run_nnet2_ms.sh
5.44 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/bin/bash
# This is the "multi-splice" version of the online-nnet2 training script.
# It's currently the best recipe for aspire.
# You'll notice that we splice over successively larger windows as we go deeper
# into the network. The temporal context used for training on reverberant data
# is larger than that used for other LVCSR recipes.
. ./cmd.sh
stage=1
train_stage=-10
use_gpu=true
dir=exp/nnet2_multicondition/nnet_ms_a
set -e
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if $use_gpu; then
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed. Otherwise, call this script with --use-gpu false
EOF
fi
parallel_opts="--gpu 1"
num_threads=1
minibatch_size=512
if [[ $(hostname -f) == *.clsp.jhu.edu ]]; then
parallel_opts="$parallel_opts --config conf/queue_no_k20.conf --allow-k20 false"
# that config is like the default config in the text of queue.pl, but adding the following lines.
# default allow_k20=true
# option allow_k20=true
# option allow_k20=false -l 'hostname=!g01&!g02&!b06'
# It's a workaround for an NVidia CUDA library bug for our currently installed version
# of the CUDA toolkit, that only shows up on k20's
fi
# the _a is in case I want to change the parameters.
else
# Use 4 nnet jobs just like run_4d_gpu.sh so the results should be
# almost the same, but this may be a little bit slow.
num_threads=16
minibatch_size=128
parallel_opts="--num-threads $num_threads"
fi
# do the common parts of the script.
local/multi_condition/run_nnet2_common.sh --stage $stage
if [ $stage -le 7 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b0{3,4,5,6}/$USER/kaldi-data/egs/fisher_english_reverb-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
fi
# The size of the system is kept rather smaller than the run_7a_960.sh system:
# this is because we want it to be small enough that we could plausibly run it
# in real-time.
steps/nnet2/train_multisplice_accel2.sh --stage $train_stage \
--num-epochs 3 --num-jobs-initial 4 --num-jobs-final 22 \
--num-hidden-layers 6 --splice-indexes "layer0/-2:-1:0:1:2 layer1/-1:2 layer3/-3:3 layer4/-10:-7:2:5" \
--feat-type raw \
--online-ivector-dir exp/nnet2_multicondition/ivectors_train \
--cmvn-opts "--norm-means=false --norm-vars=false" \
--num-threads "$num_threads" \
--minibatch-size "$minibatch_size" \
--parallel-opts "$parallel_opts" \
--io-opts "--max-jobs-run 12" \
--initial-effective-lrate 0.0015 --final-effective-lrate 0.00015 \
--cmd "$decode_cmd" \
--pnorm-input-dim 4000 \
--pnorm-output-dim 400 \
--mix-up 12000 \
--frames-per-eg 16 \
--remove-egs false \
data/train_rvb_hires data/lang exp/tri5a_rvb_ali $dir || exit 1;
fi
if [ $stage -le 8 ]; then
# dump iVectors for the testing data.
for data_dir in dev_rvb test_rvb dev_aspire dev test; do
steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 20 \
data/${data_dir}_hires exp/nnet2_multicondition/extractor exp/nnet2_multicondition/ivectors_${data_dir} || exit 1;
done
fi
if [ $stage -le 9 ]; then
# this does offline decoding that should give about the same results as the
# real online decoding (the one with --per-utt true)
for data_dir in dev_rvb test_rvb dev_aspire dev test; do
( steps/nnet2/decode.sh --nj 30 --cmd "$decode_cmd" --config conf/decode.config \
--online-ivector-dir exp/nnet2_multicondition/ivectors_${data_dir} \
exp/tri5a/graph data/${data_dir}_hires $dir/decode_${data_dir} || exit 1;
) &
done
wait;
fi
if [ $stage -le 10 ]; then
# If this setup used PLP features, we'd have to give the option --feature-type plp
# to the script below.
steps/online/nnet2/prepare_online_decoding.sh --mfcc-config conf/mfcc_hires.conf \
data/lang exp/nnet2_multicondition/extractor "$dir" ${dir}_online || exit 1;
fi
if [ $stage -le 11 ]; then
# do the actual online decoding with iVectors, carrying info forward from
# previous utterances of the same speaker.
for data_dir in dev_rvb test_rvb dev_aspire dev test; do
( steps/online/nnet2/decode.sh --nj 30 --cmd "$decode_cmd" \
--config conf/decode.config \
exp/tri5a/graph data/${data_dir}_hires ${dir}_online/decode_${data_dir} || exit 1;
) &
done
wait;
fi
if [ $stage -le 12 ]; then
# this version of the decoding treats each utterance separately
# without carrying forward speaker information.
for data_dir in dev_rvb test_rvb dev_aspire dev test; do
( steps/online/nnet2/decode.sh --nj 30 --cmd "$decode_cmd" \
--config conf/decode.config \
--per-utt true \
exp/tri5a/graph data/${data_dir}_hires ${dir}_online/decode_${data_dir} || exit 1;
) &
done
wait;
fi
if [ $stage -le 13 ]; then
# this version of the decoding treats each utterance separately
# without carrying forward speaker information, but looks to the end
# of the utterance while computing the iVector (--online false)
for data_dir in dev_rvb test_rvb dev_aspire dev test; do
( steps/online/nnet2/decode.sh --nj 30 --cmd "$decode_cmd" \
--config conf/decode.config \
--per-utt true --online false \
exp/tri5a/graph data/${data_dir}_hires ${dir}_online/decode_${data_dir} || exit 1;
) &
done
fi
exit 0;