Blame view
complexnn/init.py
15.8 KB
8a1d43c41 V1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
#!/usr/bin/env python # -*- coding: utf-8 -*- # Contributors: Titouan Parcollet # Authors: Chiheb Trabelsi import numpy as np from numpy.random import RandomState from random import gauss import keras.backend as K from keras import initializers from keras.initializers import Initializer from keras.utils.generic_utils import (serialize_keras_object, deserialize_keras_object) ##################################################################### # Quaternion Implementations # ##################################################################### class QuaternionIndependentFilters(Initializer): # This initialization constructs quaternion-valued kernels # that are independent as much as possible from each other # while respecting either the He or the Glorot criterion. def __init__(self, kernel_size, input_dim, weight_dim, nb_filters=None, criterion='glorot', seed=None): # `weight_dim` is used as a parameter for sanity check # as we should not pass an integer as kernel_size when # the weight dimension is >= 2. # nb_filters == 0 if weights are not convolutional (matrix instead of filters) # then in such a case, weight_dim = 2. # (in case of 2D input): # nb_filters == None and len(kernel_size) == 2 and_weight_dim == 2 # conv1D: len(kernel_size) == 1 and weight_dim == 1 # conv2D: len(kernel_size) == 2 and weight_dim == 2 # conv3d: len(kernel_size) == 3 and weight_dim == 3 assert len(kernel_size) == weight_dim and weight_dim in {0, 1, 2, 3} self.nb_filters = nb_filters self.kernel_size = kernel_size self.input_dim = input_dim self.weight_dim = weight_dim self.criterion = criterion self.seed = 1337 if seed is None else seed def __call__(self, shape, dtype=None): if self.nb_filters is not None: num_rows = self.nb_filters * self.input_dim num_cols = np.prod(self.kernel_size) else: # in case it is the kernel is a matrix and not a filter # which is the case of 2D input (No feature maps). num_rows = self.input_dim num_cols = self.kernel_size[-1] flat_shape = (int(num_rows), int(num_cols)) rng = RandomState(self.seed) r = rng.uniform(size=flat_shape) i = rng.uniform(size=flat_shape) z = r + 1j * i u, _, v = np.linalg.svd(z) unitary_z = np.dot(u, np.dot(np.eye(int(num_rows), int(num_cols)), np.conjugate(v).T)) real_unitary = unitary_z.real imag_unitary = unitary_z.imag if self.nb_filters is not None: indep_real = np.reshape(real_unitary, (num_rows,) + tuple(self.kernel_size)) indep_imag = np.reshape(imag_unitary, (num_rows,) + tuple(self.kernel_size)) fan_in, fan_out = initializers._compute_fans( tuple(self.kernel_size) + (int(self.input_dim), self.nb_filters) ) else: indep_real = real_unitary indep_imag = imag_unitary fan_in, fan_out = (int(self.input_dim), self.kernel_size[-1]) if self.criterion == 'glorot': desired_var = 1. / (fan_in + fan_out) elif self.criterion == 'he': desired_var = 1. / (fan_in) else: raise ValueError('Invalid criterion: ' + self.criterion) multip_real = np.sqrt(desired_var / np.var(indep_real)) multip_imag = np.sqrt(desired_var / np.var(indep_imag)) scaled_real = multip_real * indep_real scaled_imag = multip_imag * indep_imag if self.weight_dim == 2 and self.nb_filters is None: weight_real = scaled_real weight_imag = scaled_imag else: kernel_shape = tuple(self.kernel_size) + (int(self.input_dim), self.nb_filters) if self.weight_dim == 1: transpose_shape = (1, 0) elif self.weight_dim == 2 and self.nb_filters is not None: transpose_shape = (1, 2, 0) elif self.weight_dim == 3 and self.nb_filters is not None: transpose_shape = (1, 2, 3, 0) weight_real = np.transpose(scaled_real, transpose_shape) weight_imag = np.transpose(scaled_imag, transpose_shape) weight_real = np.reshape(weight_real, kernel_shape) weight_imag = np.reshape(weight_imag, kernel_shape) weight = np.concatenate([weight_real, weight_imag], axis=-1) return weight def get_config(self): return {'nb_filters': self.nb_filters, 'kernel_size': self.kernel_size, 'input_dim': self.input_dim, 'weight_dim': self.weight_dim, 'criterion': self.criterion, 'seed': self.seed} class QuaternionInit(Initializer): # The standard complex initialization using # either the He or the Glorot criterion. def __init__(self, kernel_size, input_dim, weight_dim, nb_filters=None, criterion='glorot', seed=None): # `weight_dim` is used as a parameter for sanity check # as we should not pass an integer as kernel_size when # the weight dimension is >= 2. # nb_filters == 0 if weights are not convolutional (matrix instead of filters) # then in such a case, weight_dim = 2. # (in case of 2D input): # nb_filters == None and len(kernel_size) == 2 and_weight_dim == 2 # conv1D: len(kernel_size) == 1 and weight_dim == 1 # conv2D: len(kernel_size) == 2 and weight_dim == 2 # conv3d: len(kernel_size) == 3 and weight_dim == 3 assert len(kernel_size) == weight_dim and weight_dim in {0, 1, 2, 3} self.nb_filters = nb_filters self.kernel_size = kernel_size self.input_dim = input_dim self.weight_dim = weight_dim self.criterion = criterion self.seed = 1337 if seed is None else seed def __call__(self, shape, dtype=None): if self.nb_filters is not None: kernel_shape = tuple(self.kernel_size) + (int(self.input_dim), self.nb_filters) else: kernel_shape = (int(self.input_dim), self.kernel_size[-1]) fan_in, fan_out = initializers._compute_fans( tuple(self.kernel_size) + (self.input_dim, self.nb_filters) ) # Quaternion operations start here if self.criterion == 'glorot': s = 1. / np.sqrt(2*(fan_in + fan_out)) elif self.criterion == 'he': s = 1. / np.sqrt(2*fan_in) else: raise ValueError('Invalid criterion: ' + self.criterion) #Generating randoms and purely imaginary quaternions : number_of_weights = np.prod(kernel_shape) v_i = np.random.uniform(0.0,1.0,number_of_weights) v_j = np.random.uniform(0.0,1.0,number_of_weights) v_k = np.random.uniform(0.0,1.0,number_of_weights) #Make these purely imaginary quaternions unitary for i in range(0, number_of_weights): norm = np.sqrt(v_i[i]**2 + v_j[i]**2 + v_k[i]**2) v_i[i]/= norm v_j[i]/= norm v_k[i]/= norm v_i = v_i.reshape(kernel_shape) v_j = v_j.reshape(kernel_shape) v_k = v_k.reshape(kernel_shape) rng = RandomState(self.seed) modulus = rng.rayleigh(scale=s, size=kernel_shape) phase = rng.uniform(low=-np.pi, high=np.pi, size=kernel_shape) weight_r = modulus * np.cos(phase) weight_i = modulus * v_i*np.sin(phase) weight_j = modulus * v_j*np.sin(phase) weight_k = modulus * v_k*np.sin(phase) weight = np.concatenate([weight_r, weight_i, weight_j, weight_k], axis=-1) return weight ##################################################################### # Complex Implementations # ##################################################################### class IndependentFilters(Initializer): # This initialization constructs real-valued kernels # that are independent as much as possible from each other # while respecting either the He or the Glorot criterion. def __init__(self, kernel_size, input_dim, weight_dim, nb_filters=None, criterion='glorot', seed=None): # `weight_dim` is used as a parameter for sanity check # as we should not pass an integer as kernel_size when # the weight dimension is >= 2. # nb_filters == 0 if weights are not convolutional (matrix instead of filters) # then in such a case, weight_dim = 2. # (in case of 2D input): # nb_filters == None and len(kernel_size) == 2 and_weight_dim == 2 # conv1D: len(kernel_size) == 1 and weight_dim == 1 # conv2D: len(kernel_size) == 2 and weight_dim == 2 # conv3d: len(kernel_size) == 3 and weight_dim == 3 assert len(kernel_size) == weight_dim and weight_dim in {0, 1, 2, 3} self.nb_filters = nb_filters self.kernel_size = kernel_size self.input_dim = input_dim self.weight_dim = weight_dim self.criterion = criterion self.seed = 1337 if seed is None else seed def __call__(self, shape, dtype=None): if self.nb_filters is not None: num_rows = self.nb_filters * self.input_dim num_cols = np.prod(self.kernel_size) else: # in case it is the kernel is a matrix and not a filter # which is the case of 2D input (No feature maps). num_rows = self.input_dim num_cols = self.kernel_size[-1] flat_shape = (num_rows, num_cols) rng = RandomState(self.seed) x = rng.uniform(size=flat_shape) u, _, v = np.linalg.svd(x) orthogonal_x = np.dot(u, np.dot(np.eye(num_rows, num_cols), v.T)) if self.nb_filters is not None: independent_filters = np.reshape(orthogonal_x, (num_rows,) + tuple(self.kernel_size)) fan_in, fan_out = initializers._compute_fans( tuple(self.kernel_size) + (self.input_dim, self.nb_filters) ) else: independent_filters = orthogonal_x fan_in, fan_out = (self.input_dim, self.kernel_size[-1]) if self.criterion == 'glorot': desired_var = 2. / (fan_in + fan_out) elif self.criterion == 'he': desired_var = 2. / fan_in else: raise ValueError('Invalid criterion: ' + self.criterion) multip_constant = np.sqrt (desired_var / np.var(independent_filters)) scaled_indep = multip_constant * independent_filters if self.weight_dim == 2 and self.nb_filters is None: weight_real = scaled_real weight_imag = scaled_imag else: kernel_shape = tuple(self.kernel_size) + (self.input_dim, self.nb_filters) if self.weight_dim == 1: transpose_shape = (1, 0) elif self.weight_dim == 2 and self.nb_filters is not None: transpose_shape = (1, 2, 0) elif self.weight_dim == 3 and self.nb_filters is not None: transpose_shape = (1, 2, 3, 0) weight = np.transpose(scaled_indep, transpose_shape) weight = np.reshape(weight, kernel_shape) return weight def get_config(self): return {'nb_filters': self.nb_filters, 'kernel_size': self.kernel_size, 'input_dim': self.input_dim, 'weight_dim': self.weight_dim, 'criterion': self.criterion, 'seed': self.seed} class ComplexIndependentFilters(Initializer): # This initialization constructs complex-valued kernels # that are independent as much as possible from each other # while respecting either the He or the Glorot criterion. def __init__(self, kernel_size, input_dim, weight_dim, nb_filters=None, criterion='glorot', seed=None): # `weight_dim` is used as a parameter for sanity check # as we should not pass an integer as kernel_size when # the weight dimension is >= 2. # nb_filters == 0 if weights are not convolutional (matrix instead of filters) # then in such a case, weight_dim = 2. # (in case of 2D input): # nb_filters == None and len(kernel_size) == 2 and_weight_dim == 2 # conv1D: len(kernel_size) == 1 and weight_dim == 1 # conv2D: len(kernel_size) == 2 and weight_dim == 2 # conv3d: len(kernel_size) == 3 and weight_dim == 3 assert len(kernel_size) == weight_dim and weight_dim in {0, 1, 2, 3} self.nb_filters = nb_filters self.kernel_size = kernel_size self.input_dim = input_dim self.weight_dim = weight_dim self.criterion = criterion self.seed = 1337 if seed is None else seed def __call__(self, shape, dtype=None): if self.nb_filters is not None: num_rows = self.nb_filters * self.input_dim num_cols = np.prod(self.kernel_size) else: # in case it is the kernel is a matrix and not a filter # which is the case of 2D input (No feature maps). num_rows = self.input_dim num_cols = self.kernel_size[-1] flat_shape = (int(num_rows), int(num_cols)) rng = RandomState(self.seed) r = rng.uniform(size=flat_shape) i = rng.uniform(size=flat_shape) z = r + 1j * i u, _, v = np.linalg.svd(z) unitary_z = np.dot(u, np.dot(np.eye(int(num_rows), int(num_cols)), np.conjugate(v).T)) real_unitary = unitary_z.real imag_unitary = unitary_z.imag if self.nb_filters is not None: indep_real = np.reshape(real_unitary, (num_rows,) + tuple(self.kernel_size)) indep_imag = np.reshape(imag_unitary, (num_rows,) + tuple(self.kernel_size)) fan_in, fan_out = initializers._compute_fans( tuple(self.kernel_size) + (int(self.input_dim), self.nb_filters) ) else: indep_real = real_unitary indep_imag = imag_unitary fan_in, fan_out = (int(self.input_dim), self.kernel_size[-1]) if self.criterion == 'glorot': desired_var = 1. / (fan_in + fan_out) elif self.criterion == 'he': desired_var = 1. / (fan_in) else: raise ValueError('Invalid criterion: ' + self.criterion) multip_real = np.sqrt(desired_var / np.var(indep_real)) multip_imag = np.sqrt(desired_var / np.var(indep_imag)) scaled_real = multip_real * indep_real scaled_imag = multip_imag * indep_imag if self.weight_dim == 2 and self.nb_filters is None: weight_real = scaled_real weight_imag = scaled_imag else: kernel_shape = tuple(self.kernel_size) + (int(self.input_dim), self.nb_filters) if self.weight_dim == 1: transpose_shape = (1, 0) elif self.weight_dim == 2 and self.nb_filters is not None: transpose_shape = (1, 2, 0) elif self.weight_dim == 3 and self.nb_filters is not None: transpose_shape = (1, 2, 3, 0) weight_real = np.transpose(scaled_real, transpose_shape) weight_imag = np.transpose(scaled_imag, transpose_shape) weight_real = np.reshape(weight_real, kernel_shape) weight_imag = np.reshape(weight_imag, kernel_shape) weight = np.concatenate([weight_real, weight_imag], axis=-1) return weight def get_config(self): return {'nb_filters': self.nb_filters, 'kernel_size': self.kernel_size, 'input_dim': self.input_dim, 'weight_dim': self.weight_dim, 'criterion': self.criterion, 'seed': self.seed} class ComplexInit(Initializer): # The standard complex initialization using # either the He or the Glorot criterion. def __init__(self, kernel_size, input_dim, weight_dim, nb_filters=None, criterion='glorot', seed=None): # `weight_dim` is used as a parameter for sanity check # as we should not pass an integer as kernel_size when # the weight dimension is >= 2. # nb_filters == 0 if weights are not convolutional (matrix instead of filters) # then in such a case, weight_dim = 2. # (in case of 2D input): # nb_filters == None and len(kernel_size) == 2 and_weight_dim == 2 # conv1D: len(kernel_size) == 1 and weight_dim == 1 # conv2D: len(kernel_size) == 2 and weight_dim == 2 # conv3d: len(kernel_size) == 3 and weight_dim == 3 assert len(kernel_size) == weight_dim and weight_dim in {0, 1, 2, 3} self.nb_filters = nb_filters self.kernel_size = kernel_size self.input_dim = input_dim self.weight_dim = weight_dim self.criterion = criterion self.seed = 1337 if seed is None else seed def __call__(self, shape, dtype=None): if self.nb_filters is not None: kernel_shape = tuple(self.kernel_size) + (int(self.input_dim), self.nb_filters) else: kernel_shape = (int(self.input_dim), self.kernel_size[-1]) fan_in, fan_out = initializers._compute_fans( tuple(self.kernel_size) + (self.input_dim, self.nb_filters) ) if self.criterion == 'glorot': s = 1. / (fan_in + fan_out) elif self.criterion == 'he': s = 1. / fan_in else: raise ValueError('Invalid criterion: ' + self.criterion) rng = RandomState(self.seed) modulus = rng.rayleigh(scale=s, size=kernel_shape) phase = rng.uniform(low=-np.pi, high=np.pi, size=kernel_shape) weight_real = modulus * np.cos(phase) weight_imag = modulus * np.sin(phase) #print (weight_real.shape) weight = np.concatenate([weight_real, weight_imag], axis=-1) return weight class SqrtInit(Initializer): def __call__(self, shape, dtype=None): return K.constant(1 / K.sqrt(2), shape=shape, dtype=dtype) # Aliases: sqrt_init = SqrtInit independent_filters = IndependentFilters quaternion_independent_filters = QuaternionIndependentFilters complex_init = ComplexInit quaternion_init = QuaternionInit |