Blame view
build/scripts-2.7/run.py
11.3 KB
f2d3bd141 Initial commit wi... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
#!/u/parcollt/anaconda2/bin/python # -*- coding: utf-8 -*- # Contributors: Titouan Parcollet # Authors: Olexa Bilaniuk # Imports. import sys; sys.path += [".", ".."] import argparse as Ap import logging as L import numpy as np import os, pdb, sys import time import tensorflow as tf from keras.backend.tensorflow_backend import set_session __version__ = "0.0.0" # # Message Formatter # class MsgFormatter(L.Formatter): """Message Formatter Formats messages with time format YYYY-MM-DD HH:MM:SS.mmm TZ """ def formatTime(self, record, datefmt): t = record.created timeFrac = abs(t-long(t)) timeStruct = time.localtime(record.created) timeString = "" timeString += time.strftime("%F %T", timeStruct) timeString += "{:.3f} ".format(timeFrac)[1:] timeString += time.strftime("%Z", timeStruct) return timeString ############################################################################################################# ############################## Subcommands ################################## ############################################################################################################# class Subcommand(object): name = None @classmethod def addArgParser(cls, subp, *args, **kwargs): argp = subp.add_parser(cls.name, usage=cls.__doc__, *args, **kwargs) cls.addArgs(argp) argp.set_defaults(__subcmdfn__=cls.run) return argp @classmethod def addArgs(cls, argp): pass @classmethod def run(cls, d): pass class Screw(Subcommand): """Screw around with me in Screw(Subcommand).""" name = "screw" @classmethod def run(cls, d): print(cls.__doc__) class Train(Subcommand): name = "train" LOGLEVELS = {"none":L.NOTSET, "debug": L.DEBUG, "info": L.INFO, "warn":L.WARN, "err": L.ERROR, "crit": L.CRITICAL} @classmethod def addArgs(cls, argp): argp.add_argument("-d", "--datadir", default=".", type=str, help="Path to datasets directory.") argp.add_argument("-w", "--workdir", default=".", type=str, help="Path to the workspace directory for this experiment.") argp.add_argument("-l", "--loglevel", default="info", type=str, choices=cls.LOGLEVELS.keys(), help="Logging severity level.") argp.add_argument("-s", "--seed", default=0xe4223644e98b8e64, type=long, help="Seed for PRNGs.") argp.add_argument("--summary", action="store_true", help="""Print a summary of the network.""") argp.add_argument("--batchnorm", default=0, type=int, help="0 = No batchNorm; 1 = BatchNorm") argp.add_argument("--dataset", default="cifar10", type=str, choices=["timit","decoda","cifar10", "cifar100", "svhn"], help="Dataset Selection.") argp.add_argument("--model", default="real", type=str, choices=["complex","quaternion", "real"], help="Dataset Selection.") argp.add_argument("--dropout", default=0, type=float, help="Dropout probability.") argp.add_argument("-n", "--num-epochs", default=1000, type=int, help="Number of epochs") argp.add_argument("-b", "--batch-size", default=64, type=int, help="Batch Size") argp.add_argument("--start-filter", "--sf", default=11, type=int, help="Number of feature maps in starting stage") argp.add_argument("--num-blocks", "--nb", default=10, type=int, help="Number of filters in initial block") argp.add_argument("--spectral-param", action="store_true", help="""Use spectral parametrization.""") argp.add_argument("--spectral-pool-gamma", default=0.50, type=float, help="""Use spectral pooling, preserving a fraction gamma of frequencies""") argp.add_argument("--spectral-pool-scheme", default="none", type=str, choices=["none", "stagemiddle", "proj", "nodownsample"], help="""Spectral pooling scheme""") argp.add_argument("--act", default="relu", type=str, choices=["relu"], help="Activation.") argp.add_argument("--aact", default="modrelu", type=str, choices=["modrelu"], help="Advanced Activation.") argp.add_argument("--no-validation", action="store_true", help="Do not create a separate validation set.") argp.add_argument("--comp-init", default='complex', type=str, help="Initializer for the complex kernel.") argp.add_argument("--quat-init", default='quaternion', type=str, help="Initializer for the quaternion kernel.") optp = argp.add_argument_group("Optimizers", "Tunables for all optimizers") optp.add_argument("--optimizer", "--opt", default="nag", type=str, choices=["sgd", "nag", "adam", "rmsprop"], help="Optimizer selection.") optp.add_argument("--clipnorm", "--cn", default=1.0, type=float, help="The norm of the gradient will be clipped at this magnitude.") optp.add_argument("--clipval", "--cv", default=1.0, type=float, help="The values of the gradients will be individually clipped at this magnitude.") optp.add_argument("--l1", default=0, type=float, help="L1 penalty.") optp.add_argument("--l2", default=0, type=float, help="L2 penalty.") optp.add_argument("--lr", default=1e-4, type=float, help="Master learning rate for optimizers.") optp.add_argument("--momentum", "--mom", default=0.9, type=float, help="Momentum for optimizers supporting momentum.") optp.add_argument("--decay", default=0, type=float, help="Learning rate decay for optimizers.") optp.add_argument("--schedule", default="default", type=str, help="Learning rate schedule") optp = argp.add_argument_group("Adam", "Tunables for Adam optimizer") optp.add_argument("--beta1", default=0.9, type=float, help="Beta1 for Adam.") optp.add_argument("--beta2", default=0.999, type=float, help="Beta2 for Adam.") optp.add_argument("--device", default="0", type=str, help="CUDA Device, starting at 0.") optp.add_argument("--gpus", default=1, type=int, help="Number of GPUs to be used, starting at 1") optp.add_argument("--memory", default=1.0, type=float, help="Memory to be allocated on the selected device, only for tensorflow backend, from 0 to 1") optp.add_argument("--save-prefix", default="", type=str, help="Save prefix for resuming and saving best model") optp.add_argument("--seg", default="chiheb", type=str, choices=["chiheb", "parcollet"], help="Segmentation to be use on quaternions, \ following NIPS Deep Complex Networks or SLT Quaternion Neural Networks") optp.add_argument("--output-type", default="real", type=str, choices=["quaternion", "real"], help="Type of the dense output layer") @classmethod def run(cls, d): if not os.path.isdir(d.workdir): os.mkdir(d.workdir) logDir = os.path.join(d.workdir, "logs") if not os.path.isdir(logDir): os.mkdir(logDir) logFormatter = MsgFormatter ("[%(asctime)s ~~ %(levelname)-8s] %(message)s") stdoutLogSHandler = L.StreamHandler(sys.stdout) stdoutLogSHandler .setLevel (cls.LOGLEVELS[d.loglevel]) stdoutLogSHandler .setFormatter (logFormatter) defltLogger = L.getLogger () defltLogger .setLevel (cls.LOGLEVELS[d.loglevel]) defltLogger .addHandler (stdoutLogSHandler) trainLogFilename = os.path.join(d.workdir, "logs", "train.txt") trainLogFHandler = L.FileHandler (trainLogFilename, "a", "UTF-8", delay=True) trainLogFHandler .setLevel (cls.LOGLEVELS[d.loglevel]) trainLogFHandler .setFormatter (logFormatter) trainLogger = L.getLogger ("train") trainLogger .setLevel (cls.LOGLEVELS[d.loglevel]) trainLogger .addHandler (trainLogFHandler) entryLogFilename = os.path.join(d.workdir, "logs", "entry.txt") entryLogFHandler = L.FileHandler (entryLogFilename, "a", "UTF-8", delay=True) entryLogFHandler .setLevel (cls.LOGLEVELS[d.loglevel]) entryLogFHandler .setFormatter (logFormatter) entryLogger = L.getLogger ("entry") entryLogger .setLevel (cls.LOGLEVELS[d.loglevel]) entryLogger .addHandler (entryLogFHandler) np.random.seed(d.seed % 2**32) import training;training.train(d) ############################################################################################################# ############################## Argument Parsers ################################# ############################################################################################################# def getArgParser(prog): argp = Ap.ArgumentParser(prog = prog, usage = None, description = None, epilog = None, version = __version__) subp = argp.add_subparsers() argp.set_defaults(argp=argp) argp.set_defaults(subp=subp) # Add global args to argp here? # ... # Add subcommands for v in globals().itervalues(): if(isinstance(v, type) and issubclass(v, Subcommand) and v != Subcommand): v.addArgParser(subp) # Return argument parser. return argp ############################################################################################################# ############################## Main ################################## ############################################################################################################# def main(argv): sys.setrecursionlimit(10000) d = getArgParser(argv[0]).parse_args(argv[1:]) return d.__subcmdfn__(d) if __name__ == "__main__": main(sys.argv) |