Blame view

egs/aishell2/s5/local/chain/tuning/run_tdnn_1a.sh 7.68 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
  #!/bin/bash
  
  # this is the original baseline scripts, which is supposed to be deprecated.
  
  # results
  # local/chain/compare_wer.sh exp/chain/tdnn_1a_sp/
  # Model                tdnn_1a_sp
  # WER(%)                     9.89
  # Final train prob        -0.0653
  # Final valid prob        -0.0765
  # Final train prob (xent)   -0.7340
  # Final valid prob (xent)   -0.8030
  
  set -e
  
  # configs for 'chain'
  affix=
  stage=10
  train_stage=-10
  get_egs_stage=-10
  dir=exp/chain/tdnn_1a  # Note: _sp will get added to this
  decode_iter=
  
  # training options
  num_epochs=4
  initial_effective_lrate=0.001
  final_effective_lrate=0.0001
  max_param_change=2.0
  final_layer_normalize_target=0.5
  num_jobs_initial=2
  num_jobs_final=4
  nj=10
  minibatch_size=128
  frames_per_eg=150,110,90
  remove_egs=true
  common_egs_dir=
  xent_regularize=0.1
  
  # End configuration section.
  echo "$0 $@"  # Print the command line for logging
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  if ! cuda-compiled; then
    cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  fi
  
  # we use 40-dim high-resolution mfcc features (w/o pitch and ivector) for nn training
  # no utt- and spk- level cmvn
  
  dir=${dir}${affix:+_$affix}_sp
  train_set=train
  test_sets="dev test"
  ali_dir=exp/tri3_ali
  treedir=exp/chain/tri4_cd_tree_sp
  lang=data/lang_chain
  
  if [ $stage -le 6 ]; then
    mfccdir=mfcc_hires
    for datadir in ${train_set} ${test_sets}; do
    	utils/copy_data_dir.sh data/${datadir} data/${datadir}_hires
  	utils/data/perturb_data_dir_volume.sh data/${datadir}_hires || exit 1;
  	steps/make_mfcc.sh --mfcc-config conf/mfcc_hires.conf --nj $nj data/${datadir}_hires exp/make_mfcc/ ${mfccdir}
    done
  fi
  
  if [ $stage -le 7 ]; then
    # Get the alignments as lattices (gives the LF-MMI training more freedom).
    # use the same num-jobs as the alignments
    nj=$(cat $ali_dir/num_jobs) || exit 1;
    steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \
      data/lang exp/tri3 exp/tri4_sp_lats
    rm exp/tri4_sp_lats/fsts.*.gz # save space
  fi
  
  if [ $stage -le 8 ]; then
    # Create a version of the lang/ directory that has one state per phone in the
    # topo file. [note, it really has two states.. the first one is only repeated
    # once, the second one has zero or more repeats.]
    rm -rf $lang
    cp -r data/lang $lang
    silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
    nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
    # Use our special topology... note that later on may have to tune this
    # topology.
    steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
  fi
  
  if [ $stage -le 9 ]; then
    # Build a tree using our new topology. This is the critically different
    # step compared with other recipes.
    steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
        --context-opts "--context-width=2 --central-position=1" \
        --cmd "$train_cmd" 5000 data/$train_set $lang $ali_dir $treedir
  fi
  
  if [ $stage -le 10 ]; then
    echo "$0: creating neural net configs using the xconfig parser";
    num_targets=$(tree-info $treedir/tree | grep num-pdfs | awk '{print $2}')
    learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
    opts="l2-regularize=0.002"
    linear_opts="orthonormal-constraint=1.0"
    output_opts="l2-regularize=0.0005 bottleneck-dim=256"
  
    mkdir -p $dir/configs
    cat <<EOF > $dir/configs/network.xconfig
    input dim=40 name=input
  
    # please note that it is important to have input layer with the name=input
    # as the layer immediately preceding the fixed-affine-layer to enable
    # the use of short notation for the descriptor
    fixed-affine-layer name=lda input=Append(-2,-1,0,1,2) affine-transform-file=$dir/configs/lda.mat
  
    # the first splicing is moved before the lda layer, so no splicing here
    relu-batchnorm-layer name=tdnn1 $opts dim=1280
    linear-component name=tdnn2l dim=256 $linear_opts input=Append(-1,0)
    relu-batchnorm-layer name=tdnn2 $opts input=Append(0,1) dim=1280
    linear-component name=tdnn3l dim=256 $linear_opts
    relu-batchnorm-layer name=tdnn3 $opts dim=1280
    linear-component name=tdnn4l dim=256 $linear_opts input=Append(-1,0)
    relu-batchnorm-layer name=tdnn4 $opts input=Append(0,1) dim=1280
    linear-component name=tdnn5l dim=256 $linear_opts
    relu-batchnorm-layer name=tdnn5 $opts dim=1280 input=Append(tdnn5l, tdnn3l)
    linear-component name=tdnn6l dim=256 $linear_opts input=Append(-3,0)
    relu-batchnorm-layer name=tdnn6 $opts input=Append(0,3) dim=1280
    linear-component name=tdnn7l dim=256 $linear_opts input=Append(-3,0)
    relu-batchnorm-layer name=tdnn7 $opts input=Append(0,3,tdnn6l,tdnn4l,tdnn2l) dim=1280
    linear-component name=tdnn8l dim=256 $linear_opts input=Append(-3,0)
    relu-batchnorm-layer name=tdnn8 $opts input=Append(0,3) dim=1280
    linear-component name=tdnn9l dim=256 $linear_opts input=Append(-3,0)
    relu-batchnorm-layer name=tdnn9 $opts input=Append(0,3,tdnn8l,tdnn6l,tdnn4l) dim=1280
    linear-component name=tdnn10l dim=256 $linear_opts input=Append(-3,0)
    relu-batchnorm-layer name=tdnn10 $opts input=Append(0,3) dim=1280
    linear-component name=tdnn11l dim=256 $linear_opts input=Append(-3,0)
    relu-batchnorm-layer name=tdnn11 $opts input=Append(0,3,tdnn10l,tdnn8l,tdnn6l) dim=1280
    linear-component name=prefinal-l dim=256 $linear_opts
  
    relu-batchnorm-layer name=prefinal-chain input=prefinal-l $opts dim=1280
    output-layer name=output include-log-softmax=false dim=$num_targets $output_opts
  
    relu-batchnorm-layer name=prefinal-xent input=prefinal-l $opts dim=1280
    output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts
  
  EOF
    steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
  fi
  
  if [ $stage -le 11 ]; then
    #if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
    #  utils/create_split_dir.pl \
    #   /export/b0{5,6,7,8}/$USER/kaldi-data/egs/aishell-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage
    #fi
  
    steps/nnet3/chain/train.py --stage $train_stage \
      --cmd "$decode_cmd" \
      --feat.cmvn-opts "--norm-means=false --norm-vars=false" \
      --chain.xent-regularize $xent_regularize \
      --chain.leaky-hmm-coefficient 0.1 \
      --chain.l2-regularize 0.00005 \
      --chain.apply-deriv-weights false \
      --chain.lm-opts="--num-extra-lm-states=2000" \
      --egs.dir "$common_egs_dir" \
      --egs.stage $get_egs_stage \
      --egs.opts "--frames-overlap-per-eg 0" \
      --egs.chunk-width $frames_per_eg \
      --trainer.num-chunk-per-minibatch $minibatch_size \
      --trainer.frames-per-iter 1500000 \
      --trainer.num-epochs $num_epochs \
      --trainer.optimization.num-jobs-initial $num_jobs_initial \
      --trainer.optimization.num-jobs-final $num_jobs_final \
      --trainer.optimization.initial-effective-lrate $initial_effective_lrate \
      --trainer.optimization.final-effective-lrate $final_effective_lrate \
      --trainer.max-param-change $max_param_change \
      --cleanup.remove-egs $remove_egs \
      --feat-dir data/${train_set}_hires \
      --tree-dir $treedir \
      --lat-dir exp/tri4_sp_lats \
      --dir $dir  || exit 1;
  fi
  
  if [ $stage -le 12 ]; then
    # Note: it might appear that this $lang directory is mismatched, and it is as
    # far as the 'topo' is concerned, but this script doesn't read the 'topo' from
    # the lang directory.
    utils/mkgraph.sh --self-loop-scale 1.0 data/lang_test $dir $dir/graph
  fi
  
  graph_dir=$dir/graph
  if [ $stage -le 13 ]; then
    for test_set in $test_sets; do
      steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
        --nj 10 --cmd "$decode_cmd" \
        $graph_dir data/${test_set}_hires $dir/decode_${test_set} || exit 1;
    done
  fi
  
  echo "local/chain/run_tdnn.sh succeeded"
  exit 0;