run_tdnn_1a.sh
7.68 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#!/bin/bash
# this is the original baseline scripts, which is supposed to be deprecated.
# results
# local/chain/compare_wer.sh exp/chain/tdnn_1a_sp/
# Model tdnn_1a_sp
# WER(%) 9.89
# Final train prob -0.0653
# Final valid prob -0.0765
# Final train prob (xent) -0.7340
# Final valid prob (xent) -0.8030
set -e
# configs for 'chain'
affix=
stage=10
train_stage=-10
get_egs_stage=-10
dir=exp/chain/tdnn_1a # Note: _sp will get added to this
decode_iter=
# training options
num_epochs=4
initial_effective_lrate=0.001
final_effective_lrate=0.0001
max_param_change=2.0
final_layer_normalize_target=0.5
num_jobs_initial=2
num_jobs_final=4
nj=10
minibatch_size=128
frames_per_eg=150,110,90
remove_egs=true
common_egs_dir=
xent_regularize=0.1
# End configuration section.
echo "$0 $@" # Print the command line for logging
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi
# we use 40-dim high-resolution mfcc features (w/o pitch and ivector) for nn training
# no utt- and spk- level cmvn
dir=${dir}${affix:+_$affix}_sp
train_set=train
test_sets="dev test"
ali_dir=exp/tri3_ali
treedir=exp/chain/tri4_cd_tree_sp
lang=data/lang_chain
if [ $stage -le 6 ]; then
mfccdir=mfcc_hires
for datadir in ${train_set} ${test_sets}; do
utils/copy_data_dir.sh data/${datadir} data/${datadir}_hires
utils/data/perturb_data_dir_volume.sh data/${datadir}_hires || exit 1;
steps/make_mfcc.sh --mfcc-config conf/mfcc_hires.conf --nj $nj data/${datadir}_hires exp/make_mfcc/ ${mfccdir}
done
fi
if [ $stage -le 7 ]; then
# Get the alignments as lattices (gives the LF-MMI training more freedom).
# use the same num-jobs as the alignments
nj=$(cat $ali_dir/num_jobs) || exit 1;
steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \
data/lang exp/tri3 exp/tri4_sp_lats
rm exp/tri4_sp_lats/fsts.*.gz # save space
fi
if [ $stage -le 8 ]; then
# Create a version of the lang/ directory that has one state per phone in the
# topo file. [note, it really has two states.. the first one is only repeated
# once, the second one has zero or more repeats.]
rm -rf $lang
cp -r data/lang $lang
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
# Use our special topology... note that later on may have to tune this
# topology.
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
fi
if [ $stage -le 9 ]; then
# Build a tree using our new topology. This is the critically different
# step compared with other recipes.
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
--context-opts "--context-width=2 --central-position=1" \
--cmd "$train_cmd" 5000 data/$train_set $lang $ali_dir $treedir
fi
if [ $stage -le 10 ]; then
echo "$0: creating neural net configs using the xconfig parser";
num_targets=$(tree-info $treedir/tree | grep num-pdfs | awk '{print $2}')
learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
opts="l2-regularize=0.002"
linear_opts="orthonormal-constraint=1.0"
output_opts="l2-regularize=0.0005 bottleneck-dim=256"
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=40 name=input
# please note that it is important to have input layer with the name=input
# as the layer immediately preceding the fixed-affine-layer to enable
# the use of short notation for the descriptor
fixed-affine-layer name=lda input=Append(-2,-1,0,1,2) affine-transform-file=$dir/configs/lda.mat
# the first splicing is moved before the lda layer, so no splicing here
relu-batchnorm-layer name=tdnn1 $opts dim=1280
linear-component name=tdnn2l dim=256 $linear_opts input=Append(-1,0)
relu-batchnorm-layer name=tdnn2 $opts input=Append(0,1) dim=1280
linear-component name=tdnn3l dim=256 $linear_opts
relu-batchnorm-layer name=tdnn3 $opts dim=1280
linear-component name=tdnn4l dim=256 $linear_opts input=Append(-1,0)
relu-batchnorm-layer name=tdnn4 $opts input=Append(0,1) dim=1280
linear-component name=tdnn5l dim=256 $linear_opts
relu-batchnorm-layer name=tdnn5 $opts dim=1280 input=Append(tdnn5l, tdnn3l)
linear-component name=tdnn6l dim=256 $linear_opts input=Append(-3,0)
relu-batchnorm-layer name=tdnn6 $opts input=Append(0,3) dim=1280
linear-component name=tdnn7l dim=256 $linear_opts input=Append(-3,0)
relu-batchnorm-layer name=tdnn7 $opts input=Append(0,3,tdnn6l,tdnn4l,tdnn2l) dim=1280
linear-component name=tdnn8l dim=256 $linear_opts input=Append(-3,0)
relu-batchnorm-layer name=tdnn8 $opts input=Append(0,3) dim=1280
linear-component name=tdnn9l dim=256 $linear_opts input=Append(-3,0)
relu-batchnorm-layer name=tdnn9 $opts input=Append(0,3,tdnn8l,tdnn6l,tdnn4l) dim=1280
linear-component name=tdnn10l dim=256 $linear_opts input=Append(-3,0)
relu-batchnorm-layer name=tdnn10 $opts input=Append(0,3) dim=1280
linear-component name=tdnn11l dim=256 $linear_opts input=Append(-3,0)
relu-batchnorm-layer name=tdnn11 $opts input=Append(0,3,tdnn10l,tdnn8l,tdnn6l) dim=1280
linear-component name=prefinal-l dim=256 $linear_opts
relu-batchnorm-layer name=prefinal-chain input=prefinal-l $opts dim=1280
output-layer name=output include-log-softmax=false dim=$num_targets $output_opts
relu-batchnorm-layer name=prefinal-xent input=prefinal-l $opts dim=1280
output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi
if [ $stage -le 11 ]; then
#if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
# utils/create_split_dir.pl \
# /export/b0{5,6,7,8}/$USER/kaldi-data/egs/aishell-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage
#fi
steps/nnet3/chain/train.py --stage $train_stage \
--cmd "$decode_cmd" \
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
--chain.xent-regularize $xent_regularize \
--chain.leaky-hmm-coefficient 0.1 \
--chain.l2-regularize 0.00005 \
--chain.apply-deriv-weights false \
--chain.lm-opts="--num-extra-lm-states=2000" \
--egs.dir "$common_egs_dir" \
--egs.stage $get_egs_stage \
--egs.opts "--frames-overlap-per-eg 0" \
--egs.chunk-width $frames_per_eg \
--trainer.num-chunk-per-minibatch $minibatch_size \
--trainer.frames-per-iter 1500000 \
--trainer.num-epochs $num_epochs \
--trainer.optimization.num-jobs-initial $num_jobs_initial \
--trainer.optimization.num-jobs-final $num_jobs_final \
--trainer.optimization.initial-effective-lrate $initial_effective_lrate \
--trainer.optimization.final-effective-lrate $final_effective_lrate \
--trainer.max-param-change $max_param_change \
--cleanup.remove-egs $remove_egs \
--feat-dir data/${train_set}_hires \
--tree-dir $treedir \
--lat-dir exp/tri4_sp_lats \
--dir $dir || exit 1;
fi
if [ $stage -le 12 ]; then
# Note: it might appear that this $lang directory is mismatched, and it is as
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
# the lang directory.
utils/mkgraph.sh --self-loop-scale 1.0 data/lang_test $dir $dir/graph
fi
graph_dir=$dir/graph
if [ $stage -le 13 ]; then
for test_set in $test_sets; do
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--nj 10 --cmd "$decode_cmd" \
$graph_dir data/${test_set}_hires $dir/decode_${test_set} || exit 1;
done
fi
echo "local/chain/run_tdnn.sh succeeded"
exit 0;