Blame view
egs/aspire/s5/local/multi_condition/run_nnet2_ms.sh
5.44 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
#!/bin/bash # This is the "multi-splice" version of the online-nnet2 training script. # It's currently the best recipe for aspire. # You'll notice that we splice over successively larger windows as we go deeper # into the network. The temporal context used for training on reverberant data # is larger than that used for other LVCSR recipes. . ./cmd.sh stage=1 train_stage=-10 use_gpu=true dir=exp/nnet2_multicondition/nnet_ms_a set -e . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if $use_gpu; then if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. Otherwise, call this script with --use-gpu false EOF fi parallel_opts="--gpu 1" num_threads=1 minibatch_size=512 if [[ $(hostname -f) == *.clsp.jhu.edu ]]; then parallel_opts="$parallel_opts --config conf/queue_no_k20.conf --allow-k20 false" # that config is like the default config in the text of queue.pl, but adding the following lines. # default allow_k20=true # option allow_k20=true # option allow_k20=false -l 'hostname=!g01&!g02&!b06' # It's a workaround for an NVidia CUDA library bug for our currently installed version # of the CUDA toolkit, that only shows up on k20's fi # the _a is in case I want to change the parameters. else # Use 4 nnet jobs just like run_4d_gpu.sh so the results should be # almost the same, but this may be a little bit slow. num_threads=16 minibatch_size=128 parallel_opts="--num-threads $num_threads" fi # do the common parts of the script. local/multi_condition/run_nnet2_common.sh --stage $stage if [ $stage -le 7 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{3,4,5,6}/$USER/kaldi-data/egs/fisher_english_reverb-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage fi # The size of the system is kept rather smaller than the run_7a_960.sh system: # this is because we want it to be small enough that we could plausibly run it # in real-time. steps/nnet2/train_multisplice_accel2.sh --stage $train_stage \ --num-epochs 3 --num-jobs-initial 4 --num-jobs-final 22 \ --num-hidden-layers 6 --splice-indexes "layer0/-2:-1:0:1:2 layer1/-1:2 layer3/-3:3 layer4/-10:-7:2:5" \ --feat-type raw \ --online-ivector-dir exp/nnet2_multicondition/ivectors_train \ --cmvn-opts "--norm-means=false --norm-vars=false" \ --num-threads "$num_threads" \ --minibatch-size "$minibatch_size" \ --parallel-opts "$parallel_opts" \ --io-opts "--max-jobs-run 12" \ --initial-effective-lrate 0.0015 --final-effective-lrate 0.00015 \ --cmd "$decode_cmd" \ --pnorm-input-dim 4000 \ --pnorm-output-dim 400 \ --mix-up 12000 \ --frames-per-eg 16 \ --remove-egs false \ data/train_rvb_hires data/lang exp/tri5a_rvb_ali $dir || exit 1; fi if [ $stage -le 8 ]; then # dump iVectors for the testing data. for data_dir in dev_rvb test_rvb dev_aspire dev test; do steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 20 \ data/${data_dir}_hires exp/nnet2_multicondition/extractor exp/nnet2_multicondition/ivectors_${data_dir} || exit 1; done fi if [ $stage -le 9 ]; then # this does offline decoding that should give about the same results as the # real online decoding (the one with --per-utt true) for data_dir in dev_rvb test_rvb dev_aspire dev test; do ( steps/nnet2/decode.sh --nj 30 --cmd "$decode_cmd" --config conf/decode.config \ --online-ivector-dir exp/nnet2_multicondition/ivectors_${data_dir} \ exp/tri5a/graph data/${data_dir}_hires $dir/decode_${data_dir} || exit 1; ) & done wait; fi if [ $stage -le 10 ]; then # If this setup used PLP features, we'd have to give the option --feature-type plp # to the script below. steps/online/nnet2/prepare_online_decoding.sh --mfcc-config conf/mfcc_hires.conf \ data/lang exp/nnet2_multicondition/extractor "$dir" ${dir}_online || exit 1; fi if [ $stage -le 11 ]; then # do the actual online decoding with iVectors, carrying info forward from # previous utterances of the same speaker. for data_dir in dev_rvb test_rvb dev_aspire dev test; do ( steps/online/nnet2/decode.sh --nj 30 --cmd "$decode_cmd" \ --config conf/decode.config \ exp/tri5a/graph data/${data_dir}_hires ${dir}_online/decode_${data_dir} || exit 1; ) & done wait; fi if [ $stage -le 12 ]; then # this version of the decoding treats each utterance separately # without carrying forward speaker information. for data_dir in dev_rvb test_rvb dev_aspire dev test; do ( steps/online/nnet2/decode.sh --nj 30 --cmd "$decode_cmd" \ --config conf/decode.config \ --per-utt true \ exp/tri5a/graph data/${data_dir}_hires ${dir}_online/decode_${data_dir} || exit 1; ) & done wait; fi if [ $stage -le 13 ]; then # this version of the decoding treats each utterance separately # without carrying forward speaker information, but looks to the end # of the utterance while computing the iVector (--online false) for data_dir in dev_rvb test_rvb dev_aspire dev test; do ( steps/online/nnet2/decode.sh --nj 30 --cmd "$decode_cmd" \ --config conf/decode.config \ --per-utt true --online false \ exp/tri5a/graph data/${data_dir}_hires ${dir}_online/decode_${data_dir} || exit 1; ) & done fi exit 0; |