Blame view
egs/aishell2/s5/local/chain/tuning/run_tdnn_1a.sh
7.68 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
#!/bin/bash # this is the original baseline scripts, which is supposed to be deprecated. # results # local/chain/compare_wer.sh exp/chain/tdnn_1a_sp/ # Model tdnn_1a_sp # WER(%) 9.89 # Final train prob -0.0653 # Final valid prob -0.0765 # Final train prob (xent) -0.7340 # Final valid prob (xent) -0.8030 set -e # configs for 'chain' affix= stage=10 train_stage=-10 get_egs_stage=-10 dir=exp/chain/tdnn_1a # Note: _sp will get added to this decode_iter= # training options num_epochs=4 initial_effective_lrate=0.001 final_effective_lrate=0.0001 max_param_change=2.0 final_layer_normalize_target=0.5 num_jobs_initial=2 num_jobs_final=4 nj=10 minibatch_size=128 frames_per_eg=150,110,90 remove_egs=true common_egs_dir= xent_regularize=0.1 # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi # we use 40-dim high-resolution mfcc features (w/o pitch and ivector) for nn training # no utt- and spk- level cmvn dir=${dir}${affix:+_$affix}_sp train_set=train test_sets="dev test" ali_dir=exp/tri3_ali treedir=exp/chain/tri4_cd_tree_sp lang=data/lang_chain if [ $stage -le 6 ]; then mfccdir=mfcc_hires for datadir in ${train_set} ${test_sets}; do utils/copy_data_dir.sh data/${datadir} data/${datadir}_hires utils/data/perturb_data_dir_volume.sh data/${datadir}_hires || exit 1; steps/make_mfcc.sh --mfcc-config conf/mfcc_hires.conf --nj $nj data/${datadir}_hires exp/make_mfcc/ ${mfccdir} done fi if [ $stage -le 7 ]; then # Get the alignments as lattices (gives the LF-MMI training more freedom). # use the same num-jobs as the alignments nj=$(cat $ali_dir/num_jobs) || exit 1; steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \ data/lang exp/tri3 exp/tri4_sp_lats rm exp/tri4_sp_lats/fsts.*.gz # save space fi if [ $stage -le 8 ]; then # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] rm -rf $lang cp -r data/lang $lang silphonelist=$(cat $lang/phones/silence.csl) || exit 1; nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo fi if [ $stage -le 9 ]; then # Build a tree using our new topology. This is the critically different # step compared with other recipes. steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \ --context-opts "--context-width=2 --central-position=1" \ --cmd "$train_cmd" 5000 data/$train_set $lang $ali_dir $treedir fi if [ $stage -le 10 ]; then echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $treedir/tree | grep num-pdfs | awk '{print $2}') learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python) opts="l2-regularize=0.002" linear_opts="orthonormal-constraint=1.0" output_opts="l2-regularize=0.0005 bottleneck-dim=256" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=40 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-2,-1,0,1,2) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-batchnorm-layer name=tdnn1 $opts dim=1280 linear-component name=tdnn2l dim=256 $linear_opts input=Append(-1,0) relu-batchnorm-layer name=tdnn2 $opts input=Append(0,1) dim=1280 linear-component name=tdnn3l dim=256 $linear_opts relu-batchnorm-layer name=tdnn3 $opts dim=1280 linear-component name=tdnn4l dim=256 $linear_opts input=Append(-1,0) relu-batchnorm-layer name=tdnn4 $opts input=Append(0,1) dim=1280 linear-component name=tdnn5l dim=256 $linear_opts relu-batchnorm-layer name=tdnn5 $opts dim=1280 input=Append(tdnn5l, tdnn3l) linear-component name=tdnn6l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-layer name=tdnn6 $opts input=Append(0,3) dim=1280 linear-component name=tdnn7l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-layer name=tdnn7 $opts input=Append(0,3,tdnn6l,tdnn4l,tdnn2l) dim=1280 linear-component name=tdnn8l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-layer name=tdnn8 $opts input=Append(0,3) dim=1280 linear-component name=tdnn9l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-layer name=tdnn9 $opts input=Append(0,3,tdnn8l,tdnn6l,tdnn4l) dim=1280 linear-component name=tdnn10l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-layer name=tdnn10 $opts input=Append(0,3) dim=1280 linear-component name=tdnn11l dim=256 $linear_opts input=Append(-3,0) relu-batchnorm-layer name=tdnn11 $opts input=Append(0,3,tdnn10l,tdnn8l,tdnn6l) dim=1280 linear-component name=prefinal-l dim=256 $linear_opts relu-batchnorm-layer name=prefinal-chain input=prefinal-l $opts dim=1280 output-layer name=output include-log-softmax=false dim=$num_targets $output_opts relu-batchnorm-layer name=prefinal-xent input=prefinal-l $opts dim=1280 output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 11 ]; then #if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then # utils/create_split_dir.pl \ # /export/b0{5,6,7,8}/$USER/kaldi-data/egs/aishell-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage #fi steps/nnet3/chain/train.py --stage $train_stage \ --cmd "$decode_cmd" \ --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ --chain.xent-regularize $xent_regularize \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize 0.00005 \ --chain.apply-deriv-weights false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --egs.dir "$common_egs_dir" \ --egs.stage $get_egs_stage \ --egs.opts "--frames-overlap-per-eg 0" \ --egs.chunk-width $frames_per_eg \ --trainer.num-chunk-per-minibatch $minibatch_size \ --trainer.frames-per-iter 1500000 \ --trainer.num-epochs $num_epochs \ --trainer.optimization.num-jobs-initial $num_jobs_initial \ --trainer.optimization.num-jobs-final $num_jobs_final \ --trainer.optimization.initial-effective-lrate $initial_effective_lrate \ --trainer.optimization.final-effective-lrate $final_effective_lrate \ --trainer.max-param-change $max_param_change \ --cleanup.remove-egs $remove_egs \ --feat-dir data/${train_set}_hires \ --tree-dir $treedir \ --lat-dir exp/tri4_sp_lats \ --dir $dir || exit 1; fi if [ $stage -le 12 ]; then # Note: it might appear that this $lang directory is mismatched, and it is as # far as the 'topo' is concerned, but this script doesn't read the 'topo' from # the lang directory. utils/mkgraph.sh --self-loop-scale 1.0 data/lang_test $dir $dir/graph fi graph_dir=$dir/graph if [ $stage -le 13 ]; then for test_set in $test_sets; do steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ --nj 10 --cmd "$decode_cmd" \ $graph_dir data/${test_set}_hires $dir/decode_${test_set} || exit 1; done fi echo "local/chain/run_tdnn.sh succeeded" exit 0; |