Blame view
QCAE.py
5.94 KB
8a1d43c41 V1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: Titouan Parcollet from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D import time import sys import numpy as np import keras from keras.models import Sequential,Model from keras.callbacks import Callback from keras.layers.core import Dense, Activation from keras.layers import Dropout, Input import tensorflow as tf from keras.backend.tensorflow_backend import set_session from keras.layers import Conv2D, MaxPooling2D from keras.layers import Conv1D, MaxPooling1D import os from complexnn import * print("##############################################") print("## Quaternion Convolutional encoder-decoder ##") print("## Titouan Parcollet, LIA 2017 ##") print("##############################################") ######## Static parameters # size : Number of train sample to choose # -> 100,1000,5000 # batch_size : batch size during training # train_epoch : number of epochs # CIFAR_* : path to pre-processed data files # output_* : path where the output layer will be saved # n_input : size of the input vector CIFAR = 32 * 32 * 3 # n_classes : size of the output vector size = 100 batch_size = 5 train_epoch = 100 n_input = 3072 n_classes = 3072 CIFAR_TRAINING = "Resources/Corpus/"+str(size)+"_train.dat" CIFAR_TEST = "Resources/Corpus/"+str(size)+"_test.dat" if not os.path.exists("Results"): os.makedirs("Results") output_test = open("Results/"+str(size)+"_test.dat", "w") output_train = open("Results/"+str(size)+"_train.dat", "w") ######## Loading datasets train_file = open(CIFAR_TRAINING, "r").readlines() test_file = open(CIFAR_TEST, "r").readlines() train_data = np.zeros( (len(train_file), n_input) ) train_label = np.zeros((len(train_file), n_classes)) test_data = np.zeros( (len(test_file), n_input) ) test_label = np.zeros((len(test_file), n_classes)) print("Loading dataset ...") line_cpt =0 for line in train_file: data_cpt =0 for splitted in line.split("\t")[0].split(" "): if(data_cpt < n_input): train_data[line_cpt][data_cpt] = float(splitted) data_cpt+=1 data_cpt=0 for splitted in line.split("\t")[1].split(" "): train_label[line_cpt][data_cpt] = int(splitted) data_cpt+=1 line_cpt+=1 line_cpt =0 for line in test_file: data_cpt =0 for splitted in line.split("\t")[0].split(" "): if(data_cpt<n_input): test_data[line_cpt][data_cpt] = float(splitted) data_cpt+=1 data_cpt=0 for splitted in line.split("\t")[1].split(" "): test_label[line_cpt][data_cpt] = int(splitted) data_cpt+=1 data_cpt+=1 line_cpt+=1 print("Data loaded :D") ######## Normalizing pixels train_data = train_data.astype('float32') test_data = test_data.astype('float32') train_data /= 255 test_data /= 255 train_label /= 255 test_label /= 255 ######## Reformating to match Quaternion format # Q = r + x + y + z # Q = 0 + R + G + B test_data = test_data.reshape(test_data.shape[0],32,32,3) test_label = test_label.reshape(test_data.shape[0],32,32,3) train_data = train_data.reshape(train_data.shape[0],32,32,3) train_label = train_label.reshape(train_data.shape[0],32,32,3) x=train_data.shape[0] y=train_data.shape[1] z=train_data.shape[2] zeros = np.zeros((x,y,z,1)) train_data = np.concatenate((zeros, train_data), axis = 3) x=test_data.shape[0] y=test_data.shape[1] z=test_data.shape[2] zeros = np.zeros((x,y,z,1)) test_data = np.concatenate((zeros, test_data), axis = 3) x=train_label.shape[0] y=train_label.shape[1] z=train_label.shape[2] zeros = np.zeros((x,y,z,1)) train_label = np.concatenate((zeros, train_label), axis = 3) x=test_label.shape[0] y=test_label.shape[1] z=test_label.shape[2] zeros = np.zeros((x,y,z,1)) test_label = np.concatenate((zeros, test_label), axis = 3) ######## Building model # A QuaternionConv2D layer has the same parameters than a real valued # convolutional layer. Be certain that the input can be divided by 4 input_img = Input(shape=(32, 32, 4)) x = QuaternionConv2D(32, kernel_size=(3, 3), activation='relu', padding='same')(input_img) x = MaxPooling2D((2, 2), padding='same')(x) x = QuaternionConv2D(16, (3, 3), activation='relu', padding='same')(x) encoded = MaxPooling2D((2, 2), padding='same')(x) x = QuaternionConv2D(16, (3, 3), activation='relu', padding='same')(encoded) x = UpSampling2D((2, 2))(x) x = QuaternionConv2D(32, kernel_size=(3,3), strides=(1, 1), activation='relu', padding='same')(x) x = UpSampling2D((2, 2))(x) decoded = QuaternionConv2D(1, (3, 3),activation='sigmoid', name='conv_last', padding='same')(x) ######## Compiling model autoencoder = Model(input_img, decoded) autoencoder.compile(optimizer='adam', loss='binary_crossentropy') ######## Training loss_history_cb = autoencoder.fit(train_data, train_label, epochs=train_epoch, batch_size=batch_size) ######## Recording Loss History loss_history = loss_history_cb.history["loss"] loss = np.array(loss_history) np.savetxt("loss_history_Q.txt", loss, delimiter=",") ######## Write the outputs for each images # Accordingly to the need of the script create_rgb.py # modulo_cpt =0 output = autoencoder.predict(test_data[0:99]) for element in output: for value in element: for other in value: for rgb in other: if modulo_cpt %4 != 0: output_test.write(str(float(rgb)*255)+" ") modulo_cpt += 1 output_test.write(" ") output_test.close() modulo_cpt = 0 output = autoencoder.predict(train_data[0:4900]) for element in output: for value in element: for other in value: for rgb in other: if modulo_cpt %4 != 0: output_train.write(str(float(rgb)*255)+" ") modulo_cpt +=1 output_train.write(" ") output_train.close() ######## Finally generate the reconstructed RGB pictures print("Reconstructing images : create_rgb.py "+str(size)) create_rgb.reconstruct(str(size)) print("That's all Folks !") |