Blame view
build/lib.linux-x86_64-2.7/complexnn/fft.py
5.45 KB
f2d3bd141 Initial commit wi... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Authors: Olexa Bilaniuk # import keras.backend as KB import keras.engine as KE import keras.layers as KL import keras.optimizers as KO import theano as T import theano.ifelse as TI import theano.tensor as TT import theano.tensor.fft as TTF import numpy as np # # FFT functions: # # fft(): Batched 1-D FFT (Input: (Batch, TimeSamples)) # ifft(): Batched 1-D IFFT (Input: (Batch, FreqSamples)) # fft2(): Batched 2-D FFT (Input: (Batch, TimeSamplesH, TimeSamplesW)) # ifft2(): Batched 2-D IFFT (Input: (Batch, FreqSamplesH, FreqSamplesW)) # def fft(z): B = z.shape[0]//2 L = z.shape[1] C = TT.as_tensor_variable(np.asarray([[[1,-1]]], dtype=T.config.floatX)) Zr, Zi = TTF.rfft(z[:B], norm="ortho"), TTF.rfft(z[B:], norm="ortho") isOdd = TT.eq(L%2, 1) Zr = TI.ifelse(isOdd, TT.concatenate([Zr, C*Zr[:,1: ][:,::-1]], axis=1), TT.concatenate([Zr, C*Zr[:,1:-1][:,::-1]], axis=1)) Zi = TI.ifelse(isOdd, TT.concatenate([Zi, C*Zi[:,1: ][:,::-1]], axis=1), TT.concatenate([Zi, C*Zi[:,1:-1][:,::-1]], axis=1)) Zi = (C*Zi)[:,:,::-1] # Zi * i Z = Zr+Zi return TT.concatenate([Z[:,:,0], Z[:,:,1]], axis=0) def ifft(z): B = z.shape[0]//2 L = z.shape[1] C = TT.as_tensor_variable(np.asarray([[[1,-1]]], dtype=T.config.floatX)) Zr, Zi = TTF.rfft(z[:B], norm="ortho"), TTF.rfft(z[B:]*-1, norm="ortho") isOdd = TT.eq(L%2, 1) Zr = TI.ifelse(isOdd, TT.concatenate([Zr, C*Zr[:,1: ][:,::-1]], axis=1), TT.concatenate([Zr, C*Zr[:,1:-1][:,::-1]], axis=1)) Zi = TI.ifelse(isOdd, TT.concatenate([Zi, C*Zi[:,1: ][:,::-1]], axis=1), TT.concatenate([Zi, C*Zi[:,1:-1][:,::-1]], axis=1)) Zi = (C*Zi)[:,:,::-1] # Zi * i Z = Zr+Zi return TT.concatenate([Z[:,:,0], Z[:,:,1]*-1], axis=0) def fft2(x): tt = x tt = KB.reshape(tt, (x.shape[0] *x.shape[1], x.shape[2])) tf = fft(tt) tf = KB.reshape(tf, (x.shape[0], x.shape[1], x.shape[2])) tf = KB.permute_dimensions(tf, (0, 2, 1)) tf = KB.reshape(tf, (x.shape[0] *x.shape[2], x.shape[1])) ff = fft(tf) ff = KB.reshape(ff, (x.shape[0], x.shape[2], x.shape[1])) ff = KB.permute_dimensions(ff, (0, 2, 1)) return ff def ifft2(x): ff = x ff = KB.permute_dimensions(ff, (0, 2, 1)) ff = KB.reshape(ff, (x.shape[0] *x.shape[2], x.shape[1])) tf = ifft(ff) tf = KB.reshape(tf, (x.shape[0], x.shape[2], x.shape[1])) tf = KB.permute_dimensions(tf, (0, 2, 1)) tf = KB.reshape(tf, (x.shape[0] *x.shape[1], x.shape[2])) tt = ifft(tf) tt = KB.reshape(tt, (x.shape[0], x.shape[1], x.shape[2])) return tt # # FFT Layers: # # FFT: Batched 1-D FFT (Input: (Batch, FeatureMaps, TimeSamples)) # IFFT: Batched 1-D IFFT (Input: (Batch, FeatureMaps, FreqSamples)) # FFT2: Batched 2-D FFT (Input: (Batch, FeatureMaps, TimeSamplesH, TimeSamplesW)) # IFFT2: Batched 2-D IFFT (Input: (Batch, FeatureMaps, FreqSamplesH, FreqSamplesW)) # class FFT(KL.Layer): def call(self, x, mask=None): a = KB.permute_dimensions(x, (1,0,2)) a = KB.reshape(a, (x.shape[1] *x.shape[0], x.shape[2])) a = fft(a) a = KB.reshape(a, (x.shape[1], x.shape[0], x.shape[2])) return KB.permute_dimensions(a, (1,0,2)) class IFFT(KL.Layer): def call(self, x, mask=None): a = KB.permute_dimensions(x, (1,0,2)) a = KB.reshape(a, (x.shape[1] *x.shape[0], x.shape[2])) a = ifft(a) a = KB.reshape(a, (x.shape[1], x.shape[0], x.shape[2])) return KB.permute_dimensions(a, (1,0,2)) class FFT2(KL.Layer): def call(self, x, mask=None): a = KB.permute_dimensions(x, (1,0,2,3)) a = KB.reshape(a, (x.shape[1] *x.shape[0], x.shape[2], x.shape[3])) a = fft2(a) a = KB.reshape(a, (x.shape[1], x.shape[0], x.shape[2], x.shape[3])) return KB.permute_dimensions(a, (1,0,2,3)) class IFFT2(KL.Layer): def call(self, x, mask=None): a = KB.permute_dimensions(x, (1,0,2,3)) a = KB.reshape(a, (x.shape[1] *x.shape[0], x.shape[2], x.shape[3])) a = ifft2(a) a = KB.reshape(a, (x.shape[1], x.shape[0], x.shape[2], x.shape[3])) return KB.permute_dimensions(a, (1,0,2,3)) # # Tests # # Note: The IFFT is the conjugate of the FFT of the conjugate. # # np.fft.ifft(x) == np.conj(np.fft.fft(np.conj(x))) # if __name__ == "__main__": # Numpy np.random.seed(1) L = 19 r = np.random.normal(0.8, size=(L,)) i = np.random.normal(0.8, size=(L,)) x = r+i*1j R = np.fft.rfft(r, norm="ortho") I = np.fft.rfft(i, norm="ortho") X = np.fft.fft (x, norm="ortho") if L&1: R = np.concatenate([R, np.conj(R[1: ][::-1])]) I = np.concatenate([I, np.conj(I[1: ][::-1])]) else: R = np.concatenate([R, np.conj(R[1:-1][::-1])]) I = np.concatenate([I, np.conj(I[1:-1][::-1])]) Y = R+I*1j print np.allclose(X, Y) # Theano z = TT.dmatrix() f = T.function([z], ifft(fft(z))) v = np.concatenate([np.real(x)[np.newaxis,:], np.imag(x)[np.newaxis,:]], axis=0) print v print f(v) print np.allclose(v, f(v)) # Keras x = i = KL.Input(shape=(128, 32,32)) x = IFFT2()(x) model = KE.Model([i],[x]) loss = "mse" opt = KO.Adam() model.compile(opt, loss) model._make_train_function() model._make_predict_function() model._make_test_function() v = np.random.normal(size=(13,128,32,32)) #print v V = model.predict(v) #print V print V.shape |