Blame view
build/lib.linux-x86_64-2.7/complexnn/norm.py
11 KB
f2d3bd141 Initial commit wi... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Authors: Chiheb Trabelsi # # Implementation of Layer Normalization and Complex Layer Normalization # import numpy as np from keras.layers import Layer, InputSpec from keras import initializers, regularizers, constraints import keras.backend as K from .bn import ComplexBN as complex_normalization from .bn import sqrt_init def layernorm(x, axis, epsilon, gamma, beta): # assert self.built, 'Layer must be built before being called' input_shape = K.shape(x) reduction_axes = list(range(K.ndim(x))) del reduction_axes[axis] del reduction_axes[0] broadcast_shape = [1] * K.ndim(x) broadcast_shape[axis] = input_shape[axis] broadcast_shape[0] = K.shape(x)[0] # Perform normalization: centering and reduction mean = K.mean(x, axis=reduction_axes) broadcast_mean = K.reshape(mean, broadcast_shape) x_centred = x - broadcast_mean variance = K.mean(x_centred ** 2, axis=reduction_axes) + epsilon broadcast_variance = K.reshape(variance, broadcast_shape) x_normed = x_centred / K.sqrt(broadcast_variance) # Perform scaling and shifting broadcast_shape_params = [1] * K.ndim(x) broadcast_shape_params[axis] = K.shape(x)[axis] broadcast_gamma = K.reshape(gamma, broadcast_shape_params) broadcast_beta = K.reshape(beta, broadcast_shape_params) x_LN = broadcast_gamma * x_normed + broadcast_beta return x_LN class LayerNormalization(Layer): def __init__(self, epsilon=1e-4, axis=-1, beta_init='zeros', gamma_init='ones', gamma_regularizer=None, beta_regularizer=None, **kwargs): self.supports_masking = True self.beta_init = initializers.get(beta_init) self.gamma_init = initializers.get(gamma_init) self.epsilon = epsilon self.axis = axis self.gamma_regularizer = regularizers.get(gamma_regularizer) self.beta_regularizer = regularizers.get(beta_regularizer) super(LayerNormalization, self).__init__(**kwargs) def build(self, input_shape): self.input_spec = InputSpec(ndim=len(input_shape), axes={self.axis: input_shape[self.axis]}) shape = (input_shape[self.axis],) self.gamma = self.add_weight(shape, initializer=self.gamma_init, regularizer=self.gamma_regularizer, name='{}_gamma'.format(self.name)) self.beta = self.add_weight(shape, initializer=self.beta_init, regularizer=self.beta_regularizer, name='{}_beta'.format(self.name)) self.built = True def call(self, x, mask=None): assert self.built, 'Layer must be built before being called' return layernorm(x, self.axis, self.epsilon, self.gamma, self.beta) def get_config(self): config = {'epsilon': self.epsilon, 'axis': self.axis, 'gamma_regularizer': self.gamma_regularizer.get_config() if self.gamma_regularizer else None, 'beta_regularizer': self.beta_regularizer.get_config() if self.beta_regularizer else None } base_config = super(LayerNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items())) class ComplexLayerNorm(Layer): def __init__(self, epsilon=1e-4, axis=-1, center=True, scale=True, beta_initializer='zeros', gamma_diag_initializer=sqrt_init, gamma_off_initializer='zeros', beta_regularizer=None, gamma_diag_regularizer=None, gamma_off_regularizer=None, beta_constraint=None, gamma_diag_constraint=None, gamma_off_constraint=None, **kwargs): self.supports_masking = True self.epsilon = epsilon self.axis = axis self.center = center self.scale = scale self.beta_initializer = initializers.get(beta_initializer) self.gamma_diag_initializer = initializers.get(gamma_diag_initializer) self.gamma_off_initializer = initializers.get(gamma_off_initializer) self.beta_regularizer = regularizers.get(beta_regularizer) self.gamma_diag_regularizer = regularizers.get(gamma_diag_regularizer) self.gamma_off_regularizer = regularizers.get(gamma_off_regularizer) self.beta_constraint = constraints.get(beta_constraint) self.gamma_diag_constraint = constraints.get(gamma_diag_constraint) self.gamma_off_constraint = constraints.get(gamma_off_constraint) super(ComplexLayerNorm, self).__init__(**kwargs) def build(self, input_shape): ndim = len(input_shape) dim = input_shape[self.axis] if dim is None: raise ValueError('Axis ' + str(self.axis) + ' of ' 'input tensor should have a defined dimension ' 'but the layer received an input with shape ' + str(input_shape) + '.') self.input_spec = InputSpec(ndim=len(input_shape), axes={self.axis: dim}) gamma_shape = (input_shape[self.axis] // 2,) if self.scale: self.gamma_rr = self.add_weight( shape=gamma_shape, name='gamma_rr', initializer=self.gamma_diag_initializer, regularizer=self.gamma_diag_regularizer, constraint=self.gamma_diag_constraint ) self.gamma_ii = self.add_weight( shape=gamma_shape, name='gamma_ii', initializer=self.gamma_diag_initializer, regularizer=self.gamma_diag_regularizer, constraint=self.gamma_diag_constraint ) self.gamma_ri = self.add_weight( shape=gamma_shape, name='gamma_ri', initializer=self.gamma_off_initializer, regularizer=self.gamma_off_regularizer, constraint=self.gamma_off_constraint ) else: self.gamma_rr = None self.gamma_ii = None self.gamma_ri = None if self.center: self.beta = self.add_weight(shape=(input_shape[self.axis],), name='beta', initializer=self.beta_initializer, regularizer=self.beta_regularizer, constraint=self.beta_constraint) else: self.beta = None self.built = True def call(self, inputs): input_shape = K.shape(inputs) ndim = K.ndim(inputs) reduction_axes = list(range(ndim)) del reduction_axes[self.axis] del reduction_axes[0] input_dim = input_shape[self.axis] // 2 mu = K.mean(inputs, axis=reduction_axes) broadcast_mu_shape = [1] * ndim broadcast_mu_shape[self.axis] = input_shape[self.axis] broadcast_mu_shape[0] = K.shape(inputs)[0] broadcast_mu = K.reshape(mu, broadcast_mu_shape) if self.center: input_centred = inputs - broadcast_mu else: input_centred = inputs centred_squared = input_centred ** 2 if (self.axis == 1 and ndim != 3) or ndim == 2: centred_squared_real = centred_squared[:, :input_dim] centred_squared_imag = centred_squared[:, input_dim:] centred_real = input_centred[:, :input_dim] centred_imag = input_centred[:, input_dim:] elif ndim == 3: centred_squared_real = centred_squared[:, :, :input_dim] centred_squared_imag = centred_squared[:, :, input_dim:] centred_real = input_centred[:, :, :input_dim] centred_imag = input_centred[:, :, input_dim:] elif self.axis == -1 and ndim == 4: centred_squared_real = centred_squared[:, :, :, :input_dim] centred_squared_imag = centred_squared[:, :, :, input_dim:] centred_real = input_centred[:, :, :, :input_dim] centred_imag = input_centred[:, :, :, input_dim:] elif self.axis == -1 and ndim == 5: centred_squared_real = centred_squared[:, :, :, :, :input_dim] centred_squared_imag = centred_squared[:, :, :, :, input_dim:] centred_real = input_centred[:, :, :, :, :input_dim] centred_imag = input_centred[:, :, :, :, input_dim:] else: raise ValueError( 'Incorrect Layernorm combination of axis and dimensions. axis should be either 1 or -1. ' 'axis: ' + str(self.axis) + '; ndim: ' + str(ndim) + '.' ) if self.scale: Vrr = K.mean( centred_squared_real, axis=reduction_axes ) + self.epsilon Vii = K.mean( centred_squared_imag, axis=reduction_axes ) + self.epsilon # Vri contains the real and imaginary covariance for each feature map. Vri = K.mean( centred_real * centred_imag, axis=reduction_axes, ) elif self.center: Vrr = None Vii = None Vri = None else: raise ValueError('Error. Both scale and center in batchnorm are set to False.') return complex_normalization( input_centred, Vrr, Vii, Vri, self.beta, self.gamma_rr, self.gamma_ri, self.gamma_ii, self.scale, self.center, layernorm=True, axis=self.axis ) def get_config(self): config = { 'axis': self.axis, 'epsilon': self.epsilon, 'center': self.center, 'scale': self.scale, 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_diag_initializer': initializers.serialize(self.gamma_diag_initializer), 'gamma_off_initializer': initializers.serialize(self.gamma_off_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_diag_regularizer': regularizers.serialize(self.gamma_diag_regularizer), 'gamma_off_regularizer': regularizers.serialize(self.gamma_off_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_diag_constraint': constraints.serialize(self.gamma_diag_constraint), 'gamma_off_constraint': constraints.serialize(self.gamma_off_constraint), } base_config = super(ComplexLayerNorm, self).get_config() return dict(list(base_config.items()) + list(config.items())) |