-1].values | 36 | data["LDA"][mod]["TRAIN"]=train.iloc[:,1:-1].values |
38 | data["LDA"][mod]["DEV"]=dev.iloc[:,1:-1].values | 37 | data["LDA"][mod]["DEV"]=dev.iloc[:,1:-1].values |
39 | data["LDA"][mod]["TEST"]=test.iloc[:,1:-1].values | 38 | data["LDA"][mod]["TEST"]=test.iloc[:,1:-1].values |
40 | 39 | ||
40 | print data["LDA"][mod]["TRAIN"].shape | ||
41 | data.sync() | 41 | data.sync() |
42 | data.close() | 42 | data.close() |
LDA/02-lda_split.py
1 | import gensim | File was deleted | |
2 | import os | ||
3 | import sys | ||
4 | import pickle | ||
5 | from gensim.models.ldamodel import LdaModel | ||
6 | from gensim.models.ldamulticore import LdaMulticore | ||
7 | from collections import Counter | ||
8 | import numpy as np | ||
9 | import codecs | ||
10 | import shelve | ||
11 | import logging | ||
12 | |||
13 | def calc_perp(in_dir,train): | ||
14 | name = in_dir.split("/")[-1] | ||
15 | # s40_it1_sw50_a0.01_e0.1_p6_c1000 | ||
16 | sw_size = int(name.split("_")[2][2:]) | ||
17 | |||
18 | logging.warning(" go {} ".format(name)) | ||
19 | |||
20 | |||
21 | logging.warning("Redo Vocab and stop") | ||
22 | asr_count=Counter([ x for y in train["ASR_wid"]["TRAIN"] for x in y]) | ||
23 | trs_count=Counter([ x for y in train["TRS_wid"]["TRAIN"] for x in y]) | ||
24 | asr_sw = [ x[0] for x in asr_count.most_common(sw_size) ] | ||
25 | trs_sw = [ x[0] for x in trs_count.most_common(sw_size) ] | ||
26 | stop_words=set(asr_sw) | set(trs_sw) | ||
27 | |||
28 | logging.warning("TRS to be done") | ||
29 | entry = Query() | ||
30 | value=db.search(entry.name == name) | ||
31 | if len(value) > 0 : | ||
32 | logging.warning("{} already done".format(name)) | ||
33 | return | ||
34 | |||
35 | dev_trs=[ [ (x,y) for x,y in Counter(z).items() if x not in stop_words] for z in train["TRS_wid"]["DEV"]] | ||
36 | lda_trs = LdaModel.load("{}/lda_trs.model".format(in_dir)) | ||
37 | perp_trs = lda_trs.log_perplexity(dev_trs) | ||
38 | logging.warning("ASR to be done") | ||
39 | dev_asr = [ [ (x,y) for x,y in Counter(z).items() if x not in stop_words] for z in train["ASR_wid"]["DEV"]] | ||
40 | lda_asr = LdaModel.load("{}/lda_asr.model".format(in_dir)) | ||
41 | perp_asr = lda_asr.log_perplexity(dev_asr) | ||
42 | logging.warning("ASR saving") | ||
43 | res_dict = {"name" : name, "asr" : perp_asr, "trs" : perp_trs} | ||
44 | return res_dict | ||
45 | |||
46 | |||
47 | |||
48 | |||
49 | def train_lda(out_dir,train,name,size,it,sw_size,alpha,eta,passes,chunk): | ||
50 | output_dir = "{}/s{}_it{}_sw{}_a{}_e{}_p{}_c{}".format(out_dir,size,it,sw_size,alpha,eta,passes,chunk) | ||
51 | os.mkdir(output_dir) | ||
52 | logging.info(output_dir+" to be done") | ||
53 | asr_count=Counter([ x for y in train["ASR_wid"]["TRAIN"] for x in y]) | ||
54 | trs_count=Counter([ x for y in train["TRS_wid"]["TRAIN"] for x in y]) | ||
55 | asr_sw = [ x[0] for x in asr_count.most_common(sw_size) ] | ||
56 | trs_sw = [ x[0] for x in trs_count.most_common(sw_size) ] | ||
57 | stop_words=set(asr_sw) | set(trs_sw) | ||
58 | |||
59 | logging.info("TRS to be done") | ||
60 | |||
61 | lda_trs = LdaModel(corpus=[ [ (x,y) for x,y in Counter(z).items() if x not in stop_words] for z in train["TRS_wid"]["TRAIN"]], id2word=train["vocab"], num_topics=int(size), chunksize=1000,iterations=it) | ||
62 | |||
63 | logging.info("ASR to be done") | ||
64 | lda_asr = LdaModel(corpus=[ [ (x,y) for x,y in Counter(z).items() if x not in stop_words] for z in train["ASR_wid"]["TRAIN"]], id2word=train["vocab"], num_topics=int(size), chunksize=1000,iterations=it) | ||
65 | |||
66 | #logger.info("ASR saving") | ||
67 | #lda_asr.save("{}/lda_asr.model".format(output_dir,name,size,it)) | ||
68 | #lda_trs.save("{}/lda_trs.model".format(output_dir,name,size,it)) | ||
69 | |||
70 | |||
71 | out_file_asr=codecs.open("{}/asr_wordTopic.txt".format(output_dir),"w","utf-8") | ||
72 | out_file_trs=codecs.open("{}/trs_wordTopic.txt".format(output_dir),"w","utf-8") | ||
73 | |||
74 | dico = train["vocab"] | ||
75 | print >>out_file_asr, ",\t".join( [ dico[x] for x in range(len(train["vocab"]))]) | ||
76 | for line in lda_asr.expElogbeta: | ||
77 | nline = line / np.sum(line) | ||
78 | print >>out_file_asr, ",\t".join( str(x) for x in nline) | ||
79 | out_file_asr.close() | ||
80 | |||
81 | print >>out_file_trs, ",\t".join( [ dico[x] for x in range(len(train["vocab"]))]) | ||
82 | for line in lda_trs.expElogbeta: | ||
83 | nline = line / np.sum(line) | ||
84 | print >>out_file_trs, ",\t".join( str(x) for x in nline) | ||
85 | out_file_trs.close() | ||
86 | |||
87 | K = lda_asr.num_topics | ||
88 | topicWordProbMat = lda_asr.print_topics(K,10) | ||
89 | out_file_asr=codecs.open("{}/asr_best10.txt".format(output_dir),"w","utf-8") | ||
90 | for i in topicWordProbMat: | ||
91 | print >>out_file_asr,i | ||
92 | out_file_asr.close() | ||
93 | |||
94 | K = lda_trs.num_topics | ||
95 | topicWordProbMat = lda_trs.print_topics(K,10) | ||
96 | out_file_trs=codecs.open("{}/trs_best10.txt".format(output_dir),"w","utf-8") | ||
97 | for i in topicWordProbMat: | ||
98 | print >>out_file_trs,i | ||
99 | out_file_trs.close() | ||
100 | |||
101 | if __name__ == "__main__": | ||
102 | logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.WARNING) | ||
103 | |||
104 | input_shelve = sys.argv[1] | ||
105 | output_dir = sys.argv[2] | ||
106 | size = [ int(x) for x in sys.argv[3].split("_")] | ||
107 | workers = int(sys.argv[4]) | ||
108 | name = sys.argv[5] | ||
109 | it = [ int(x) for x in sys.argv[6].split("_")] | ||
110 | sw_size = [ int(x) for x in sys.argv[7].split("_")] | ||
111 | alpha = ["auto" , "symmetric"] + [ float(x) for x in sys.argv[8].split("_")] | ||
112 | eta = ["auto"] + [ float(x) for x in sys.argv[9].split("_")] | ||
113 | passes = [ int(x) for x in sys.argv[10].split("_")] | ||
114 | chunk = [ int(x) for x in sys.argv[11].split("_")] | ||
115 | |||
116 | #train=pickle.load(open("{}/newsgroup_bow_train.pk".format(input_dir))) | ||
117 | train = shelve.open(input_shelve) | ||
118 | out_dir = "{}/{}".format(output_dir,name) | ||
119 | os.mkdir(out_dir) | ||
120 | |||
121 | for s in size: | ||
122 | for i in it : | ||
123 | for sw in sw_size: | ||
124 | for a in alpha: | ||
125 | for e in eta: | ||
126 | for p in passes: | ||
127 | for c in chunk: | ||
128 | train_lda(out_dir,train,name,s,i,sw,a,e,p,c) | ||
129 | |||
130 | 1 | import gensim |
LDA/02b-lda_order.py
1 | import gensim | File was deleted | |
2 | import os | ||
3 | import sys | ||
4 | import pickle | ||
5 | from gensim.models.ldamodel import LdaModel | ||
6 | from gensim.models.ldamulticore import LdaMulticore | ||
7 | from collections import Counter | ||
8 | import numpy as np | ||
9 | import codecs | ||
10 | import shelve | ||
11 | import logging | ||
12 | import dill | ||
13 | from tinydb import TinyDB, where, Query | ||
14 | import time | ||
15 | from joblib import Parallel, delayed | ||
16 | |||
17 | def calc_perp(models,train): | ||
18 | |||
19 | |||
20 | stop_words=models[1] | ||
21 | name = models[0] | ||
22 | |||
23 | logging.warning(" go {} ".format(name)) | ||
24 | logging.warning("TRS to be done") | ||
25 | entry = Query() | ||
26 | value=db.search(entry.name == name) | ||
27 | if len(value) > 0 : | ||
28 | logging.warning("{} already done".format(name)) | ||
29 | return | ||
30 | |||
31 | dev_trs=[ [ (x,y) for x,y in Counter(z).items() if x not in stop_words] for z in train["TRS_wid"]["DEV"]] | ||
32 | lda_trs = models[2] | ||
33 | perp_trs = lda_trs.log_perplexity(dev_trs) | ||
34 | |||
35 | logging.warning("ASR to be done") | ||
36 | dev_asr = [ [ (x,y) for x,y in Counter(z).items() if x not in stop_words] for z in train["ASR_wid"]["DEV"]] | ||
37 | lda_asr = models[5] | ||
38 | perp_asr = lda_asr.log_perplexity(dev_asr) | ||
39 | logging.warning("ASR saving") | ||
40 | res_dict = {"name" : name, "asr" : perp_asr, "trs" : perp_trs } | ||
41 | return res_dict | ||
42 | |||
43 | |||
44 | |||
45 | |||
46 | def train_lda(out_dir,train,size,it,sw_size,alpha,eta,passes,chunk): | ||
47 | name = "s{}_it{}_sw{}_a{}_e{}_p{}_c{}".format(size,it,sw_size,alpha,eta,passes,chunk) | ||
48 | logging.warning(name) | ||
49 | deep_out_dir = out_dir+"/"+name | ||
50 | if os.path.isdir(deep_out_dir): | ||
51 | logging.error(name+" already done") | ||
52 | return | ||
53 | logging.warning(name+" to be done") | ||
54 | asr_count=Counter([ x for y in train["ASR_wid"]["TRAIN"] for x in y]) | ||
55 | trs_count=Counter([ x for y in train["TRS_wid"]["TRAIN"] for x in y]) | ||
56 | asr_sw = [ x[0] for x in asr_count.most_common(sw_size) ] | ||
57 | trs_sw = [ x[0] for x in trs_count.most_common(sw_size) ] | ||
58 | stop_words=set(asr_sw) | set(trs_sw) | ||
59 | |||
60 | logging.warning("TRS to be done") | ||
61 | |||
62 | lda_trs = LdaModel(corpus=[ [ (x,y) for x,y in Counter(z).items() if x not in stop_words] for z in train["TRS_wid"]["TRAIN"]], id2word=train["vocab"], num_topics=int(size), chunksize=chunk,iterations=it,alpha=alpha,eta=eta,passes=passes) | ||
63 | |||
64 | logging.warning("ASR to be done") | ||
65 | lda_asr = LdaModel(corpus=[ [ (x,y) for x,y in Counter(z).items() if x not in stop_words] for z in train["ASR_wid"]["TRAIN"]], id2word=train["vocab"], num_topics=int(size), chunksize=chunk,iterations=it,alpha=alpha,eta=eta,passes=passes) | ||
66 | |||
67 | dico = train["vocab"] | ||
68 | word_list = [ dico[x] for x in range(len(train["vocab"]))] | ||
69 | asr_probs = [] | ||
70 | for line in lda_asr.expElogbeta: | ||
71 | nline = line / np.sum(line) | ||
72 | asr_probs.append([ str(x) for x in nline]) | ||
73 | trs_probs = [] | ||
74 | for line in lda_trs.expElogbeta: | ||
75 | nline = line / np.sum(line) | ||
76 | trs_probs.append([str(x) for x in nline]) | ||
77 | |||
78 | K = lda_asr.num_topics | ||
79 | topicWordProbMat_asr = lda_asr.print_topics(K,10) | ||
80 | |||
81 | K = lda_trs.num_topics | ||
82 | topicWordProbMat_trs = lda_trs.print_topics(K,10) | ||
83 | os.mkdir(deep_out_dir) | ||
84 | dill.dump([x for x in stop_words],open(deep_out_dir+"/stopwords.dill","w")) | ||
85 | lda_asr.save(deep_out_dir+"/lda_asr.model") | ||
86 | lda_trs.save(deep_out_dir+"/lda_trs.model") | ||
87 | dill.dump([x for x in asr_probs],open(deep_out_dir+"/lda_asr_probs.dill","w")) | ||
88 | dill.dump([x for x in trs_probs],open(deep_out_dir+"/lda_trs_probs.dill","w")) | ||
89 | |||
90 | return [name, stop_words, lda_asr , asr_probs , topicWordProbMat_asr, lda_trs, trs_probs, topicWordProbMat_trs] | ||
91 | |||
92 | def train_one(name,train,s,i,sw,a,e,p,c): | ||
93 | st=time.time() | ||
94 | logging.warning(" ; ".join([str(x) for x in [s,i,sw,a,e,p,c]])) | ||
95 | models = train_lda(name,train,s,i,sw,a,e,p,c) | ||
96 | if models: | ||
97 | m = calc_perp(models,train) | ||
98 | #dill.dump(models,open("{}/{}.dill".format(name,models[0]),"wb")) | ||
99 | else : | ||
100 | m = None | ||
101 | e = time.time() | ||
102 | logging.warning("fin en : {}".format(e-st)) | ||
103 | return m | ||
104 | |||
105 | |||
106 | |||
107 | |||
108 | if __name__ == "__main__": | ||
109 | logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.WARNING) | ||
110 | |||
111 | input_shelve = sys.argv[1] | ||
112 | db_path = sys.argv[2] | ||
113 | size = [ int(x) for x in sys.argv[3].split("_")] | ||
114 | workers = int(sys.argv[4]) | ||
115 | name = sys.argv[5] | ||
116 | it = [ int(x) for x in sys.argv[6].split("_")] | ||
117 | sw_size = [ int(x) for x in sys.argv[7].split("_")] | ||
118 | if sys.argv[8] != "None" : | ||
119 | alpha = [ "symmetric", "auto" ] + [ float(x) for x in sys.argv[8].split("_")] | ||
120 | eta = ["auto"] + [ float(x) for x in sys.argv[9].split("_")] | ||
121 | else : | ||
122 | alpha = ["symmetric"] | ||
123 | eta = ["auto"] | ||
124 | passes = [ int(x) for x in sys.argv[10].split("_")] | ||
125 | chunk = [ int(x) for x in sys.argv[11].split("_")] | ||
126 | |||
127 | #train=pickle.load(open("{}/newsgroup_bow_train.pk".format(input_dir))) | ||
128 | train = shelve.open(input_shelve) | ||
129 | try : | ||
130 | os.mkdir(name) | ||
131 | except : | ||
132 | logging.warning(" folder already existe " ) | ||
133 | db = TinyDB(db_path) | ||
134 | nb_model = len(passes) * len(chunk) * len(it) * len(sw_size) * len(alpha) * len(eta) * len(size) | ||
135 | logging.warning(" hey will train {} models ".format(nb_model)) | ||
136 | |||
137 | args_list=[] | ||
138 | for p in passes: | ||
139 | for c in chunk: | ||
140 | for i in it : | ||
141 | for sw in sw_size: | ||
142 | for a in alpha: | ||
143 | for e in eta: | ||
144 | for s in size: | ||
145 | args_list.append((name,train,s,i,sw,a,e,p,c)) | ||
146 | res_list= Parallel(n_jobs=15)(delayed(train_one)(*args) for args in args_list) | ||
147 | for m in res_list : | ||
148 | db.insert(m) | ||
149 | |||
150 | 1 | import gensim |
LDA/04b-mini_ae.py
1 | 1 | ||
2 | # coding: utf-8 | 2 | # coding: utf-8 |
3 | 3 | ||
4 | # In[2]: | 4 | # In[2]: |
5 | 5 | ||
6 | # Import | 6 | # Import |
7 | import gensim | 7 | import gensim |
8 | from scipy import sparse | 8 | from scipy import sparse |
9 | import itertools | 9 | import itertools |
10 | from sklearn import preprocessing | 10 | from sklearn import preprocessing |
11 | from keras.models import Sequential | 11 | from keras.models import Sequential |
12 | from keras.optimizers import SGD,Adam | 12 | from keras.optimizers import SGD,Adam |
13 | from mlp import * | 13 | from mlp import * |
14 | import mlp | 14 | import mlp |
15 | import sklearn.metrics | 15 | import sklearn.metrics |
16 | import shelve | 16 | import shelve |
17 | import pickle | 17 | import pickle |
18 | from utils import * | 18 | from utils import * |
19 | import sys | 19 | import sys |
20 | import os | 20 | import os |
21 | import json | 21 | import json |
22 | # In[4]: | 22 | # In[4]: |
23 | 23 | ||
24 | sparse_model=shelve.open("{}".format(sys.argv[2])) | 24 | sparse_model=shelve.open("{}".format(sys.argv[2])) |
25 | in_dir = sys.argv[1] | 25 | in_dir = sys.argv[1] |
26 | infer_model=shelve.open("{}/infer.shelve".format(in_dir)) | 26 | infer_model=shelve.open("{}/infer.shelve".format(in_dir)) |
27 | #['ASR', 'TRS', 'LABEL'] | 27 | #['ASR', 'TRS', 'LABEL'] |
28 | # In[6]: | 28 | # In[6]: |
29 | ASR=sparse_model["ASR_wid"] | 29 | ASR=sparse_model["ASR_wid"] |
30 | TRS=sparse_model["TRS_wid"] | 30 | TRS=sparse_model["TRS_wid"] |
31 | LABEL=sparse_model["LABEL"] | 31 | LABEL=sparse_model["LABEL"] |
32 | 32 | ||
33 | 33 | ||
34 | hidden_size=40 | 34 | hidden_size=40 |
35 | input_activation="tanh" | 35 | input_activation="tanh" |
36 | out_activation="tanh" | 36 | out_activation="tanh" |
37 | loss="mse" | 37 | loss="mse" |
38 | epochs=500 | 38 | epochs=500 |
39 | batch=1 | 39 | batch=1 |
40 | patience=60 | 40 | patience=60 |
41 | do_do=False | 41 | do_do=False |
42 | sgd = Adam(lr=0.00001)#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True) | 42 | sgd = Adam(lr=0.00001)#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True) |
43 | try : | 43 | try : |
44 | sgd_repr=sgd.get_config()["name"] | 44 | sgd_repr=sgd.get_config()["name"] |
45 | except AttributeError : | 45 | except AttributeError : |
46 | sgd_repr=sgd | 46 | sgd_repr=sgd |
47 | 47 | ||
48 | params={ "h1" : hidden_size, | 48 | params={ "h1" : hidden_size, |
49 | "inside_activation" : input_activation, | 49 | "inside_activation" : input_activation, |
50 | "out_activation" : out_activation, | 50 | "out_activation" : out_activation, |
51 | "do_dropout": do_do, | 51 | "do_dropout": do_do, |
52 | "loss" : loss, | 52 | "loss" : loss, |
53 | "epochs" : epochs , | 53 | "epochs" : epochs , |
54 | "batch_size" : batch, | 54 | "batch_size" : batch, |
55 | "patience" : patience, | 55 | "patience" : patience, |
56 | "sgd" : sgd_repr} | 56 | "sgd" : sgd_repr} |
57 | name = "_".join([ str(x) for x in params.values()]) | 57 | name = "_".join([ str(x) for x in params.values()]) |
58 | try: | 58 | try: |
59 | os.mkdir("{}/{}".format(in_dir,name)) | 59 | os.mkdir("{}/{}".format(in_dir,name)) |
60 | except: | 60 | except: |
61 | pass | 61 | pass |
62 | db = shelve.open("{}/{}/ae_model.shelve".format(in_dir,name),writeback=True) | 62 | db = shelve.open("{}/{}/ae_model.shelve".format(in_dir,name),writeback=True) |
63 | db["params"] = params | 63 | db["params"] = params |
64 | db["LABEL"]=LABEL | 64 | db["LABEL"]=LABEL |
65 | # | 65 | # |
66 | json.dump(params, | 66 | json.dump(params, |
67 | open("{}/{}/ae_model.json".format(in_dir,name),"w"), | 67 | open("{}/{}/ae_model.json".format(in_dir,name),"w"), |
68 | indent=4) | 68 | indent=4) |
69 | 69 | ||
70 | keys = ["ASR","TRS"] | 70 | keys = ["ASR","TRS"] |
71 | 71 | ||
72 | mlp_h = [ 40 , 25 , 40] | 72 | mlp_h = [ 512 , 1024 , 2048] |
73 | mlp_loss ="categorical_crossentropy" | 73 | mlp_loss ="categorical_crossentropy" |
74 | mlp_dropouts = [0,0,0,0] | 74 | mlp_dropouts = [0,0,0,0] |
75 | mlp_sgd = Adam(0.0001) | 75 | mlp_sgd = Adam(0.0001) |
76 | mlp_epochs = 200 | 76 | mlp_epochs = 200 |
77 | mlp_batch_size = 8 | 77 | mlp_batch_size = 8 |
78 | 78 | ||
79 | db["AE"] = {} | 79 | db["AE"] = {} |
80 | for mod in keys : | 80 | for mod in keys : |
81 | res=train_ae(infer_model["LDA"][mod]["TRAIN"],infer_model["LDA"][mod]["DEV"],infer_model["LDA"][mod]["TEST"],[params["h1"]],patience = params["patience"],sgd=sgd,in_activation="tanh",out_activation="tanh",loss=loss,epochs=epochs,batch_size=batch,verbose=0) | 81 | res=train_ae(infer_model["LDA"][mod]["TRAIN"],infer_model["LDA"][mod]["DEV"],infer_model["LDA"][mod]["TEST"],[params["h1"]],patience = params["patience"],sgd=sgd,in_activation="tanh",out_activation="tanh",loss=loss,epochs=epochs,batch_size=batch,verbose=0) |
82 | mlp_res_list=[] | 82 | mlp_res_list=[] |
83 | for layer in res : | 83 | for layer in res : |
84 | mlp_res_list.append(train_mlp(layer[0],LABEL["TRAIN"],layer[1],LABEL["DEV"],layer[2],LABEL["TEST"],mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,sgd=mlp_sgd,epochs=mlp_epochs,batch_size=mlp_batch_size,fit_verbose=0)) | 84 | mlp_res_list.append(train_mlp(layer[0],LABEL["TRAIN"],layer[1],LABEL["DEV"],layer[2],LABEL["TEST"],mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,sgd=mlp_sgd,epochs=mlp_epochs,batch_size=mlp_batch_size,fit_verbose=0)) |
85 | db["AE"][mod]=mlp_res_list | 85 | db["AE"][mod]=mlp_res_list |
86 | 86 | ||
87 | mod = "ASR" | 87 | mod = "ASR" |
88 | mod2= "TRS" | 88 | mod2= "TRS" |
89 | mlp_res_list=[] | 89 | mlp_res_list=[] |
90 | 90 | ||
91 | res = train_ae(infer_model["LDA"][mod]["TRAIN"],infer_model["LDA"][mod]["DEV"],infer_model["LDA"][mod]["TEST"],[params["h1"]],dropouts=[0],patience = params["patience"],sgd=sgd,in_activation="tanh",out_activation="tanh",loss=loss,epochs=epochs,batch_size=batch,y_train=infer_model["LDA"][mod]["TRAIN"],y_dev=infer_model["LDA"][mod2]["DEV"],y_test=infer_model["LDA"][mod2]["TEST"]) | 91 | res = train_ae(infer_model["LDA"][mod]["TRAIN"],infer_model["LDA"][mod]["DEV"],infer_model["LDA"][mod]["TEST"],[params["h1"]],dropouts=[0],patience = params["patience"],sgd=sgd,in_activation="tanh",out_activation="tanh",loss=loss,epochs=epochs,batch_size=batch,y_train=infer_model["LDA"][mod]["TRAIN"],y_dev=infer_model["LDA"][mod2]["DEV"],y_test=infer_model["LDA"][mod2]["TEST"]) |
92 | for layer in res : | 92 | for layer in res : |
93 | mlp_res_list.append(train_mlp(layer[0],LABEL["TRAIN"],layer[1],LABEL["DEV"],layer[2],LABEL["TEST"],mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,sgd=mlp_sgd,epochs=mlp_epochs,batch_size=mlp_batch_size,fit_verbose=0)) | 93 | mlp_res_list.append(train_mlp(layer[0],LABEL["TRAIN"],layer[1],LABEL["DEV"],layer[2],LABEL["TEST"],mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,sgd=mlp_sgd,epochs=mlp_epochs,batch_size=mlp_batch_size,fit_verbose=0)) |
94 | 94 | ||
95 | db["AE"]["SPE"] = mlp_res_list | 95 | db["AE"]["SPE"] = mlp_res_list |
96 | 96 | ||
97 | 97 | ||
98 | db.close() | 98 | db.close() |
99 | 99 |
LDA/04e-mm_vae.py
1 | 1 | ||
2 | # coding: utf-8 | 2 | # coding: utf-8 |
3 | import gensim | 3 | import gensim |
4 | from scipy import sparse | 4 | from scipy import sparse |
5 | import itertools | 5 | import itertools |
6 | from sklearn import preprocessing | 6 | from sklearn import preprocessing |
7 | from keras.models import Sequential | 7 | from keras.models import Sequential |
8 | from keras.optimizers import SGD,Adam | 8 | from keras.optimizers import SGD,Adam |
9 | from mlp import * | 9 | from mlp import * |
10 | from vae import * | 10 | from vae import * |
11 | import sklearn.metrics | 11 | import sklearn.metrics |
12 | import shelve | 12 | import shelve |
13 | import pickle | 13 | import pickle |
14 | from utils import * | 14 | from utils import * |
15 | import sys | 15 | import sys |
16 | import os | 16 | import os |
17 | import json | 17 | import json |
18 | # In[4]: | 18 | # In[4]: |
19 | 19 | ||
20 | infer_model=shelve.open("{}".format(sys.argv[2])) | 20 | infer_model=shelve.open("{}".format(sys.argv[2])) |
21 | in_dir = sys.argv[1] | 21 | in_dir = sys.argv[1] |
22 | #['ASR', 'TRS', 'LABEL'] | 22 | #['ASR', 'TRS', 'LABEL'] |
23 | # In[6]: | 23 | # In[6]: |
24 | if len(sys.argv) > 4 : | 24 | if len(sys.argv) > 4 : |
25 | features_key = sys.argv[4] | 25 | features_key = sys.argv[4] |
26 | else : | 26 | else : |
27 | features_key = "LDA" | 27 | features_key = "LDA" |
28 | 28 | ||
29 | save_projection = True | 29 | save_projection = True |
30 | json_conf =json.load(open(sys.argv[3])) | 30 | json_conf =json.load(open(sys.argv[3])) |
31 | vae_conf = json_conf["vae"] | 31 | vae_conf = json_conf["vae"] |
32 | 32 | ||
33 | hidden_size= vae_conf["hidden_size"] | 33 | hidden_size= vae_conf["hidden_size"] |
34 | input_activation=vae_conf["input_activation"] | 34 | input_activation=vae_conf["input_activation"] |
35 | output_activation=vae_conf["output_activation"] | 35 | output_activation=vae_conf["output_activation"] |
36 | epochs=vae_conf["epochs"] | 36 | epochs=vae_conf["epochs"] |
37 | batch=vae_conf["batch"] | 37 | batch=vae_conf["batch"] |
38 | patience=vae_conf["patience"] | 38 | patience=vae_conf["patience"] |
39 | latent_dim = vae_conf["latent"] | 39 | latent_dim = vae_conf["latent"] |
40 | try: | 40 | try: |
41 | k = vae_conf["sgd"] | 41 | k = vae_conf["sgd"] |
42 | if vae_conf["sgd"]["name"] == "adam": | 42 | if vae_conf["sgd"]["name"] == "adam": |
43 | sgd = Adam(lr=vae_conf["sgd"]["lr"])#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True) | 43 | sgd = Adam(lr=vae_conf["sgd"]["lr"])#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True) |
44 | elif vae_conf["sgd"]["name"] == "sgd": | 44 | elif vae_conf["sgd"]["name"] == "sgd": |
45 | sgd = SGD(lr=vae_conf["sgd"]["lr"]) | 45 | sgd = SGD(lr=vae_conf["sgd"]["lr"]) |
46 | except: | 46 | except: |
47 | sgd = vae_conf["sgd"] | 47 | sgd = vae_conf["sgd"] |
48 | 48 | ||
49 | mlp_conf = json_conf["mlp"] | 49 | mlp_conf = json_conf["mlp"] |
50 | mlp_h = mlp_conf["hidden_size"] | 50 | mlp_h = mlp_conf["hidden_size"] |
51 | mlp_loss = mlp_conf["loss"] | 51 | mlp_loss = mlp_conf["loss"] |
52 | mlp_dropouts = mlp_conf["do"] | 52 | mlp_dropouts = mlp_conf["do"] |
53 | mlp_epochs = mlp_conf["epochs"] | 53 | mlp_epochs = mlp_conf["epochs"] |
54 | mlp_batch_size = mlp_conf["batch"] | 54 | mlp_batch_size = mlp_conf["batch"] |
55 | mlp_input_activation=mlp_conf["input_activation"] | 55 | mlp_input_activation=mlp_conf["input_activation"] |
56 | mlp_output_activation=mlp_conf["output_activation"] | 56 | mlp_output_activation=mlp_conf["output_activation"] |
57 | 57 | ||
58 | 58 | ||
59 | try: | 59 | try: |
60 | k = mlp_conf["sgd"] | 60 | k = mlp_conf["sgd"] |
61 | if mlp_conf["sgd"]["name"] == "adam": | 61 | if mlp_conf["sgd"]["name"] == "adam": |
62 | mlp_sgd = Adam(lr=mlp_conf["sgd"]["lr"])#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True) | 62 | mlp_sgd = Adam(lr=mlp_conf["sgd"]["lr"])#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True) |
63 | elif mlp_conf["sgd"]["name"] == "sgd": | 63 | elif mlp_conf["sgd"]["name"] == "sgd": |
64 | mlp_sgd = SGD(lr=mlp_conf["sgd"]["lr"]) | 64 | mlp_sgd = SGD(lr=mlp_conf["sgd"]["lr"]) |
65 | except: | 65 | except: |
66 | mlp_sgd = mlp_conf["sgd"] | 66 | mlp_sgd = mlp_conf["sgd"] |
67 | 67 | ||
68 | 68 | ||
69 | name = json_conf["name"] | 69 | name = json_conf["name"] |
70 | 70 | ||
71 | try : | 71 | try : |
72 | print "make folder " | 72 | print "make folder " |
73 | os.mkdir("{}/{}".format(in_dir,name)) | 73 | os.mkdir("{}/{}".format(in_dir,name)) |
74 | except: | 74 | except: |
75 | print "folder not maked" | 75 | print "folder not maked" |
76 | pass | 76 | pass |
77 | 77 | ||
78 | 78 | ||
79 | db = shelve.open("{}/{}/ae_model.shelve".format(in_dir,name),writeback=True) | 79 | db = shelve.open("{}/{}/ae_model.shelve".format(in_dir,name),writeback=True) |
80 | db["LABEL"]=infer_model["LABEL"] | 80 | db["LABEL"]=infer_model["LABEL"] |
81 | # | 81 | # |
82 | 82 | ||
83 | 83 | ||
84 | keys = infer_model[features_key].keys() | 84 | keys = infer_model[features_key].keys() |
85 | 85 | ||
86 | db["VAE"] = {} | 86 | db["VAE"] = {} |
87 | db[features_key] = {} | 87 | db[features_key] = {} |
88 | for mod in keys : | 88 | for mod in keys : |
89 | #print mod | 89 | #print mod |
90 | db[features_key][mod] = train_mlp(infer_model[features_key][mod]["TRAIN"],infer_model["LABEL"][mod]["TRAIN"], | 90 | db[features_key][mod] = train_mlp(infer_model[features_key][mod]["TRAIN"],infer_model["LABEL"][mod]["TRAIN"], |
91 | infer_model[features_key][mod]["DEV"],infer_model["LABEL"][mod]["DEV"], | 91 | infer_model[features_key][mod]["DEV"],infer_model["LABEL"][mod]["DEV"], |
92 | infer_model[features_key][mod]["TEST"],infer_model["LABEL"][mod]["TEST"], | 92 | infer_model[features_key][mod]["TEST"],infer_model["LABEL"][mod]["TEST"], |
93 | mlp_h ,sgd=mlp_sgd, | 93 | mlp_h ,sgd=mlp_sgd, |
94 | epochs=mlp_epochs, | 94 | epochs=mlp_epochs, |
95 | batch_size=mlp_batch_size, | 95 | batch_size=mlp_batch_size, |
96 | input_activation=input_activation, | 96 | input_activation=input_activation, |
97 | output_activation=mlp_output_activation, | 97 | output_activation=mlp_output_activation, |
98 | dropouts=mlp_dropouts, | 98 | dropouts=mlp_dropouts, |
99 | fit_verbose=0) | 99 | fit_verbose=0) |
100 | 100 | ||
101 | res=train_vae(infer_model[features_key][mod]["TRAIN"],infer_model[features_key][mod]["DEV"],infer_model[features_key][mod]["TEST"], | 101 | res=train_vae(infer_model[features_key][mod]["TRAIN"],infer_model[features_key][mod]["DEV"],infer_model[features_key][mod]["TEST"], |
102 | hidden_size=hidden_size[0], | 102 | hidden_size=hidden_size[0], |
103 | latent_dim=latent_dim,sgd=sgd, | 103 | latent_dim=latent_dim,sgd=sgd, |
104 | input_activation=input_activation,output_activation=output_activation, | 104 | input_activation=input_activation,output_activation=output_activation, |
105 | nb_epochs=epochs,batch_size=batch) | 105 | nb_epochs=epochs,batch_size=batch) |
106 | mlp_res_list=[] | 106 | mlp_res_list=[] |
107 | for nb,layer in enumerate(res) : | 107 | for nb,layer in enumerate(res) : |
108 | if save_projection: | 108 | if save_projection: |
109 | pd = pandas.DataFrame(layer[0]) | 109 | pd = pandas.DataFrame(layer[0]) |
110 | col_count = (pd.sum(axis=0) != 0) | 110 | col_count = (pd.sum(axis=0) != 0) |
111 | pd = pd.loc[:,cyyol_count] | 111 | pd = pd.loc[:,col_count] |
112 | pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,mod),"TRAIN") | 112 | pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,mod),"TRAIN") |
113 | pd = pandas.DataFrame(layer[1]) | 113 | pd = pandas.DataFrame(layer[1]) |
114 | pd = pd.loc[:,col_count] | 114 | pd = pd.loc[:,col_count] |
115 | pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,mod),"DEV") | 115 | pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,mod),"DEV") |
116 | pd = pandas.DataFrame(layer[2]) | 116 | pd = pandas.DataFrame(layer[2]) |
117 | pd = pd.loc[:,col_count] | 117 | pd = pd.loc[:,col_count] |
118 | pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,mod),"TEST") | 118 | pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,mod),"TEST") |
119 | del pd | 119 | del pd |
120 | 120 | ||
121 | mlp_res_list.append(train_mlp(layer[0],infer_model['LABEL'][mod]["TRAIN"], | 121 | mlp_res_list.append(train_mlp(layer[0],infer_model['LABEL'][mod]["TRAIN"], |
122 | layer[1],infer_model["LABEL"][mod]["DEV"], | 122 | layer[1],infer_model["LABEL"][mod]["DEV"], |
123 | layer[2],infer_model["LABEL"][mod]["TEST"], | 123 | layer[2],infer_model["LABEL"][mod]["TEST"], |
124 | mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,sgd=mlp_sgd,epochs=mlp_epochs, | 124 | mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,sgd=mlp_sgd,epochs=mlp_epochs, |
125 | output_activation=mlp_output_activation, | 125 | output_activation=mlp_output_activation, |
126 | input_activation=input_activation, | 126 | input_activation=input_activation, |
127 | batch_size=mlp_batch_size,fit_verbose=0)) | 127 | batch_size=mlp_batch_size,fit_verbose=0)) |
128 | db["VAE"][mod]=mlp_res_list | 128 | db["VAE"][mod]=mlp_res_list |
129 | 129 | ||
130 | if "ASR" in keys and "TRS" in keys : | 130 | if "ASR" in keys and "TRS" in keys : |
131 | mod = "ASR" | 131 | mod = "ASR" |
132 | mod2= "TRS" | 132 | mod2= "TRS" |
133 | mlp_res_list=[] | 133 | mlp_res_list=[] |
134 | 134 | ||
135 | res = train_vae(infer_model[features_key][mod]["TRAIN"], | 135 | res = train_vae(infer_model[features_key][mod]["TRAIN"], |
136 | infer_model[features_key][mod]["DEV"], | 136 | infer_model[features_key][mod]["DEV"], |
137 | infer_model[features_key][mod]["TEST"], | 137 | infer_model[features_key][mod]["TEST"], |
138 | hidden_size=hidden_size[0], | 138 | hidden_size=hidden_size[0], |
139 | sgd=sgd,input_activation=input_activation,output_activation=output_activation, | 139 | sgd=sgd,input_activation=input_activation,output_activation=output_activation, |
140 | latent_dim=latent_dim, | 140 | latent_dim=latent_dim, |
141 | nb_epochs=epochs, | 141 | nb_epochs=epochs, |
142 | batch_size=batch, | 142 | batch_size=batch, |
143 | y_train=infer_model[features_key][mod2]["TRAIN"], | 143 | y_train=infer_model[features_key][mod2]["TRAIN"], |
144 | y_dev=infer_model[features_key][mod2]["DEV"], | 144 | y_dev=infer_model[features_key][mod2]["DEV"], |
145 | y_test=infer_model[features_key][mod2]["TEST"]) | 145 | y_test=infer_model[features_key][mod2]["TEST"]) |
146 | 146 | ||
147 | for nb,layer in enumerate(res) : | 147 | for nb,layer in enumerate(res) : |
148 | if save_projection: | 148 | if save_projection: |
149 | pd = pandas.DataFrame(layer[0]) | 149 | pd = pandas.DataFrame(layer[0]) |
150 | col_count = (pd.sum(axis=0) != 0) | 150 | col_count = (pd.sum(axis=0) != 0) |
151 | pd = pd.loc[:,col_count] | 151 | pd = pd.loc[:,col_count] |
152 | pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,"SPE"),"TRAIN") | 152 | pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,"SPE"),"TRAIN") |
153 | pd = pandas.DataFrame(layer[1]) | 153 | pd = pandas.DataFrame(layer[1]) |
154 | pd = pd.loc[:,col_count] | 154 | pd = pd.loc[:,col_count] |
155 | pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,"SPE"),"DEV") | 155 | pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,"SPE"),"DEV") |
156 | pd = pandas.DataFrame(layer[2]) | 156 | pd = pandas.DataFrame(layer[2]) |
157 | pd = pd.loc[:,col_count] | 157 | pd = pd.loc[:,col_count] |
158 | pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,"SPE"),"TEST") | 158 | pd.to_hdf("{}/{}/VAE_{}_{}_df.hdf".format(in_dir,name,nb,"SPE"),"TEST") |
159 | del pd | 159 | del pd |
160 | 160 | ||
161 | mlp_res_list.append(train_mlp(layer[0],infer_model["LABEL"][mod]["TRAIN"], | 161 | mlp_res_list.append(train_mlp(layer[0],infer_model["LABEL"][mod]["TRAIN"], |
162 | layer[1],infer_model["LABEL"][mod]["DEV"], | 162 | layer[1],infer_model["LABEL"][mod]["DEV"], |
163 | layer[2],infer_model["LABEL"][mod]["TEST"], | 163 | layer[2],infer_model["LABEL"][mod]["TEST"], |
164 | mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,sgd=mlp_sgd,epochs=mlp_epochs, | 164 | mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,sgd=mlp_sgd,epochs=mlp_epochs, |
165 | output_activation=mlp_output_activation, | 165 | output_activation=mlp_output_activation, |
166 | input_activation=input_activation, | 166 | input_activation=input_activation, |
167 | batch_size=mlp_batch_size,fit_verbose=0)) | 167 | batch_size=mlp_batch_size,fit_verbose=0)) |
168 | 168 | ||
169 | db["VAE"]["SPE"] = mlp_res_list | 169 | db["VAE"]["SPE"] = mlp_res_list |
170 | 170 | ||
171 | db.sync() | 171 | db.sync() |
172 | db.close() | 172 | db.close() |
173 | 173 |
LDA/04f-pca.py
File was created | 1 | ||
2 | # coding: utf-8 | ||
3 | |||
4 | # In[29]: | ||
5 | |||
6 | # Import | ||
7 | import itertools | ||
8 | import shelve | ||
9 | import pickle | ||
10 | import numpy | ||
11 | import scipy | ||
12 | from scipy import sparse | ||
13 | import scipy.sparse | ||
14 | import scipy.io | ||
15 | from mlp import * | ||
16 | import mlp | ||
17 | import sys | ||
18 | import utils | ||
19 | import dill | ||
20 | from collections import Counter | ||
21 | from gensim.models import LdaModel | ||
22 | from sklearn.decomposition import PCA | ||
23 | |||
24 | |||
25 | |||
26 | # In[3]: | ||
27 | |||
28 | #30_50_50_150_0.0001 | ||
29 | |||
30 | # In[4]: | ||
31 | |||
32 | #db=shelve.open("SPELIKE_MLP_DB.shelve",writeback=True) | ||
33 | origin_corps=shelve.open("{}".format(sys.argv[2])) | ||
34 | in_dir = sys.argv[1] | ||
35 | if len(sys.argv) > 3 : | ||
36 | features_key = sys.argv[3] | ||
37 | else : | ||
38 | features_key = "LDA" | ||
39 | |||
40 | out_db=shelve.open("{}/pca_scores.shelve".format(in_dir),writeback=True) | ||
41 | mlp_h = [ 250, 250 ] | ||
42 | mlp_loss = "categorical_crossentropy" | ||
43 | mlp_dropouts = [0.25]* len(mlp_h) | ||
44 | mlp_sgd = Adam(lr=0.0001) | ||
45 | mlp_epochs = 3000 | ||
46 | mlp_batch_size = 5 | ||
47 | mlp_input_activation = "relu" | ||
48 | mlp_output_activation="softmax" | ||
49 | |||
50 | ress = [] | ||
51 | |||
52 | |||
53 | for key in origin_corps[features_key].keys() : | ||
54 | print "#########" + key + "########" | ||
55 | dev_best =[] | ||
56 | test_best = [] | ||
57 | test_max = [] | ||
58 | pca = PCA(n_components=200, copy=True, whiten=True) | ||
59 | x_train_big = pca.fit_transform(origin_corps[features_key][key]["TRAIN"]) | ||
60 | y_train =origin_corps["LABEL"][key]["TRAIN"] | ||
61 | |||
62 | |||
63 | |||
64 | x_dev_big = pca.transform(origin_corps[features_key][key]["DEV"]) | ||
65 | y_dev = origin_corps["LABEL"][key]["DEV"] | ||
66 | |||
67 | x_test_big = pca.transform(origin_corps[features_key][key]["TEST"]) | ||
68 | y_test = origin_corps["LABEL"][key]["TEST"] | ||
69 | for i in range(1,200): | ||
70 | x_train = x_train_big[:,:i] | ||
71 | x_dev = x_dev_big[:,:i] | ||
72 | x_test = x_test_big[:,:i] | ||
73 | print "xshape",x_train.shape | ||
74 | print "xdev", x_dev.shape | ||
75 | print "xtest",x_test.shape | ||
76 | res=mlp.train_mlp(x_train,y_train, | ||
77 | x_dev,y_dev, | ||
78 | x_test ,y_test, | ||
79 | mlp_h,dropouts=mlp_dropouts,sgd=mlp_sgd, | ||
80 | epochs=mlp_epochs, | ||
81 | batch_size=mlp_batch_size, | ||
82 | save_pred=False,keep_histo=False, | ||
83 | loss="categorical_crossentropy",fit_verbose=0) | ||
84 | arg_best = numpy.argmax(res[1]) | ||
85 | dev_best.append(res[1][arg_best]) | ||
86 | test_best.append(res[2][arg_best]) | ||
87 | test_max.append(numpy.max(res[2])) | ||
88 | print dev_best[-1],test_best[-1] | ||
89 | out_db[key]=(res,(dev_best,test_best,test_max)) | ||
90 | ress.append((key,dev_best,test_best,test_max)) | ||
91 | out_db.sync() | ||
92 | |||
93 | for el in ress : | ||
94 | print el | ||
95 | out_db.close() | ||
96 | origin_corps.close() | ||
1 | 97 |
LDA/ae_mmf.sh
File was created | 1 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/193/ MM_features/data_w99/mmf_193.shelve >> output_v8/recap.txt | |
2 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/194/ MM_features/data_w99/mmf_194.shelve >> output_v8/recap.txt | ||
3 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/195/ MM_features/data_w99/mmf_195.shelve >> output_v8/recap.txt | ||
4 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/196/ MM_features/data_w99/mmf_196.shelve >> output_v8/recap.txt | ||
5 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/197/ MM_features/data_w99/mmf_197.shelve >> output_v8/recap.txt | ||
6 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/198/ MM_features/data_w99/mmf_198.shelve >> output_v8/recap.txt | ||
7 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/393/ MM_features/data_w99/mmf_393.shelve >> output_v8/recap.txt | ||
8 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/394/ MM_features/data_w99/mmf_394.shelve >> output_v8/recap.txt | ||
9 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/395/ MM_features/data_w99/mmf_395.shelve >> output_v8/recap.txt | ||
10 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/396/ MM_features/data_w99/mmf_396.shelve >> output_v8/recap.txt | ||
11 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/397/ MM_features/data_w99/mmf_397.shelve >> output_v8/recap.txt | ||
12 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/43/ MM_features/data_w99/mmf_43.shelve >> output_v8/recap.txt | ||
13 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/44/ MM_features/data_w99/mmf_44.shelve >> output_v8/recap.txt | ||
14 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/45/ MM_features/data_w99/mmf_45.shelve >> output_v8/recap.txt | ||
15 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/46/ MM_features/data_w99/mmf_46.shelve >> output_v8/recap.txt | ||
16 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/47/ MM_features/data_w99/mmf_47.shelve >> output_v8/recap.txt | ||
17 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/48/ MM_features/data_w99/mmf_48.shelve >> output_v8/recap.txt | ||
18 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/493/ MM_features/data_w99/mmf_493.shelve >> output_v8/recap.txt | ||
19 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/494/ MM_features/data_w99/mmf_494.shelve >> output_v8/recap.txt | ||
20 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/495/ MM_features/data_w99/mmf_495.shelve >> output_v8/recap.txt | ||
21 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/496/ MM_features/data_w99/mmf_496.shelve >> output_v8/recap.txt | ||
22 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/497/ MM_features/data_w99/mmf_497.shelve >> output_v8/recap.txt | ||
23 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/50/ MM_features/data_w99/mmf_50.shelve >> output_v8/recap.txt | ||
24 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/93/ MM_features/data_w99/mmf_93.shelve >> output_v8/recap.txt | ||
25 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/94/ MM_features/data_w99/mmf_94.shelve >> output_v8/recap.txt | ||
26 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/95/ MM_features/data_w99/mmf_95.shelve >> output_v8/recap.txt | ||
27 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/96/ MM_features/data_w99/mmf_96.shelve >> output_v8/recap.txt | ||
28 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/97/ MM_features/data_w99/mmf_97.shelve >> output_v8/recap.txt | ||
29 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/98/ MM_features/data_w99/mmf_98.shelve >> output_v8/recap.txt | ||
1 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/193/ MM_features/data_w99/mmf_193.shelve >> output_v8/recap.txt | 30 |
LDA/do_allAE.sh
File was created | 1 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T1/ MM_features/gen3/shelves/mmf_1.shelve output_v8/Conf1.json | |
2 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T2/ MM_features/gen3/shelves/mmf_2.shelve output_v8/Conf1.json | ||
3 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T3/ MM_features/gen3/shelves/mmf_3.shelve output_v8/Conf1.json | ||
4 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T4/ MM_features/gen3/shelves/mmf_4.shelve output_v8/Conf1.json | ||
5 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T5/ MM_features/gen3/shelves/mmf_5.shelve output_v8/Conf1.json | ||
6 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T6/ MM_features/gen3/shelves/mmf_6.shelve output_v8/Conf1.json | ||
7 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T7/ MM_features/gen3/shelves/mmf_7.shelve output_v8/Conf1.json | ||
8 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T8/ MM_features/gen3/shelves/mmf_8.shelve output_v8/Conf1.json | ||
9 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T9/ MM_features/gen3/shelves/mmf_9.shelve output_v8/Conf1.json | ||
10 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T10/ MM_features/gen3/shelves/mmf_10.shelve output_v8/Conf1.json | ||
11 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T11/ MM_features/gen3/shelves/mmf_11.shelve output_v8/Conf1.json | ||
12 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T12/ MM_features/gen3/shelves/mmf_12.shelve output_v8/Conf1.json | ||
13 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T13/ MM_features/gen3/shelves/mmf_13.shelve output_v8/Conf1.json | ||
14 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T14/ MM_features/gen3/shelves/mmf_14.shelve output_v8/Conf1.json | ||
15 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T15/ MM_features/gen3/shelves/mmf_15.shelve output_v8/Conf1.json | ||
16 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T16/ MM_features/gen3/shelves/mmf_16.shelve output_v8/Conf1.json | ||
17 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T17/ MM_features/gen3/shelves/mmf_17.shelve output_v8/Conf1.json | ||
18 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T18/ MM_features/gen3/shelves/mmf_18.shelve output_v8/Conf1.json | ||
19 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T19/ MM_features/gen3/shelves/mmf_19.shelve output_v8/Conf1.json | ||
20 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T20/ MM_features/gen3/shelves/mmf_20.shelve output_v8/Conf1.json | ||
21 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T21/ MM_features/gen3/shelves/mmf_21.shelve output_v8/Conf1.json | ||
22 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T22/ MM_features/gen3/shelves/mmf_22.shelve output_v8/Conf1.json | ||
23 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T23/ MM_features/gen3/shelves/mmf_23.shelve output_v8/Conf1.json | ||
24 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T24/ MM_features/gen3/shelves/mmf_24.shelve output_v8/Conf1.json | ||
25 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T25/ MM_features/gen3/shelves/mmf_25.shelve output_v8/Conf1.json | ||
26 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T26/ MM_features/gen3/shelves/mmf_26.shelve output_v8/Conf1.json | ||
27 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T27/ MM_features/gen3/shelves/mmf_27.shelve output_v8/Conf1.json | ||
28 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T28/ MM_features/gen3/shelves/mmf_28.shelve output_v8/Conf1.json | ||
29 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T29/ MM_features/gen3/shelves/mmf_29.shelve output_v8/Conf1.json | ||
30 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T30/ MM_features/gen3/shelves/mmf_30.shelve output_v8/Conf1.json | ||
31 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T31/ MM_features/gen3/shelves/mmf_31.shelve output_v8/Conf1.json | ||
32 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T32/ MM_features/gen3/shelves/mmf_32.shelve output_v8/Conf1.json | ||
33 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T33/ MM_features/gen3/shelves/mmf_33.shelve output_v8/Conf1.json | ||
34 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T34/ MM_features/gen3/shelves/mmf_34.shelve output_v8/Conf1.json | ||
35 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T35/ MM_features/gen3/shelves/mmf_35.shelve output_v8/Conf1.json | ||
36 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T36/ MM_features/gen3/shelves/mmf_36.shelve output_v8/Conf1.json | ||
37 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T37/ MM_features/gen3/shelves/mmf_37.shelve output_v8/Conf1.json | ||
38 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T38/ MM_features/gen3/shelves/mmf_38.shelve output_v8/Conf1.json | ||
39 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T39/ MM_features/gen3/shelves/mmf_39.shelve output_v8/Conf1.json | ||
40 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T40/ MM_features/gen3/shelves/mmf_40.shelve output_v8/Conf1.json | ||
41 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T41/ MM_features/gen3/shelves/mmf_41.shelve output_v8/Conf1.json | ||
42 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T42/ MM_features/gen3/shelves/mmf_42.shelve output_v8/Conf1.json | ||
43 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T43/ MM_features/gen3/shelves/mmf_43.shelve output_v8/Conf1.json | ||
44 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T44/ MM_features/gen3/shelves/mmf_44.shelve output_v8/Conf1.json | ||
45 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T45/ MM_features/gen3/shelves/mmf_45.shelve output_v8/Conf1.json | ||
46 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T46/ MM_features/gen3/shelves/mmf_46.shelve output_v8/Conf1.json | ||
47 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T47/ MM_features/gen3/shelves/mmf_47.shelve output_v8/Conf1.json | ||
48 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T48/ MM_features/gen3/shelves/mmf_48.shelve output_v8/Conf1.json | ||
49 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T49/ MM_features/gen3/shelves/mmf_49.shelve output_v8/Conf1.json | ||
50 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T50/ MM_features/gen3/shelves/mmf_50.shelve output_v8/Conf1.json | ||
51 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T51/ MM_features/gen3/shelves/mmf_51.shelve output_v8/Conf1.json | ||
52 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T52/ MM_features/gen3/shelves/mmf_52.shelve output_v8/Conf1.json | ||
53 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T53/ MM_features/gen3/shelves/mmf_53.shelve output_v8/Conf1.json | ||
54 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T54/ MM_features/gen3/shelves/mmf_54.shelve output_v8/Conf1.json | ||
55 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T55/ MM_features/gen3/shelves/mmf_55.shelve output_v8/Conf1.json | ||
56 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T56/ MM_features/gen3/shelves/mmf_56.shelve output_v8/Conf1.json | ||
57 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T57/ MM_features/gen3/shelves/mmf_57.shelve output_v8/Conf1.json | ||
58 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T58/ MM_features/gen3/shelves/mmf_58.shelve output_v8/Conf1.json | ||
59 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T59/ MM_features/gen3/shelves/mmf_59.shelve output_v8/Conf1.json | ||
60 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T60/ MM_features/gen3/shelves/mmf_60.shelve output_v8/Conf1.json | ||
61 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T61/ MM_features/gen3/shelves/mmf_61.shelve output_v8/Conf1.json | ||
62 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T62/ MM_features/gen3/shelves/mmf_62.shelve output_v8/Conf1.json | ||
63 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T63/ MM_features/gen3/shelves/mmf_63.shelve output_v8/Conf1.json | ||
64 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T64/ MM_features/gen3/shelves/mmf_64.shelve output_v8/Conf1.json | ||
65 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T65/ MM_features/gen3/shelves/mmf_65.shelve output_v8/Conf1.json | ||
66 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T66/ MM_features/gen3/shelves/mmf_66.shelve output_v8/Conf1.json | ||
67 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T67/ MM_features/gen3/shelves/mmf_67.shelve output_v8/Conf1.json | ||
68 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T68/ MM_features/gen3/shelves/mmf_68.shelve output_v8/Conf1.json | ||
69 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T69/ MM_features/gen3/shelves/mmf_69.shelve output_v8/Conf1.json | ||
70 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T70/ MM_features/gen3/shelves/mmf_70.shelve output_v8/Conf1.json | ||
71 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T71/ MM_features/gen3/shelves/mmf_71.shelve output_v8/Conf1.json | ||
72 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T72/ MM_features/gen3/shelves/mmf_72.shelve output_v8/Conf1.json | ||
73 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T73/ MM_features/gen3/shelves/mmf_73.shelve output_v8/Conf1.json | ||
74 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T74/ MM_features/gen3/shelves/mmf_74.shelve output_v8/Conf1.json | ||
75 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T75/ MM_features/gen3/shelves/mmf_75.shelve output_v8/Conf1.json | ||
76 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T76/ MM_features/gen3/shelves/mmf_76.shelve output_v8/Conf1.json | ||
77 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T77/ MM_features/gen3/shelves/mmf_77.shelve output_v8/Conf1.json | ||
78 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T78/ MM_features/gen3/shelves/mmf_78.shelve output_v8/Conf1.json | ||
79 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T79/ MM_features/gen3/shelves/mmf_79.shelve output_v8/Conf1.json | ||
80 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T80/ MM_features/gen3/shelves/mmf_80.shelve output_v8/Conf1.json | ||
81 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T81/ MM_features/gen3/shelves/mmf_81.shelve output_v8/Conf1.json | ||
82 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T82/ MM_features/gen3/shelves/mmf_82.shelve output_v8/Conf1.json | ||
83 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T83/ MM_features/gen3/shelves/mmf_83.shelve output_v8/Conf1.json | ||
84 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T84/ MM_features/gen3/shelves/mmf_84.shelve output_v8/Conf1.json | ||
85 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T85/ MM_features/gen3/shelves/mmf_85.shelve output_v8/Conf1.json | ||
86 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T86/ MM_features/gen3/shelves/mmf_86.shelve output_v8/Conf1.json | ||
87 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T87/ MM_features/gen3/shelves/mmf_87.shelve output_v8/Conf1.json | ||
88 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T88/ MM_features/gen3/shelves/mmf_88.shelve output_v8/Conf1.json | ||
89 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T89/ MM_features/gen3/shelves/mmf_89.shelve output_v8/Conf1.json | ||
90 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T90/ MM_features/gen3/shelves/mmf_90.shelve output_v8/Conf1.json | ||
91 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T91/ MM_features/gen3/shelves/mmf_91.shelve output_v8/Conf1.json | ||
92 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T92/ MM_features/gen3/shelves/mmf_92.shelve output_v8/Conf1.json | ||
93 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T93/ MM_features/gen3/shelves/mmf_93.shelve output_v8/Conf1.json | ||
94 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T94/ MM_features/gen3/shelves/mmf_94.shelve output_v8/Conf1.json | ||
95 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T95/ MM_features/gen3/shelves/mmf_95.shelve output_v8/Conf1.json | ||
96 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T96/ MM_features/gen3/shelves/mmf_96.shelve output_v8/Conf1.json | ||
97 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T97/ MM_features/gen3/shelves/mmf_97.shelve output_v8/Conf1.json | ||
98 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T98/ MM_features/gen3/shelves/mmf_98.shelve output_v8/Conf1.json | ||
99 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T99/ MM_features/gen3/shelves/mmf_99.shelve output_v8/Conf1.json | ||
100 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T100/ MM_features/gen3/shelves/mmf_100.shelve output_v8/Conf1.json | ||
101 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T101/ MM_features/gen3/shelves/mmf_101.shelve output_v8/Conf1.json | ||
102 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T102/ MM_features/gen3/shelves/mmf_102.shelve output_v8/Conf1.json | ||
103 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T103/ MM_features/gen3/shelves/mmf_103.shelve output_v8/Conf1.json | ||
104 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T104/ MM_features/gen3/shelves/mmf_104.shelve output_v8/Conf1.json | ||
105 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T105/ MM_features/gen3/shelves/mmf_105.shelve output_v8/Conf1.json | ||
106 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T106/ MM_features/gen3/shelves/mmf_106.shelve output_v8/Conf1.json | ||
107 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T107/ MM_features/gen3/shelves/mmf_107.shelve output_v8/Conf1.json | ||
108 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T108/ MM_features/gen3/shelves/mmf_108.shelve output_v8/Conf1.json | ||
109 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T109/ MM_features/gen3/shelves/mmf_109.shelve output_v8/Conf1.json | ||
110 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T110/ MM_features/gen3/shelves/mmf_110.shelve output_v8/Conf1.json | ||
111 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T111/ MM_features/gen3/shelves/mmf_111.shelve output_v8/Conf1.json | ||
112 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T112/ MM_features/gen3/shelves/mmf_112.shelve output_v8/Conf1.json | ||
113 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T113/ MM_features/gen3/shelves/mmf_113.shelve output_v8/Conf1.json | ||
114 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T114/ MM_features/gen3/shelves/mmf_114.shelve output_v8/Conf1.json | ||
115 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T115/ MM_features/gen3/shelves/mmf_115.shelve output_v8/Conf1.json | ||
116 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T116/ MM_features/gen3/shelves/mmf_116.shelve output_v8/Conf1.json | ||
117 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T117/ MM_features/gen3/shelves/mmf_117.shelve output_v8/Conf1.json | ||
118 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T118/ MM_features/gen3/shelves/mmf_118.shelve output_v8/Conf1.json | ||
119 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T119/ MM_features/gen3/shelves/mmf_119.shelve output_v8/Conf1.json | ||
120 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T120/ MM_features/gen3/shelves/mmf_120.shelve output_v8/Conf1.json | ||
121 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T121/ MM_features/gen3/shelves/mmf_121.shelve output_v8/Conf1.json | ||
122 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T122/ MM_features/gen3/shelves/mmf_122.shelve output_v8/Conf1.json | ||
123 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T123/ MM_features/gen3/shelves/mmf_123.shelve output_v8/Conf1.json | ||
124 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T124/ MM_features/gen3/shelves/mmf_124.shelve output_v8/Conf1.json | ||
125 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T125/ MM_features/gen3/shelves/mmf_125.shelve output_v8/Conf1.json | ||
126 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T126/ MM_features/gen3/shelves/mmf_126.shelve output_v8/Conf1.json | ||
127 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T127/ MM_features/gen3/shelves/mmf_127.shelve output_v8/Conf1.json | ||
128 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T128/ MM_features/gen3/shelves/mmf_128.shelve output_v8/Conf1.json | ||
129 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T129/ MM_features/gen3/shelves/mmf_129.shelve output_v8/Conf1.json | ||
130 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T130/ MM_features/gen3/shelves/mmf_130.shelve output_v8/Conf1.json | ||
131 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T131/ MM_features/gen3/shelves/mmf_131.shelve output_v8/Conf1.json | ||
132 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T132/ MM_features/gen3/shelves/mmf_132.shelve output_v8/Conf1.json | ||
133 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T133/ MM_features/gen3/shelves/mmf_133.shelve output_v8/Conf1.json | ||
134 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T134/ MM_features/gen3/shelves/mmf_134.shelve output_v8/Conf1.json | ||
135 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T135/ MM_features/gen3/shelves/mmf_135.shelve output_v8/Conf1.json | ||
136 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T136/ MM_features/gen3/shelves/mmf_136.shelve output_v8/Conf1.json | ||
137 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T137/ MM_features/gen3/shelves/mmf_137.shelve output_v8/Conf1.json | ||
138 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T138/ MM_features/gen3/shelves/mmf_138.shelve output_v8/Conf1.json | ||
139 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T139/ MM_features/gen3/shelves/mmf_139.shelve output_v8/Conf1.json | ||
140 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T140/ MM_features/gen3/shelves/mmf_140.shelve output_v8/Conf1.json | ||
141 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T141/ MM_features/gen3/shelves/mmf_141.shelve output_v8/Conf1.json | ||
142 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T142/ MM_features/gen3/shelves/mmf_142.shelve output_v8/Conf1.json | ||
143 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T143/ MM_features/gen3/shelves/mmf_143.shelve output_v8/Conf1.json | ||
144 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T144/ MM_features/gen3/shelves/mmf_144.shelve output_v8/Conf1.json | ||
145 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T145/ MM_features/gen3/shelves/mmf_145.shelve output_v8/Conf1.json | ||
146 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T146/ MM_features/gen3/shelves/mmf_146.shelve output_v8/Conf1.json | ||
147 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T147/ MM_features/gen3/shelves/mmf_147.shelve output_v8/Conf1.json | ||
148 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T148/ MM_features/gen3/shelves/mmf_148.shelve output_v8/Conf1.json | ||
149 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T149/ MM_features/gen3/shelves/mmf_149.shelve output_v8/Conf1.json | ||
150 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T150/ MM_features/gen3/shelves/mmf_150.shelve output_v8/Conf1.json | ||
151 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T151/ MM_features/gen3/shelves/mmf_151.shelve output_v8/Conf1.json | ||
152 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T152/ MM_features/gen3/shelves/mmf_152.shelve output_v8/Conf1.json | ||
153 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T153/ MM_features/gen3/shelves/mmf_153.shelve output_v8/Conf1.json | ||
154 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T154/ MM_features/gen3/shelves/mmf_154.shelve output_v8/Conf1.json | ||
155 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T155/ MM_features/gen3/shelves/mmf_155.shelve output_v8/Conf1.json | ||
156 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T156/ MM_features/gen3/shelves/mmf_156.shelve output_v8/Conf1.json | ||
157 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T157/ MM_features/gen3/shelves/mmf_157.shelve output_v8/Conf1.json | ||
158 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T158/ MM_features/gen3/shelves/mmf_158.shelve output_v8/Conf1.json | ||
159 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T159/ MM_features/gen3/shelves/mmf_159.shelve output_v8/Conf1.json | ||
160 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T160/ MM_features/gen3/shelves/mmf_160.shelve output_v8/Conf1.json | ||
161 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T161/ MM_features/gen3/shelves/mmf_161.shelve output_v8/Conf1.json | ||
162 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T162/ MM_features/gen3/shelves/mmf_162.shelve output_v8/Conf1.json | ||
163 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T163/ MM_features/gen3/shelves/mmf_163.shelve output_v8/Conf1.json | ||
164 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T164/ MM_features/gen3/shelves/mmf_164.shelve output_v8/Conf1.json | ||
165 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T165/ MM_features/gen3/shelves/mmf_165.shelve output_v8/Conf1.json | ||
166 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T166/ MM_features/gen3/shelves/mmf_166.shelve output_v8/Conf1.json | ||
167 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T167/ MM_features/gen3/shelves/mmf_167.shelve output_v8/Conf1.json | ||
168 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T168/ MM_features/gen3/shelves/mmf_168.shelve output_v8/Conf1.json | ||
169 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T169/ MM_features/gen3/shelves/mmf_169.shelve output_v8/Conf1.json | ||
170 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T170/ MM_features/gen3/shelves/mmf_170.shelve output_v8/Conf1.json | ||
171 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T171/ MM_features/gen3/shelves/mmf_171.shelve output_v8/Conf1.json | ||
172 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T172/ MM_features/gen3/shelves/mmf_172.shelve output_v8/Conf1.json | ||
173 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T173/ MM_features/gen3/shelves/mmf_173.shelve output_v8/Conf1.json | ||
174 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T174/ MM_features/gen3/shelves/mmf_174.shelve output_v8/Conf1.json | ||
175 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T175/ MM_features/gen3/shelves/mmf_175.shelve output_v8/Conf1.json | ||
176 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T176/ MM_features/gen3/shelves/mmf_176.shelve output_v8/Conf1.json | ||
177 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T177/ MM_features/gen3/shelves/mmf_177.shelve output_v8/Conf1.json | ||
178 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T178/ MM_features/gen3/shelves/mmf_178.shelve output_v8/Conf1.json | ||
179 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T179/ MM_features/gen3/shelves/mmf_179.shelve output_v8/Conf1.json | ||
180 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T180/ MM_features/gen3/shelves/mmf_180.shelve output_v8/Conf1.json | ||
181 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T181/ MM_features/gen3/shelves/mmf_181.shelve output_v8/Conf1.json | ||
182 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T182/ MM_features/gen3/shelves/mmf_182.shelve output_v8/Conf1.json | ||
183 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T183/ MM_features/gen3/shelves/mmf_183.shelve output_v8/Conf1.json | ||
184 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T184/ MM_features/gen3/shelves/mmf_184.shelve output_v8/Conf1.json | ||
185 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T185/ MM_features/gen3/shelves/mmf_185.shelve output_v8/Conf1.json | ||
186 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T186/ MM_features/gen3/shelves/mmf_186.shelve output_v8/Conf1.json | ||
187 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T187/ MM_features/gen3/shelves/mmf_187.shelve output_v8/Conf1.json | ||
188 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T188/ MM_features/gen3/shelves/mmf_188.shelve output_v8/Conf1.json | ||
189 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T189/ MM_features/gen3/shelves/mmf_189.shelve output_v8/Conf1.json | ||
190 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T190/ MM_features/gen3/shelves/mmf_190.shelve output_v8/Conf1.json | ||
191 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T191/ MM_features/gen3/shelves/mmf_191.shelve output_v8/Conf1.json | ||
192 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T192/ MM_features/gen3/shelves/mmf_192.shelve output_v8/Conf1.json | ||
193 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T193/ MM_features/gen3/shelves/mmf_193.shelve output_v8/Conf1.json | ||
194 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T194/ MM_features/gen3/shelves/mmf_194.shelve output_v8/Conf1.json | ||
195 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T195/ MM_features/gen3/shelves/mmf_195.shelve output_v8/Conf1.json | ||
196 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T196/ MM_features/gen3/shelves/mmf_196.shelve output_v8/Conf1.json | ||
197 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T197/ MM_features/gen3/shelves/mmf_197.shelve output_v8/Conf1.json | ||
198 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T198/ MM_features/gen3/shelves/mmf_198.shelve output_v8/Conf1.json | ||
199 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T199/ MM_features/gen3/shelves/mmf_199.shelve output_v8/Conf1.json | ||
200 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T200/ MM_features/gen3/shelves/mmf_200.shelve output_v8/Conf1.json | ||
201 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T201/ MM_features/gen3/shelves/mmf_201.shelve output_v8/Conf1.json | ||
202 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T202/ MM_features/gen3/shelves/mmf_202.shelve output_v8/Conf1.json | ||
203 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T203/ MM_features/gen3/shelves/mmf_203.shelve output_v8/Conf1.json | ||
204 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T204/ MM_features/gen3/shelves/mmf_204.shelve output_v8/Conf1.json | ||
205 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T205/ MM_features/gen3/shelves/mmf_205.shelve output_v8/Conf1.json | ||
206 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T206/ MM_features/gen3/shelves/mmf_206.shelve output_v8/Conf1.json | ||
207 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T207/ MM_features/gen3/shelves/mmf_207.shelve output_v8/Conf1.json | ||
208 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T208/ MM_features/gen3/shelves/mmf_208.shelve output_v8/Conf1.json | ||
209 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T209/ MM_features/gen3/shelves/mmf_209.shelve output_v8/Conf1.json | ||
210 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T210/ MM_features/gen3/shelves/mmf_210.shelve output_v8/Conf1.json | ||
211 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T211/ MM_features/gen3/shelves/mmf_211.shelve output_v8/Conf1.json | ||
212 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T212/ MM_features/gen3/shelves/mmf_212.shelve output_v8/Conf1.json | ||
213 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T213/ MM_features/gen3/shelves/mmf_213.shelve output_v8/Conf1.json | ||
214 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T214/ MM_features/gen3/shelves/mmf_214.shelve output_v8/Conf1.json | ||
215 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T215/ MM_features/gen3/shelves/mmf_215.shelve output_v8/Conf1.json | ||
216 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T216/ MM_features/gen3/shelves/mmf_216.shelve output_v8/Conf1.json | ||
217 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T217/ MM_features/gen3/shelves/mmf_217.shelve output_v8/Conf1.json | ||
218 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T218/ MM_features/gen3/shelves/mmf_218.shelve output_v8/Conf1.json | ||
219 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T219/ MM_features/gen3/shelves/mmf_219.shelve output_v8/Conf1.json | ||
220 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T220/ MM_features/gen3/shelves/mmf_220.shelve output_v8/Conf1.json | ||
221 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T221/ MM_features/gen3/shelves/mmf_221.shelve output_v8/Conf1.json | ||
222 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T222/ MM_features/gen3/shelves/mmf_222.shelve output_v8/Conf1.json | ||
223 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T223/ MM_features/gen3/shelves/mmf_223.shelve output_v8/Conf1.json | ||
224 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T224/ MM_features/gen3/shelves/mmf_224.shelve output_v8/Conf1.json | ||
225 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T225/ MM_features/gen3/shelves/mmf_225.shelve output_v8/Conf1.json | ||
226 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T226/ MM_features/gen3/shelves/mmf_226.shelve output_v8/Conf1.json | ||
227 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T227/ MM_features/gen3/shelves/mmf_227.shelve output_v8/Conf1.json | ||
228 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T228/ MM_features/gen3/shelves/mmf_228.shelve output_v8/Conf1.json | ||
229 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T229/ MM_features/gen3/shelves/mmf_229.shelve output_v8/Conf1.json | ||
230 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T230/ MM_features/gen3/shelves/mmf_230.shelve output_v8/Conf1.json | ||
231 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T231/ MM_features/gen3/shelves/mmf_231.shelve output_v8/Conf1.json | ||
232 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T232/ MM_features/gen3/shelves/mmf_232.shelve output_v8/Conf1.json | ||
233 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T233/ MM_features/gen3/shelves/mmf_233.shelve output_v8/Conf1.json | ||
234 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T234/ MM_features/gen3/shelves/mmf_234.shelve output_v8/Conf1.json | ||
235 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T235/ MM_features/gen3/shelves/mmf_235.shelve output_v8/Conf1.json | ||
236 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T236/ MM_features/gen3/shelves/mmf_236.shelve output_v8/Conf1.json | ||
237 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T237/ MM_features/gen3/shelves/mmf_237.shelve output_v8/Conf1.json | ||
238 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T238/ MM_features/gen3/shelves/mmf_238.shelve output_v8/Conf1.json | ||
239 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T239/ MM_features/gen3/shelves/mmf_239.shelve output_v8/Conf1.json | ||
240 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T240/ MM_features/gen3/shelves/mmf_240.shelve output_v8/Conf1.json | ||
241 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T241/ MM_features/gen3/shelves/mmf_241.shelve output_v8/Conf1.json | ||
242 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T242/ MM_features/gen3/shelves/mmf_242.shelve output_v8/Conf1.json | ||
243 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T243/ MM_features/gen3/shelves/mmf_243.shelve output_v8/Conf1.json | ||
244 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T244/ MM_features/gen3/shelves/mmf_244.shelve output_v8/Conf1.json | ||
245 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T245/ MM_features/gen3/shelves/mmf_245.shelve output_v8/Conf1.json | ||
246 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T246/ MM_features/gen3/shelves/mmf_246.shelve output_v8/Conf1.json | ||
247 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T247/ MM_features/gen3/shelves/mmf_247.shelve output_v8/Conf1.json | ||
248 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T248/ MM_features/gen3/shelves/mmf_248.shelve output_v8/Conf1.json | ||
249 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T249/ MM_features/gen3/shelves/mmf_249.shelve output_v8/Conf1.json | ||
250 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T250/ MM_features/gen3/shelves/mmf_250.shelve output_v8/Conf1.json | ||
251 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T251/ MM_features/gen3/shelves/mmf_251.shelve output_v8/Conf1.json | ||
252 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T252/ MM_features/gen3/shelves/mmf_252.shelve output_v8/Conf1.json | ||
253 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T253/ MM_features/gen3/shelves/mmf_253.shelve output_v8/Conf1.json | ||
254 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T254/ MM_features/gen3/shelves/mmf_254.shelve output_v8/Conf1.json | ||
255 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T255/ MM_features/gen3/shelves/mmf_255.shelve output_v8/Conf1.json | ||
256 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T256/ MM_features/gen3/shelves/mmf_256.shelve output_v8/Conf1.json | ||
257 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T257/ MM_features/gen3/shelves/mmf_257.shelve output_v8/Conf1.json | ||
258 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T258/ MM_features/gen3/shelves/mmf_258.shelve output_v8/Conf1.json | ||
259 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T259/ MM_features/gen3/shelves/mmf_259.shelve output_v8/Conf1.json | ||
260 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T260/ MM_features/gen3/shelves/mmf_260.shelve output_v8/Conf1.json | ||
261 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T261/ MM_features/gen3/shelves/mmf_261.shelve output_v8/Conf1.json | ||
262 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T262/ MM_features/gen3/shelves/mmf_262.shelve output_v8/Conf1.json | ||
263 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T263/ MM_features/gen3/shelves/mmf_263.shelve output_v8/Conf1.json | ||
264 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T264/ MM_features/gen3/shelves/mmf_264.shelve output_v8/Conf1.json | ||
265 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T265/ MM_features/gen3/shelves/mmf_265.shelve output_v8/Conf1.json | ||
266 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T266/ MM_features/gen3/shelves/mmf_266.shelve output_v8/Conf1.json | ||
267 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T267/ MM_features/gen3/shelves/mmf_267.shelve output_v8/Conf1.json | ||
268 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T268/ MM_features/gen3/shelves/mmf_268.shelve output_v8/Conf1.json | ||
269 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T269/ MM_features/gen3/shelves/mmf_269.shelve output_v8/Conf1.json | ||
270 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T270/ MM_features/gen3/shelves/mmf_270.shelve output_v8/Conf1.json | ||
271 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T271/ MM_features/gen3/shelves/mmf_271.shelve output_v8/Conf1.json | ||
272 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T272/ MM_features/gen3/shelves/mmf_272.shelve output_v8/Conf1.json | ||
273 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T273/ MM_features/gen3/shelves/mmf_273.shelve output_v8/Conf1.json | ||
274 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T274/ MM_features/gen3/shelves/mmf_274.shelve output_v8/Conf1.json | ||
275 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T275/ MM_features/gen3/shelves/mmf_275.shelve output_v8/Conf1.json | ||
276 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T276/ MM_features/gen3/shelves/mmf_276.shelve output_v8/Conf1.json | ||
277 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T277/ MM_features/gen3/shelves/mmf_277.shelve output_v8/Conf1.json | ||
278 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T278/ MM_features/gen3/shelves/mmf_278.shelve output_v8/Conf1.json | ||
279 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T279/ MM_features/gen3/shelves/mmf_279.shelve output_v8/Conf1.json | ||
280 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T280/ MM_features/gen3/shelves/mmf_280.shelve output_v8/Conf1.json | ||
281 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T281/ MM_features/gen3/shelves/mmf_281.shelve output_v8/Conf1.json | ||
282 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T282/ MM_features/gen3/shelves/mmf_282.shelve output_v8/Conf1.json | ||
283 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T283/ MM_features/gen3/shelves/mmf_283.shelve output_v8/Conf1.json | ||
284 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T284/ MM_features/gen3/shelves/mmf_284.shelve output_v8/Conf1.json | ||
285 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T285/ MM_features/gen3/shelves/mmf_285.shelve output_v8/Conf1.json | ||
286 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T286/ MM_features/gen3/shelves/mmf_286.shelve output_v8/Conf1.json | ||
287 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T287/ MM_features/gen3/shelves/mmf_287.shelve output_v8/Conf1.json | ||
288 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T288/ MM_features/gen3/shelves/mmf_288.shelve output_v8/Conf1.json | ||
289 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T289/ MM_features/gen3/shelves/mmf_289.shelve output_v8/Conf1.json | ||
290 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T290/ MM_features/gen3/shelves/mmf_290.shelve output_v8/Conf1.json | ||
291 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T291/ MM_features/gen3/shelves/mmf_291.shelve output_v8/Conf1.json | ||
292 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T292/ MM_features/gen3/shelves/mmf_292.shelve output_v8/Conf1.json | ||
293 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T293/ MM_features/gen3/shelves/mmf_293.shelve output_v8/Conf1.json | ||
294 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T294/ MM_features/gen3/shelves/mmf_294.shelve output_v8/Conf1.json | ||
295 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T295/ MM_features/gen3/shelves/mmf_295.shelve output_v8/Conf1.json | ||
296 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T296/ MM_features/gen3/shelves/mmf_296.shelve output_v8/Conf1.json | ||
297 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T297/ MM_features/gen3/shelves/mmf_297.shelve output_v8/Conf1.json | ||
298 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T298/ MM_features/gen3/shelves/mmf_298.shelve output_v8/Conf1.json | ||
299 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T299/ MM_features/gen3/shelves/mmf_299.shelve output_v8/Conf1.json | ||
300 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T300/ MM_features/gen3/shelves/mmf_300.shelve output_v8/Conf1.json | ||
301 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T301/ MM_features/gen3/shelves/mmf_301.shelve output_v8/Conf1.json | ||
302 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T302/ MM_features/gen3/shelves/mmf_302.shelve output_v8/Conf1.json | ||
303 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T303/ MM_features/gen3/shelves/mmf_303.shelve output_v8/Conf1.json | ||
304 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T304/ MM_features/gen3/shelves/mmf_304.shelve output_v8/Conf1.json | ||
305 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T305/ MM_features/gen3/shelves/mmf_305.shelve output_v8/Conf1.json | ||
306 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T306/ MM_features/gen3/shelves/mmf_306.shelve output_v8/Conf1.json | ||
307 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T307/ MM_features/gen3/shelves/mmf_307.shelve output_v8/Conf1.json | ||
308 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T308/ MM_features/gen3/shelves/mmf_308.shelve output_v8/Conf1.json | ||
309 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T309/ MM_features/gen3/shelves/mmf_309.shelve output_v8/Conf1.json | ||
310 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T310/ MM_features/gen3/shelves/mmf_310.shelve output_v8/Conf1.json | ||
311 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T311/ MM_features/gen3/shelves/mmf_311.shelve output_v8/Conf1.json | ||
312 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T312/ MM_features/gen3/shelves/mmf_312.shelve output_v8/Conf1.json | ||
313 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T313/ MM_features/gen3/shelves/mmf_313.shelve output_v8/Conf1.json | ||
314 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T314/ MM_features/gen3/shelves/mmf_314.shelve output_v8/Conf1.json | ||
315 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T315/ MM_features/gen3/shelves/mmf_315.shelve output_v8/Conf1.json | ||
316 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T316/ MM_features/gen3/shelves/mmf_316.shelve output_v8/Conf1.json | ||
317 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T317/ MM_features/gen3/shelves/mmf_317.shelve output_v8/Conf1.json | ||
318 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T318/ MM_features/gen3/shelves/mmf_318.shelve output_v8/Conf1.json | ||
319 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T319/ MM_features/gen3/shelves/mmf_319.shelve output_v8/Conf1.json | ||
320 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T320/ MM_features/gen3/shelves/mmf_320.shelve output_v8/Conf1.json | ||
321 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T321/ MM_features/gen3/shelves/mmf_321.shelve output_v8/Conf1.json | ||
322 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T322/ MM_features/gen3/shelves/mmf_322.shelve output_v8/Conf1.json | ||
323 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T323/ MM_features/gen3/shelves/mmf_323.shelve output_v8/Conf1.json | ||
324 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T324/ MM_features/gen3/shelves/mmf_324.shelve output_v8/Conf1.json | ||
325 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T325/ MM_features/gen3/shelves/mmf_325.shelve output_v8/Conf1.json | ||
326 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T326/ MM_features/gen3/shelves/mmf_326.shelve output_v8/Conf1.json | ||
327 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T327/ MM_features/gen3/shelves/mmf_327.shelve output_v8/Conf1.json | ||
328 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T328/ MM_features/gen3/shelves/mmf_328.shelve output_v8/Conf1.json | ||
329 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T329/ MM_features/gen3/shelves/mmf_329.shelve output_v8/Conf1.json | ||
330 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T330/ MM_features/gen3/shelves/mmf_330.shelve output_v8/Conf1.json | ||
331 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T331/ MM_features/gen3/shelves/mmf_331.shelve output_v8/Conf1.json | ||
332 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T332/ MM_features/gen3/shelves/mmf_332.shelve output_v8/Conf1.json | ||
333 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T333/ MM_features/gen3/shelves/mmf_333.shelve output_v8/Conf1.json | ||
334 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T334/ MM_features/gen3/shelves/mmf_334.shelve output_v8/Conf1.json | ||
335 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T335/ MM_features/gen3/shelves/mmf_335.shelve output_v8/Conf1.json | ||
336 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T336/ MM_features/gen3/shelves/mmf_336.shelve output_v8/Conf1.json | ||
337 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T337/ MM_features/gen3/shelves/mmf_337.shelve output_v8/Conf1.json | ||
338 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T338/ MM_features/gen3/shelves/mmf_338.shelve output_v8/Conf1.json | ||
339 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T339/ MM_features/gen3/shelves/mmf_339.shelve output_v8/Conf1.json | ||
340 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T340/ MM_features/gen3/shelves/mmf_340.shelve output_v8/Conf1.json | ||
341 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T341/ MM_features/gen3/shelves/mmf_341.shelve output_v8/Conf1.json | ||
342 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T342/ MM_features/gen3/shelves/mmf_342.shelve output_v8/Conf1.json | ||
343 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T343/ MM_features/gen3/shelves/mmf_343.shelve output_v8/Conf1.json | ||
344 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T344/ MM_features/gen3/shelves/mmf_344.shelve output_v8/Conf1.json | ||
345 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T345/ MM_features/gen3/shelves/mmf_345.shelve output_v8/Conf1.json | ||
346 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T346/ MM_features/gen3/shelves/mmf_346.shelve output_v8/Conf1.json | ||
347 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T347/ MM_features/gen3/shelves/mmf_347.shelve output_v8/Conf1.json | ||
348 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T348/ MM_features/gen3/shelves/mmf_348.shelve output_v8/Conf1.json | ||
349 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T349/ MM_features/gen3/shelves/mmf_349.shelve output_v8/Conf1.json | ||
350 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T350/ MM_features/gen3/shelves/mmf_350.shelve output_v8/Conf1.json | ||
351 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T351/ MM_features/gen3/shelves/mmf_351.shelve output_v8/Conf1.json | ||
352 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T352/ MM_features/gen3/shelves/mmf_352.shelve output_v8/Conf1.json | ||
353 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T353/ MM_features/gen3/shelves/mmf_353.shelve output_v8/Conf1.json | ||
354 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T354/ MM_features/gen3/shelves/mmf_354.shelve output_v8/Conf1.json | ||
355 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T355/ MM_features/gen3/shelves/mmf_355.shelve output_v8/Conf1.json | ||
356 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T356/ MM_features/gen3/shelves/mmf_356.shelve output_v8/Conf1.json | ||
357 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T357/ MM_features/gen3/shelves/mmf_357.shelve output_v8/Conf1.json | ||
358 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T358/ MM_features/gen3/shelves/mmf_358.shelve output_v8/Conf1.json | ||
359 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T359/ MM_features/gen3/shelves/mmf_359.shelve output_v8/Conf1.json | ||
360 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T360/ MM_features/gen3/shelves/mmf_360.shelve output_v8/Conf1.json | ||
361 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T361/ MM_features/gen3/shelves/mmf_361.shelve output_v8/Conf1.json | ||
362 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T362/ MM_features/gen3/shelves/mmf_362.shelve output_v8/Conf1.json | ||
363 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T363/ MM_features/gen3/shelves/mmf_363.shelve output_v8/Conf1.json | ||
364 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T364/ MM_features/gen3/shelves/mmf_364.shelve output_v8/Conf1.json | ||
365 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T365/ MM_features/gen3/shelves/mmf_365.shelve output_v8/Conf1.json | ||
366 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T366/ MM_features/gen3/shelves/mmf_366.shelve output_v8/Conf1.json | ||
367 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T367/ MM_features/gen3/shelves/mmf_367.shelve output_v8/Conf1.json | ||
368 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T368/ MM_features/gen3/shelves/mmf_368.shelve output_v8/Conf1.json | ||
369 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T369/ MM_features/gen3/shelves/mmf_369.shelve output_v8/Conf1.json | ||
370 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T370/ MM_features/gen3/shelves/mmf_370.shelve output_v8/Conf1.json | ||
371 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T371/ MM_features/gen3/shelves/mmf_371.shelve output_v8/Conf1.json | ||
372 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T372/ MM_features/gen3/shelves/mmf_372.shelve output_v8/Conf1.json | ||
373 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T373/ MM_features/gen3/shelves/mmf_373.shelve output_v8/Conf1.json | ||
374 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T374/ MM_features/gen3/shelves/mmf_374.shelve output_v8/Conf1.json | ||
375 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T375/ MM_features/gen3/shelves/mmf_375.shelve output_v8/Conf1.json | ||
376 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T376/ MM_features/gen3/shelves/mmf_376.shelve output_v8/Conf1.json | ||
377 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T377/ MM_features/gen3/shelves/mmf_377.shelve output_v8/Conf1.json | ||
378 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T378/ MM_features/gen3/shelves/mmf_378.shelve output_v8/Conf1.json | ||
379 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T379/ MM_features/gen3/shelves/mmf_379.shelve output_v8/Conf1.json | ||
380 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T380/ MM_features/gen3/shelves/mmf_380.shelve output_v8/Conf1.json | ||
381 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T381/ MM_features/gen3/shelves/mmf_381.shelve output_v8/Conf1.json | ||
382 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T382/ MM_features/gen3/shelves/mmf_382.shelve output_v8/Conf1.json | ||
383 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T383/ MM_features/gen3/shelves/mmf_383.shelve output_v8/Conf1.json | ||
384 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T384/ MM_features/gen3/shelves/mmf_384.shelve output_v8/Conf1.json | ||
385 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T385/ MM_features/gen3/shelves/mmf_385.shelve output_v8/Conf1.json | ||
386 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T386/ MM_features/gen3/shelves/mmf_386.shelve output_v8/Conf1.json | ||
387 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T387/ MM_features/gen3/shelves/mmf_387.shelve output_v8/Conf1.json | ||
388 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T388/ MM_features/gen3/shelves/mmf_388.shelve output_v8/Conf1.json | ||
389 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T389/ MM_features/gen3/shelves/mmf_389.shelve output_v8/Conf1.json | ||
390 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T390/ MM_features/gen3/shelves/mmf_390.shelve output_v8/Conf1.json | ||
391 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T391/ MM_features/gen3/shelves/mmf_391.shelve output_v8/Conf1.json | ||
392 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T392/ MM_features/gen3/shelves/mmf_392.shelve output_v8/Conf1.json | ||
393 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T393/ MM_features/gen3/shelves/mmf_393.shelve output_v8/Conf1.json | ||
394 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T394/ MM_features/gen3/shelves/mmf_394.shelve output_v8/Conf1.json | ||
395 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T395/ MM_features/gen3/shelves/mmf_395.shelve output_v8/Conf1.json | ||
396 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T396/ MM_features/gen3/shelves/mmf_396.shelve output_v8/Conf1.json | ||
397 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T397/ MM_features/gen3/shelves/mmf_397.shelve output_v8/Conf1.json | ||
398 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T398/ MM_features/gen3/shelves/mmf_398.shelve output_v8/Conf1.json | ||
399 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T399/ MM_features/gen3/shelves/mmf_399.shelve output_v8/Conf1.json | ||
400 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T400/ MM_features/gen3/shelves/mmf_400.shelve output_v8/Conf1.json | ||
401 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T401/ MM_features/gen3/shelves/mmf_401.shelve output_v8/Conf1.json | ||
402 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T402/ MM_features/gen3/shelves/mmf_402.shelve output_v8/Conf1.json | ||
403 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T403/ MM_features/gen3/shelves/mmf_403.shelve output_v8/Conf1.json | ||
404 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T404/ MM_features/gen3/shelves/mmf_404.shelve output_v8/Conf1.json | ||
405 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T405/ MM_features/gen3/shelves/mmf_405.shelve output_v8/Conf1.json | ||
406 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T406/ MM_features/gen3/shelves/mmf_406.shelve output_v8/Conf1.json | ||
407 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T407/ MM_features/gen3/shelves/mmf_407.shelve output_v8/Conf1.json | ||
408 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T408/ MM_features/gen3/shelves/mmf_408.shelve output_v8/Conf1.json | ||
409 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T409/ MM_features/gen3/shelves/mmf_409.shelve output_v8/Conf1.json | ||
410 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T410/ MM_features/gen3/shelves/mmf_410.shelve output_v8/Conf1.json | ||
411 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T411/ MM_features/gen3/shelves/mmf_411.shelve output_v8/Conf1.json | ||
412 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T412/ MM_features/gen3/shelves/mmf_412.shelve output_v8/Conf1.json | ||
413 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T413/ MM_features/gen3/shelves/mmf_413.shelve output_v8/Conf1.json | ||
414 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T414/ MM_features/gen3/shelves/mmf_414.shelve output_v8/Conf1.json | ||
415 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T415/ MM_features/gen3/shelves/mmf_415.shelve output_v8/Conf1.json | ||
416 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T416/ MM_features/gen3/shelves/mmf_416.shelve output_v8/Conf1.json | ||
417 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T417/ MM_features/gen3/shelves/mmf_417.shelve output_v8/Conf1.json | ||
418 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T418/ MM_features/gen3/shelves/mmf_418.shelve output_v8/Conf1.json | ||
419 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T419/ MM_features/gen3/shelves/mmf_419.shelve output_v8/Conf1.json | ||
420 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T420/ MM_features/gen3/shelves/mmf_420.shelve output_v8/Conf1.json | ||
421 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T421/ MM_features/gen3/shelves/mmf_421.shelve output_v8/Conf1.json | ||
422 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T422/ MM_features/gen3/shelves/mmf_422.shelve output_v8/Conf1.json | ||
423 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T423/ MM_features/gen3/shelves/mmf_423.shelve output_v8/Conf1.json | ||
424 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T424/ MM_features/gen3/shelves/mmf_424.shelve output_v8/Conf1.json | ||
425 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T425/ MM_features/gen3/shelves/mmf_425.shelve output_v8/Conf1.json | ||
426 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T426/ MM_features/gen3/shelves/mmf_426.shelve output_v8/Conf1.json | ||
427 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T427/ MM_features/gen3/shelves/mmf_427.shelve output_v8/Conf1.json | ||
428 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T428/ MM_features/gen3/shelves/mmf_428.shelve output_v8/Conf1.json | ||
429 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T429/ MM_features/gen3/shelves/mmf_429.shelve output_v8/Conf1.json | ||
430 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T430/ MM_features/gen3/shelves/mmf_430.shelve output_v8/Conf1.json | ||
431 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T431/ MM_features/gen3/shelves/mmf_431.shelve output_v8/Conf1.json | ||
432 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T432/ MM_features/gen3/shelves/mmf_432.shelve output_v8/Conf1.json | ||
433 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T433/ MM_features/gen3/shelves/mmf_433.shelve output_v8/Conf1.json | ||
434 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T434/ MM_features/gen3/shelves/mmf_434.shelve output_v8/Conf1.json | ||
435 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T435/ MM_features/gen3/shelves/mmf_435.shelve output_v8/Conf1.json | ||
436 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T436/ MM_features/gen3/shelves/mmf_436.shelve output_v8/Conf1.json | ||
437 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T437/ MM_features/gen3/shelves/mmf_437.shelve output_v8/Conf1.json | ||
438 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T438/ MM_features/gen3/shelves/mmf_438.shelve output_v8/Conf1.json | ||
439 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T439/ MM_features/gen3/shelves/mmf_439.shelve output_v8/Conf1.json | ||
440 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T440/ MM_features/gen3/shelves/mmf_440.shelve output_v8/Conf1.json | ||
441 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T441/ MM_features/gen3/shelves/mmf_441.shelve output_v8/Conf1.json | ||
442 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T442/ MM_features/gen3/shelves/mmf_442.shelve output_v8/Conf1.json | ||
443 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T443/ MM_features/gen3/shelves/mmf_443.shelve output_v8/Conf1.json | ||
444 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T444/ MM_features/gen3/shelves/mmf_444.shelve output_v8/Conf1.json | ||
445 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T445/ MM_features/gen3/shelves/mmf_445.shelve output_v8/Conf1.json | ||
446 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T446/ MM_features/gen3/shelves/mmf_446.shelve output_v8/Conf1.json | ||
447 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T447/ MM_features/gen3/shelves/mmf_447.shelve output_v8/Conf1.json | ||
448 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T448/ MM_features/gen3/shelves/mmf_448.shelve output_v8/Conf1.json | ||
449 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T449/ MM_features/gen3/shelves/mmf_449.shelve output_v8/Conf1.json | ||
450 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T450/ MM_features/gen3/shelves/mmf_450.shelve output_v8/Conf1.json | ||
451 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T451/ MM_features/gen3/shelves/mmf_451.shelve output_v8/Conf1.json | ||
452 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T452/ MM_features/gen3/shelves/mmf_452.shelve output_v8/Conf1.json | ||
453 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T453/ MM_features/gen3/shelves/mmf_453.shelve output_v8/Conf1.json | ||
454 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T454/ MM_features/gen3/shelves/mmf_454.shelve output_v8/Conf1.json | ||
455 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T455/ MM_features/gen3/shelves/mmf_455.shelve output_v8/Conf1.json | ||
456 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T456/ MM_features/gen3/shelves/mmf_456.shelve output_v8/Conf1.json | ||
457 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T457/ MM_features/gen3/shelves/mmf_457.shelve output_v8/Conf1.json | ||
458 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T458/ MM_features/gen3/shelves/mmf_458.shelve output_v8/Conf1.json | ||
459 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T459/ MM_features/gen3/shelves/mmf_459.shelve output_v8/Conf1.json | ||
460 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T460/ MM_features/gen3/shelves/mmf_460.shelve output_v8/Conf1.json | ||
461 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T461/ MM_features/gen3/shelves/mmf_461.shelve output_v8/Conf1.json | ||
462 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T462/ MM_features/gen3/shelves/mmf_462.shelve output_v8/Conf1.json | ||
463 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T463/ MM_features/gen3/shelves/mmf_463.shelve output_v8/Conf1.json | ||
464 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T464/ MM_features/gen3/shelves/mmf_464.shelve output_v8/Conf1.json | ||
465 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T465/ MM_features/gen3/shelves/mmf_465.shelve output_v8/Conf1.json | ||
466 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T466/ MM_features/gen3/shelves/mmf_466.shelve output_v8/Conf1.json | ||
467 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T467/ MM_features/gen3/shelves/mmf_467.shelve output_v8/Conf1.json | ||
468 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T468/ MM_features/gen3/shelves/mmf_468.shelve output_v8/Conf1.json | ||
469 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T469/ MM_features/gen3/shelves/mmf_469.shelve output_v8/Conf1.json | ||
470 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T470/ MM_features/gen3/shelves/mmf_470.shelve output_v8/Conf1.json | ||
471 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T471/ MM_features/gen3/shelves/mmf_471.shelve output_v8/Conf1.json | ||
472 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T472/ MM_features/gen3/shelves/mmf_472.shelve output_v8/Conf1.json | ||
473 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T473/ MM_features/gen3/shelves/mmf_473.shelve output_v8/Conf1.json | ||
474 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T474/ MM_features/gen3/shelves/mmf_474.shelve output_v8/Conf1.json | ||
475 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T475/ MM_features/gen3/shelves/mmf_475.shelve output_v8/Conf1.json | ||
476 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T476/ MM_features/gen3/shelves/mmf_476.shelve output_v8/Conf1.json | ||
477 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T477/ MM_features/gen3/shelves/mmf_477.shelve output_v8/Conf1.json | ||
478 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T478/ MM_features/gen3/shelves/mmf_478.shelve output_v8/Conf1.json | ||
479 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T479/ MM_features/gen3/shelves/mmf_479.shelve output_v8/Conf1.json | ||
480 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T480/ MM_features/gen3/shelves/mmf_480.shelve output_v8/Conf1.json | ||
481 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T481/ MM_features/gen3/shelves/mmf_481.shelve output_v8/Conf1.json | ||
482 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T482/ MM_features/gen3/shelves/mmf_482.shelve output_v8/Conf1.json | ||
483 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T483/ MM_features/gen3/shelves/mmf_483.shelve output_v8/Conf1.json | ||
484 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T484/ MM_features/gen3/shelves/mmf_484.shelve output_v8/Conf1.json | ||
485 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T485/ MM_features/gen3/shelves/mmf_485.shelve output_v8/Conf1.json | ||
486 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T486/ MM_features/gen3/shelves/mmf_486.shelve output_v8/Conf1.json | ||
487 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T487/ MM_features/gen3/shelves/mmf_487.shelve output_v8/Conf1.json | ||
488 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T488/ MM_features/gen3/shelves/mmf_488.shelve output_v8/Conf1.json | ||
489 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T489/ MM_features/gen3/shelves/mmf_489.shelve output_v8/Conf1.json | ||
490 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T490/ MM_features/gen3/shelves/mmf_490.shelve output_v8/Conf1.json | ||
491 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T491/ MM_features/gen3/shelves/mmf_491.shelve output_v8/Conf1.json | ||
492 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T492/ MM_features/gen3/shelves/mmf_492.shelve output_v8/Conf1.json | ||
493 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T493/ MM_features/gen3/shelves/mmf_493.shelve output_v8/Conf1.json | ||
494 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T494/ MM_features/gen3/shelves/mmf_494.shelve output_v8/Conf1.json | ||
495 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T495/ MM_features/gen3/shelves/mmf_495.shelve output_v8/Conf1.json | ||
496 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T496/ MM_features/gen3/shelves/mmf_496.shelve output_v8/Conf1.json | ||
497 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T497/ MM_features/gen3/shelves/mmf_497.shelve output_v8/Conf1.json | ||
498 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T498/ MM_features/gen3/shelves/mmf_498.shelve output_v8/Conf1.json | ||
499 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T499/ MM_features/gen3/shelves/mmf_499.shelve output_v8/Conf1.json | ||
500 | THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T500/ MM_features/gen3/shelves/mmf_500.shelve output_v8/Conf1.json | ||
1 | THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python 04b-mmf_mini_ae.py output_v8/T1/ MM_features/gen3/shelves/mmf_1.shelve output_v8/Conf1.json | 501 |
LDA/mini_run.sh
File was created | 1 | bash run_lts.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T3.json gpu1 | |
2 | bash run_lts.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T4.json gpu1 | ||
3 | bash run_lts.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T5.json gpu1 | ||
4 | bash run_lts.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T6.json gpu1 | ||
5 | bash run_lts.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T7.json gpu1 | ||
1 | bash run_lts.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T3.json gpu1 | 6 |
LDA/minirun2.sh
File was created | 1 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T10.json gpu0 | |
2 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T15.json gpu1 | ||
3 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T20.json gpu0 | ||
4 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T25.json gpu1 | ||
5 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T30.json gpu0 | ||
6 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T40.json gpu1 | ||
7 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T45.json gpu0 | ||
8 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T50.json gpu1 | ||
9 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T55.json gpu0 | ||
10 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T60.json gpu1 | ||
11 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T65.json gpu0 | ||
12 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T70.json gpu1 | ||
13 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T75.json gpu0 | ||
14 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T80.json gpu1 | ||
15 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T85.json gpu0 | ||
16 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T90.json gpu1 | ||
17 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T95.json gpu0 | ||
18 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T100.json gpu0 | ||
19 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T105.json gpu1 | ||
20 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T110.json gpu0 | ||
21 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T115.json gpu1 | ||
22 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T120.json gpu0 | ||
23 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T125.json gpu1 | ||
24 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T130.json gpu0 | ||
25 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T135.json gpu1 | ||
26 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T140.json gpu0 | ||
27 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T145.json gpu1 | ||
28 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T150.json gpu0 | ||
29 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T155.json gpu1 | ||
30 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T160.json gpu0 | ||
31 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T165.json gpu1 | ||
32 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T170.json gpu0 | ||
33 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T175.json gpu1 | ||
34 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T180.json gpu0 | ||
35 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T185.json gpu1 | ||
36 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T190.json gpu0 | ||
37 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T195.json gpu1 | ||
38 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T200.json gpu0 | ||
39 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T205.json gpu1 | ||
40 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T210.json gpu0 | ||
41 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T215.json gpu1 | ||
42 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T220.json gpu0 | ||
43 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T225.json gpu1 | ||
44 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T230.json gpu0 | ||
45 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T235.json gpu1 | ||
46 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T240.json gpu0 | ||
47 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T245.json gpu1 | ||
48 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T250.json gpu0 | ||
49 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T255.json gpu1 | ||
50 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T260.json gpu0 | ||
51 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T265.json gpu1 | ||
52 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T270.json gpu0 | ||
53 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T275.json gpu1 | ||
54 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T280.json gpu0 | ||
55 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T285.json gpu1 | ||
56 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T290.json gpu0 | ||
57 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T295.json gpu1 | ||
58 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T300.json gpu0 | ||
1 | bash run_lts.sh output_LTS1/relu LTS_festures/Data_LTS.shelve output_LTS1/relu/T10.json gpu0 | 59 |
LDA/minirun3.sh
File was created | 1 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T40.json gpu1 | |
2 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T45.json gpu1 | ||
3 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T50.json gpu1 | ||
4 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T55.json gpu1 | ||
5 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T60.json gpu1 | ||
6 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T65.json gpu1 | ||
7 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T70.json gpu1 | ||
8 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T75.json gpu1 | ||
9 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T80.json gpu1 | ||
10 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T85.json gpu1 | ||
11 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T90.json gpu1 | ||
12 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T95.json gpu1 | ||
13 | |||
14 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T10.json gpu1 | ||
15 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T15.json gpu1 | ||
16 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T20.json gpu1 | ||
17 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T25.json gpu1 | ||
18 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T30.json gpu1 | ||
19 | |||
20 | |||
21 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T100.json gpu1 | ||
22 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T105.json gpu1 | ||
23 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T110.json gpu1 | ||
24 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T115.json gpu1 | ||
25 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T120.json gpu1 | ||
26 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T125.json gpu1 | ||
27 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T130.json gpu1 | ||
28 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T135.json gpu1 | ||
29 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T140.json gpu1 | ||
30 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T145.json gpu1 | ||
31 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T150.json gpu1 | ||
32 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T155.json gpu1 | ||
33 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T160.json gpu1 | ||
34 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T165.json gpu1 | ||
35 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T170.json gpu1 | ||
36 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T175.json gpu1 | ||
37 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T180.json gpu1 | ||
38 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T185.json gpu1 | ||
39 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T190.json gpu1 | ||
40 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T195.json gpu1 | ||
41 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T200.json gpu1 | ||
42 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T205.json gpu1 | ||
43 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T210.json gpu1 | ||
44 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T215.json gpu1 | ||
45 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T220.json gpu1 | ||
46 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T225.json gpu1 | ||
47 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T230.json gpu1 | ||
48 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T235.json gpu1 | ||
49 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T240.json gpu1 | ||
50 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T245.json gpu1 | ||
51 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T250.json gpu1 | ||
52 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T255.json gpu1 | ||
53 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T260.json gpu1 | ||
54 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T265.json gpu1 | ||
55 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T270.json gpu1 | ||
56 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T275.json gpu1 | ||
57 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T280.json gpu1 | ||
58 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T285.json gpu1 | ||
59 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T290.json gpu1 | ||
60 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T295.json gpu1 | ||
61 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T300.json gpu1 | ||
62 | |||
1 | bash run_lts.sh output_LTS1/linear LTS_festures/Data_LTS.shelve output_LTS1/linear/T40.json gpu1 | 63 |
LDA/minirun_tanh.sh
File was created | 1 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T10.json gpu1 | |
2 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T15.json gpu1 | ||
3 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T20.json gpu1 | ||
4 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T25.json gpu1 | ||
5 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T30.json gpu1 | ||
6 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T40.json gpu1 | ||
7 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T45.json gpu1 | ||
8 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T50.json gpu1 | ||
9 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T55.json gpu1 | ||
10 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T60.json gpu1 | ||
11 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T65.json gpu1 | ||
12 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T70.json gpu1 | ||
13 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T75.json gpu1 | ||
14 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T80.json gpu1 | ||
15 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T85.json gpu1 | ||
16 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T90.json gpu1 | ||
17 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T95.json gpu1 | ||
18 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T100.json gpu1 | ||
19 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T105.json gpu1 | ||
20 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T110.json gpu1 | ||
21 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T115.json gpu1 | ||
22 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T120.json gpu1 | ||
23 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T125.json gpu1 | ||
24 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T130.json gpu1 | ||
25 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T135.json gpu1 | ||
26 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T140.json gpu1 | ||
27 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T145.json gpu1 | ||
28 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T150.json gpu1 | ||
29 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T155.json gpu1 | ||
30 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T160.json gpu1 | ||
31 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T165.json gpu1 | ||
32 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T170.json gpu1 | ||
33 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T175.json gpu1 | ||
34 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T180.json gpu1 | ||
35 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T185.json gpu1 | ||
36 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T190.json gpu1 | ||
37 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T195.json gpu1 | ||
38 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T200.json gpu1 | ||
39 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T205.json gpu1 | ||
40 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T210.json gpu1 | ||
41 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T215.json gpu1 | ||
42 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T220.json gpu1 | ||
43 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T225.json gpu1 | ||
44 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T230.json gpu1 | ||
45 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T235.json gpu1 | ||
46 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T240.json gpu1 | ||
47 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T245.json gpu1 | ||
48 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T250.json gpu1 | ||
49 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T255.json gpu1 | ||
50 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T260.json gpu1 | ||
51 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T265.json gpu1 | ||
52 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T270.json gpu1 | ||
53 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T275.json gpu1 | ||
54 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T280.json gpu1 | ||
55 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T285.json gpu1 | ||
56 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T290.json gpu1 | ||
57 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T295.json gpu1 | ||
58 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T300.json gpu1 | ||
59 | |||
1 | bash run_lts_alter.sh output_LTS1/tanh LTS_festures/Data_LTS.shelve output_LTS1/tanh/T10.json gpu1 | 60 |
LDA/run.sh
1 | python 00-prepross.py | File was deleted | |
2 | python 02-lda_split.py DECODA_list_wid.shelve output_v1/ 100 12 test2 1 400 | ||
3 | python 03-mono_perplex.py DECODA_list_wid.shelve output_v1/test2 output_v1/t2db.json | ||
4 | 1 | python 00-prepross.py |
LDA/run_lts.sh
File was created | 1 | output_dir=$1 | |
2 | features=$2 | ||
3 | json_conf=$3 | ||
4 | nb=$4 | ||
5 | |||
6 | THEANO_FLAGS=mode=FAST_RUN,device=$nb,floatX=float32 python 04b-mmf_mini_ae.py $output_dir $features $json_conf LTS | ||
7 | #THEANO_FLAGS=mode=FAST_RUN,device=$nb,floatX=float32 python 04c-mmf_sae.py $output_dir $features $json_conf LTS | ||
8 | #THEANO_FLAGS=mode=FAST_RUN,device=$nb,floatX=float32 python 04d-mmf_dsae.py $output_dir $features $json_conf LTS | ||
9 | THEANO_FLAGS=mode=FAST_RUN,device=$nb,floatX=float32 python 04e-mm_vae.py $output_dir $features $json_conf LTS | ||
10 | python 05-lts_scoring.py $output_dir $json_conf | ||
1 | output_dir=$1 | 11 |
LDA/run_lts_alter.sh
File was created | 1 | output_dir=$1 | |
2 | features=$2 | ||
3 | json_conf=$3 | ||
4 | nb=$4 | ||
5 | |||
6 | THEANO_FLAGS=mode=FAST_RUN,device=$nb,floatX=float32 python 04b-mmf_mini_ae.py $output_dir $features $json_conf LTS | ||
7 | #THEANO_FLAGS=mode=FAST_RUN,device=$nb,floatX=float32 python 04c-mmf_sae.py $output_dir $features $json_conf LTS | ||
8 | #THEANO_FLAGS=mode=FAST_RUN,device=$nb,floatX=float32 python 04d-mmf_dsae.py $output_dir $features $json_conf LTS | ||
9 | THEANO_FLAGS=mode=FAST_RUN,device=$nb,floatX=float32 python 04e-mm_vae.py $output_dir $features $json_conf LTS | ||
10 | python 05-lts_scoring.py $output_dir $json_conf | ||
1 | output_dir=$1 | 11 |
LDA/run_mmf.sh
1 | output_dir=$1 | 1 | output_dir=$1 |
2 | features=$2 | 2 | features=$2 |
3 | json_conf=$3 | 3 | json_conf=$3 |
4 | nb=$(echo "gpu$4") | 4 | nb=$(echo "gpu$4") |
5 | 5 | ||
6 | THEANO_FLAGS=mode=FAST_RUN,device=$nb,floatX=float32 python 04b-mmf_mini_ae.py $output_dir $features $json_conf >> ${output_dir}/miniae.log | 6 | THEANO_FLAGS=mode=FAST_RUN,device=$nb,floatX=float32 python 04b-mmf_mini_ae.py $output_dir $features $json_conf >> ${output_dir}/miniae.log |
7 | THEANO_FLAGS=mode=FAST_RUN,device=$nb,floatX=float32 python 04c-mmf_sae.py $output_dir $features $json_conf >> ${output_dir}/sae.log | 7 | THEANO_FLAGS=mode=FAST_RUN,device=$nb,floatX=float32 python 04c-mmf_sae.py $output_dir $features $json_conf >> ${output_dir}/sae.log |
8 | THEANO_FLAGS=mode=FAST_RUN,device=$nb,floatX=float32 python 04d-mmf_dsae.py $output_dir $features $json_conf >> ${output_dir}/dsae.log | 8 | THEANO_FLAGS=mode=FAST_RUN,device=$nb,floatX=float32 python 04d-mmf_dsae.py $output_dir $features $json_conf >> ${output_dir}/dsae.log |
9 | THEANO_FLAGS=mode=FAST_RUN,device=$nb,floatX=float32 python 04e-mm_vae.py $output_dir $features $json_conf >> ${output_dir}/vae.log | ||
9 | THEANO_FLAGS=mode=FAST_RUN,device=$nb,floatX=float32 python 04e-mm_vae.py $output_dir $features $json_conf >> ${output_dir}/vae.log | 10 | wait |
10 | wait |
LDA/vae.py
1 | '''This script demonstrates how to build a variational autoencoder with Keras. | 1 | '''This script demonstrates how to build a variational autoencoder with Keras. |
2 | Reference: "Auto-Encoding Variational Bayes" https://arxiv.org/abs/1312.6114 | 2 | Reference: "Auto-Encoding Variational Bayes" https://arxiv.org/abs/1312.6114 |
3 | ''' | 3 | ''' |
4 | 4 | ||
5 | import itertools | 5 | import itertools |
6 | import sys | 6 | import sys |
7 | import json | 7 | import json |
8 | 8 | ||
9 | import numpy as np | 9 | import numpy as np |
10 | import matplotlib.pyplot as plt | 10 | import matplotlib.pyplot as plt |
11 | from scipy import sparse | 11 | from scipy import sparse |
12 | import scipy.io | 12 | import scipy.io |
13 | 13 | ||
14 | from keras.layers import Input, Dense, Lambda | 14 | from keras.layers import Input, Dense, Lambda |
15 | from keras.models import Model | 15 | from keras.models import Model |
16 | from keras import backend as K | 16 | from keras import backend as K |
17 | from keras import objectives | 17 | from keras import objectives |
18 | from keras.datasets import mnist | 18 | from keras.datasets import mnist |
19 | from keras.callbacks import EarlyStopping,Callback | 19 | from keras.callbacks import EarlyStopping,Callback |
20 | 20 | ||
21 | import pandas | 21 | import pandas |
22 | import shelve | 22 | import shelve |
23 | import pickle | 23 | import pickle |
24 | 24 | ||
25 | 25 | ||
26 | class ZeroStopping(Callback): | 26 | class ZeroStopping(Callback): |
27 | '''Stop training when a monitored quantity has stopped improving. | 27 | '''Stop training when a monitored quantity has stopped improving. |
28 | # Arguments | 28 | # Arguments |
29 | monitor: quantity to be monitored. | 29 | monitor: quantity to be monitored. |
30 | patience: number of epochs with no improvement | 30 | patience: number of epochs with no improvement |
31 | after which training will be stopped. | 31 | after which training will be stopped. |
32 | verbose: verbosity mode. | 32 | verbose: verbosity mode. |
33 | mode: one of {auto, min, max}. In 'min' mode, | 33 | mode: one of {auto, min, max}. In 'min' mode, |
34 | training will stop when the quantity | 34 | training will stop when the quantity |
35 | monitored has stopped decreasing; in 'max' | 35 | monitored has stopped decreasing; in 'max' |
36 | mode it will stop when the quantity | 36 | mode it will stop when the quantity |
37 | monitored has stopped increasing. | 37 | monitored has stopped increasing. |
38 | ''' | 38 | ''' |
39 | def __init__(self, monitor='val_loss', verbose=0, mode='auto', thresh = 0): | 39 | def __init__(self, monitor='val_loss', verbose=0, mode='auto', thresh = 0): |
40 | super(ZeroStopping, self).__init__() | 40 | super(ZeroStopping, self).__init__() |
41 | 41 | ||
42 | self.monitor = monitor | 42 | self.monitor = monitor |
43 | self.verbose = verbose | 43 | self.verbose = verbose |
44 | self.thresh = thresh # is a rythme | 44 | self.thresh = thresh # is a rythme |
45 | 45 | ||
46 | if mode not in ['auto', 'min', 'max']: | 46 | if mode not in ['auto', 'min', 'max']: |
47 | warnings.warn('EarlyStopping mode %s is unknown, ' | 47 | warnings.warn('EarlyStopping mode %s is unknown, ' |
48 | 'fallback to auto mode.' % (self.mode), | 48 | 'fallback to auto mode.' % (self.mode), |
49 | RuntimeWarning) | 49 | RuntimeWarning) |
50 | mode = 'auto' | 50 | mode = 'auto' |
51 | 51 | ||
52 | if mode == 'min': | 52 | if mode == 'min': |
53 | self.monitor_op = np.less | 53 | self.monitor_op = np.less |
54 | elif mode == 'max': | 54 | elif mode == 'max': |
55 | self.monitor_op = np.greater | 55 | self.monitor_op = np.greater |
56 | else: | 56 | else: |
57 | if 'acc' in self.monitor: | 57 | if 'acc' in self.monitor: |
58 | self.monitor_op = np.greater | 58 | self.monitor_op = np.greater |
59 | else: | 59 | else: |
60 | self.monitor_op = np.less | 60 | self.monitor_op = np.less |
61 | 61 | ||
62 | def on_epoch_end(self, epoch, logs={}): | 62 | def on_epoch_end(self, epoch, logs={}): |
63 | current = logs.get(self.monitor) | 63 | current = logs.get(self.monitor) |
64 | if current is None: | 64 | if current is None: |
65 | warnings.warn('Zero stopping requires %s available!' % | 65 | warnings.warn('Zero stopping requires %s available!' % |
66 | (self.monitor), RuntimeWarning) | 66 | (self.monitor), RuntimeWarning) |
67 | 67 | ||
68 | if self.monitor_op(current, self.thresh): | 68 | if self.monitor_op(current, self.thresh): |
69 | self.best = current | 69 | self.best = current |
70 | self.model.stop_training = True | 70 | self.model.stop_training = True |
71 | 71 | ||
72 | #batch_size = 16 | 72 | #batch_size = 16 |
73 | #original_dim = 784 | 73 | #original_dim = 784 |
74 | #latent_dim = 2 | 74 | #latent_dim = 2 |
75 | #intermediate_dim = 128 | 75 | #intermediate_dim = 128 |
76 | #epsilon_std = 0.01 | 76 | #epsilon_std = 0.01 |
77 | #nb_epoch = 40 | 77 | #nb_epoch = 40 |
78 | 78 | ||
79 | 79 | ||
80 | 80 | ||
81 | 81 | ||
82 | def train_vae(x_train,x_dev,x_test,y_train=None,y_dev=None,y_test=None,hidden_size=80,latent_dim=12,batch_size=8,nb_epochs=10,sgd="rmsprop",input_activation = "relu",output_activation = "sigmoid",epsilon_std=0.01): | 82 | def train_vae(x_train,x_dev,x_test,y_train=None,y_dev=None,y_test=None,hidden_size=80,latent_dim=12,batch_size=8,nb_epochs=10,sgd="rmsprop",input_activation = "relu",output_activation = "sigmoid",epsilon_std=0.01): |
83 | 83 | ||
84 | 84 | ||
85 | 85 | ||
86 | def sampling(args): | 86 | def sampling(args): |
87 | z_mean, z_log_std = args | 87 | z_mean, z_log_std = args |
88 | epsilon = K.random_normal(shape=(batch_size, latent_dim), | 88 | epsilon = K.random_normal(shape=(batch_size, latent_dim), |
89 | mean=0., std=epsilon_std) | 89 | mean=0., std=epsilon_std) |
90 | return z_mean + K.exp(z_log_std) * epsilon | 90 | return z_mean + K.exp(z_log_std) * epsilon |
91 | 91 | ||
92 | def vae_loss(x, x_decoded_mean): | 92 | def vae_loss(x, x_decoded_mean): |
93 | xent_loss = objectives.binary_crossentropy(x, x_decoded_mean) | 93 | xent_loss = objectives.binary_crossentropy(x, x_decoded_mean) |
94 | kl_loss = - 0.5 * K.mean(1 + z_log_std - K.square(z_mean) - K.exp(z_log_std), axis=-1) | 94 | kl_loss = - 0.5 * K.mean(1 + z_log_std - K.square(z_mean) - K.exp(z_log_std), axis=-1) |
95 | return xent_loss + kl_loss | 95 | return xent_loss + kl_loss |
96 | 96 | ||
97 | original_dim = x_train.shape[1] | 97 | original_dim = x_train.shape[1] |
98 | 98 | ||
99 | 99 | ||
100 | x = Input(batch_shape=(batch_size, original_dim)) | 100 | x = Input(batch_shape=(batch_size, original_dim)) |
101 | h = Dense(hidden_size, activation=input_activation)(x) | 101 | h = Dense(hidden_size, activation=input_activation)(x) |
102 | z_mean = Dense(latent_dim)(h) | 102 | z_mean = Dense(latent_dim)(h) |
103 | z_log_std = Dense(latent_dim)(h) | 103 | z_log_std = Dense(latent_dim)(h) |
104 | 104 | ||
105 | 105 | ||
106 | # note that "output_shape" isn't necessary with the TensorFlow backend | 106 | # note that "output_shape" isn't necessary with the TensorFlow backend |
107 | # so you could write `Lambda(sampling)([z_mean, z_log_std])` | 107 | # so you could write `Lambda(sampling)([z_mean, z_log_std])` |
108 | z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_std]) | 108 | z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_std]) |
109 | 109 | ||
110 | # we instantiate these layers separately so as to reuse them later | 110 | # we instantiate these layers separately so as to reuse them later |
111 | decoder_h = Dense(hidden_size, activation=input_activation) | 111 | decoder_h = Dense(hidden_size, activation=input_activation) |
112 | decoder_mean = Dense(original_dim, activation=output_activation) | 112 | decoder_mean = Dense(original_dim, activation=output_activation) |
113 | h_decoded = decoder_h(z) | 113 | h_decoded = decoder_h(z) |
114 | x_decoded_mean = decoder_mean(h_decoded) | 114 | x_decoded_mean = decoder_mean(h_decoded) |
115 | 115 | ||
116 | 116 | ||
117 | vae = Model(x, x_decoded_mean) | 117 | vae = Model(x, x_decoded_mean) |
118 | vae.compile(optimizer=sgd, loss=vae_loss) | 118 | vae.compile(optimizer=sgd, loss=vae_loss) |
119 | 119 | ||
120 | # train the VAE on MNIST digits | 120 | # train the VAE on MNIST digits |
121 | if y_train is None or y_dev is None or y_test is None : | 121 | if y_train is None or y_dev is None or y_test is None : |
122 | y_train = x_train | 122 | y_train = x_train |
123 | y_dev = x_dev | 123 | y_dev = x_dev |
124 | y_test = x_test | 124 | y_test = x_test |
125 | 125 | ||
126 | vae.fit(x_train, y_train, | 126 | vae.fit(x_train, y_train, |
127 | shuffle=True, | 127 | shuffle=True, |
128 | nb_epoch=nb_epochs, | 128 | nb_epoch=nb_epochs, |
129 | verbose = 1, | 129 | verbose = 1, |
130 | batch_size=batch_size, | 130 | batch_size=batch_size, |
131 | validation_data=(x_dev, y_dev), | 131 | validation_data=(x_dev, y_dev) |
132 | callbacks = [ZeroStopping(monitor='val_loss', thresh=0, verbose=0, mode='min')] | 132 | #callbacks = [ZeroStopping(monitor='val_loss', thresh=0, verbose=0, mode='min')] |
133 | ) | 133 | ) |
134 | 134 | ||
135 | # build a model to project inputs on the latent space | 135 | # build a model to project inputs on the latent space |
136 | encoder = Model(x, z_mean) | 136 | encoder = Model(x, z_mean) |
137 | pred_train = encoder.predict(x_train, batch_size=batch_size) | 137 | pred_train = encoder.predict(x_train, batch_size=batch_size) |
138 | pred_dev = encoder.predict(x_dev, batch_size=batch_size) | 138 | pred_dev = encoder.predict(x_dev, batch_size=batch_size) |
139 | pred_test = encoder.predict(x_test,batch_size=batch_size) | 139 | pred_test = encoder.predict(x_test,batch_size=batch_size) |
140 | return [ [ pred_train, pred_dev, pred_test ] ] | 140 | return [ [ pred_train, pred_dev, pred_test ] ] |
141 | # display a 2D plot of the digit classes in the latent space | 141 | # display a 2D plot of the digit classes in the latent space |
142 | #x_test_encoded = encoder.predict(x_test, batch_size=batch_size) | 142 | #x_test_encoded = encoder.predict(x_test, batch_size=batch_size) |
143 | # build a digit generator that can sample from the learned distribution | 143 | # build a digit generator that can sample from the learned distribution |
144 | #decoder_input = Input(shape=(latent_dim,)) | 144 | #decoder_input = Input(shape=(latent_dim,)) |
145 | #_h_decoded = decoder_h(decoder_input) | 145 | #_h_decoded = decoder_h(decoder_input) |
146 | #_x_decoded_mean = decoder_mean(_h_decoded) | 146 | #_x_decoded_mean = decoder_mean(_h_decoded) |
147 | #generator = Model(decoder_input, _x_decoded_mean) | 147 | #generator = Model(decoder_input, _x_decoded_mean) |
148 | #x_decoded = generator.predict(z_sample) | 148 | #x_decoded = generator.predict(z_sample) |
149 | 149 | ||
150 | 150 |