Blame view
egs/callhome_diarization/v2/run.sh
18.8 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
#!/bin/bash # Copyright 2017-2018 David Snyder # 2017-2018 Matthew Maciejewski # # Apache 2.0. # # This recipe demonstrates the use of x-vectors for speaker diarization. # The scripts are based on the recipe in ../v1/run.sh, but clusters x-vectors # instead of i-vectors. It is similar to the x-vector-based diarization system # described in "Diarization is Hard: Some Experiences and Lessons Learned for # the JHU Team in the Inaugural DIHARD Challenge" by Sell et al. The main # difference is that we haven't implemented the VB resegmentation yet. . ./cmd.sh . ./path.sh set -e mfccdir=`pwd`/mfcc vaddir=`pwd`/mfcc data_root=/export/corpora5/LDC stage=0 nnet_dir=exp/xvector_nnet_1a/ num_components=1024 # the number of UBM components (used for VB resegmentation) ivector_dim=400 # the dimension of i-vector (used for VB resegmentation) # Prepare datasets if [ $stage -le 0 ]; then # Prepare a collection of NIST SRE data. This will be used to train, # x-vector DNN and PLDA model. local/make_sre.sh $data_root data # Prepare SWB for x-vector DNN training. local/make_swbd2_phase1.pl /export/corpora/LDC/LDC98S75 \ data/swbd2_phase1_train local/make_swbd2_phase2.pl $data_root/LDC99S79 \ data/swbd2_phase2_train local/make_swbd2_phase3.pl $data_root/LDC2002S06 \ data/swbd2_phase3_train local/make_swbd_cellular1.pl $data_root/LDC2001S13 \ data/swbd_cellular1_train local/make_swbd_cellular2.pl $data_root/LDC2004S07 \ data/swbd_cellular2_train # Prepare the Callhome portion of NIST SRE 2000. local/make_callhome.sh /export/corpora/NIST/LDC2001S97/ data/ utils/combine_data.sh data/train \ data/swbd_cellular1_train data/swbd_cellular2_train \ data/swbd2_phase1_train \ data/swbd2_phase2_train data/swbd2_phase3_train data/sre fi # Prepare features if [ $stage -le 1 ]; then # The script local/make_callhome.sh splits callhome into two parts, called # callhome1 and callhome2. Each partition is treated like a held-out # dataset, and used to estimate various quantities needed to perform # diarization on the other part (and vice versa). for name in train callhome1 callhome2 callhome; do steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 40 \ --cmd "$train_cmd" --write-utt2num-frames true \ data/$name exp/make_mfcc $mfccdir utils/fix_data_dir.sh data/$name done for name in train callhome1 callhome2; do sid/compute_vad_decision.sh --nj 40 --cmd "$train_cmd" \ data/$name exp/make_vad $vaddir utils/fix_data_dir.sh data/$name done # The sre dataset is a subset of train cp data/train/{feats,vad}.scp data/sre/ utils/fix_data_dir.sh data/sre # This writes features to disk after applying the sliding window CMN. # Although this is somewhat wasteful in terms of disk space, for diarization # it ends up being preferable to performing the CMN in memory. If the CMN # were performed in memory (e.g., we used --apply-cmn true in # diarization/nnet3/xvector/extract_xvectors.sh) it would need to be # performed after the subsegmentation, which leads to poorer results. for name in sre callhome1 callhome2; do local/nnet3/xvector/prepare_feats.sh --nj 40 --cmd "$train_cmd" \ data/$name data/${name}_cmn exp/${name}_cmn cp data/$name/vad.scp data/${name}_cmn/ if [ -f data/$name/segments ]; then cp data/$name/segments data/${name}_cmn/ fi utils/fix_data_dir.sh data/${name}_cmn done echo "0.01" > data/sre_cmn/frame_shift # Create segments to extract x-vectors from for PLDA training data. # The segments are created using an energy-based speech activity # detection (SAD) system, but this is not necessary. You can replace # this with segments computed from your favorite SAD. diarization/vad_to_segments.sh --nj 40 --cmd "$train_cmd" \ data/sre_cmn data/sre_cmn_segmented fi # In this section, we augment the training data with reverberation, # noise, music, and babble, and combined it with the clean data. # The combined list will be used to train the xvector DNN. The SRE # subset will be used to train the PLDA model. if [ $stage -le 2 ]; then frame_shift=0.01 awk -v frame_shift=$frame_shift '{print $1, $2*frame_shift;}' data/train/utt2num_frames > data/train/reco2dur if [ ! -d "RIRS_NOISES" ]; then # Download the package that includes the real RIRs, simulated RIRs, isotropic noises and point-source noises wget --no-check-certificate http://www.openslr.org/resources/28/rirs_noises.zip unzip rirs_noises.zip fi # Make a version with reverberated speech rvb_opts=() rvb_opts+=(--rir-set-parameters "0.5, RIRS_NOISES/simulated_rirs/smallroom/rir_list") rvb_opts+=(--rir-set-parameters "0.5, RIRS_NOISES/simulated_rirs/mediumroom/rir_list") # Make a reverberated version of the SWBD+SRE list. Note that we don't add any # additive noise here. steps/data/reverberate_data_dir.py \ "${rvb_opts[@]}" \ --speech-rvb-probability 1 \ --pointsource-noise-addition-probability 0 \ --isotropic-noise-addition-probability 0 \ --num-replications 1 \ --source-sampling-rate 8000 \ data/train data/train_reverb cp data/train/vad.scp data/train_reverb/ utils/copy_data_dir.sh --utt-suffix "-reverb" data/train_reverb data/train_reverb.new rm -rf data/train_reverb mv data/train_reverb.new data/train_reverb # Prepare the MUSAN corpus, which consists of music, speech, and noise # suitable for augmentation. steps/data/make_musan.sh --sampling-rate 8000 /export/corpora/JHU/musan data # Get the duration of the MUSAN recordings. This will be used by the # script augment_data_dir.py. for name in speech noise music; do utils/data/get_utt2dur.sh data/musan_${name} mv data/musan_${name}/utt2dur data/musan_${name}/reco2dur done # Augment with musan_noise steps/data/augment_data_dir.py --utt-suffix "noise" --fg-interval 1 --fg-snrs "15:10:5:0" --fg-noise-dir "data/musan_noise" data/train data/train_noise # Augment with musan_music steps/data/augment_data_dir.py --utt-suffix "music" --bg-snrs "15:10:8:5" --num-bg-noises "1" --bg-noise-dir "data/musan_music" data/train data/train_music # Augment with musan_speech steps/data/augment_data_dir.py --utt-suffix "babble" --bg-snrs "20:17:15:13" --num-bg-noises "3:4:5:6:7" --bg-noise-dir "data/musan_speech" data/train data/train_babble # Combine reverb, noise, music, and babble into one directory. utils/combine_data.sh data/train_aug data/train_reverb data/train_noise data/train_music data/train_babble # Take a random subset of the augmentations (128k is somewhat larger than twice # the size of the SWBD+SRE list) utils/subset_data_dir.sh data/train_aug 128000 data/train_aug_128k utils/fix_data_dir.sh data/train_aug_128k # Make filterbanks for the augmented data. Note that we do not compute a new # vad.scp file here. Instead, we use the vad.scp from the clean version of # the list. steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 40 --cmd "$train_cmd" \ data/train_aug_128k exp/make_mfcc $mfccdir # Combine the clean and augmented SWBD+SRE list. This is now roughly # double the size of the original clean list. utils/combine_data.sh data/train_combined data/train_aug_128k data/train fi # Now we prepare the features to generate examples for xvector training. if [ $stage -le 3 ]; then # This script applies CMN and removes nonspeech frames. Note that this is somewhat # wasteful, as it roughly doubles the amount of training data on disk. After # creating training examples, this can be removed. local/nnet3/xvector/prepare_feats_for_egs.sh --nj 40 --cmd "$train_cmd" \ data/train_combined data/train_combined_cmn_no_sil exp/train_combined_cmn_no_sil utils/fix_data_dir.sh data/train_combined_cmn_no_sil # Now, we need to remove features that are too short after removing silence # frames. We want atleast 5s (500 frames) per utterance. min_len=500 mv data/train_combined_cmn_no_sil/utt2num_frames data/train_combined_cmn_no_sil/utt2num_frames.bak awk -v min_len=${min_len} '$2 > min_len {print $1, $2}' data/train_combined_cmn_no_sil/utt2num_frames.bak > data/train_combined_cmn_no_sil/utt2num_frames utils/filter_scp.pl data/train_combined_cmn_no_sil/utt2num_frames data/train_combined_cmn_no_sil/utt2spk > data/train_combined_cmn_no_sil/utt2spk.new mv data/train_combined_cmn_no_sil/utt2spk.new data/train_combined_cmn_no_sil/utt2spk utils/fix_data_dir.sh data/train_combined_cmn_no_sil # We also want several utterances per speaker. Now we'll throw out speakers # with fewer than 8 utterances. min_num_utts=8 awk '{print $1, NF-1}' data/train_combined_cmn_no_sil/spk2utt > data/train_combined_cmn_no_sil/spk2num awk -v min_num_utts=${min_num_utts} '$2 >= min_num_utts {print $1, $2}' \ data/train_combined_cmn_no_sil/spk2num | utils/filter_scp.pl - data/train_combined_cmn_no_sil/spk2utt \ > data/train_combined_cmn_no_sil/spk2utt.new mv data/train_combined_cmn_no_sil/spk2utt.new data/train_combined_cmn_no_sil/spk2utt utils/spk2utt_to_utt2spk.pl data/train_combined_cmn_no_sil/spk2utt > data/train_combined_cmn_no_sil/utt2spk utils/filter_scp.pl data/train_combined_cmn_no_sil/utt2spk data/train_combined_cmn_no_sil/utt2num_frames > data/train_combined_cmn_no_sil/utt2num_frames.new mv data/train_combined_cmn_no_sil/utt2num_frames.new data/train_combined_cmn_no_sil/utt2num_frames # Now we're ready to create training examples. utils/fix_data_dir.sh data/train_combined_cmn_no_sil fi local/nnet3/xvector/tuning/run_xvector_1a.sh --stage $stage --train-stage -1 \ --data data/train_combined_cmn_no_sil --nnet-dir $nnet_dir \ --egs-dir $nnet_dir/egs # Extract x-vectors if [ $stage -le 7 ]; then # Extract x-vectors for the two partitions of callhome. diarization/nnet3/xvector/extract_xvectors.sh --cmd "$train_cmd --mem 5G" \ --nj 40 --window 1.5 --period 0.75 --apply-cmn false \ --min-segment 0.5 $nnet_dir \ data/callhome1_cmn $nnet_dir/xvectors_callhome1 diarization/nnet3/xvector/extract_xvectors.sh --cmd "$train_cmd --mem 5G" \ --nj 40 --window 1.5 --period 0.75 --apply-cmn false \ --min-segment 0.5 $nnet_dir \ data/callhome2_cmn $nnet_dir/xvectors_callhome2 # Reduce the amount of training data for the PLDA, utils/subset_data_dir.sh data/sre_cmn_segmented 128000 data/sre_cmn_segmented_128k # Extract x-vectors for the SRE, which is our PLDA training # data. A long period is used here so that we don't compute too # many x-vectors for each recording. diarization/nnet3/xvector/extract_xvectors.sh --cmd "$train_cmd --mem 10G" \ --nj 40 --window 3.0 --period 10.0 --min-segment 1.5 --apply-cmn false \ --hard-min true $nnet_dir \ data/sre_cmn_segmented_128k $nnet_dir/xvectors_sre_segmented_128k fi # Train PLDA models if [ $stage -le 8 ]; then # Train a PLDA model on SRE, using callhome1 to whiten. # We will later use this to score x-vectors in callhome2. "$train_cmd" $nnet_dir/xvectors_callhome1/log/plda.log \ ivector-compute-plda ark:$nnet_dir/xvectors_sre_segmented_128k/spk2utt \ "ark:ivector-subtract-global-mean \ scp:$nnet_dir/xvectors_sre_segmented_128k/xvector.scp ark:- \ | transform-vec $nnet_dir/xvectors_callhome1/transform.mat ark:- ark:- \ | ivector-normalize-length ark:- ark:- |" \ $nnet_dir/xvectors_callhome1/plda || exit 1; # Train a PLDA model on SRE, using callhome2 to whiten. # We will later use this to score x-vectors in callhome1. "$train_cmd" $nnet_dir/xvectors_callhome2/log/plda.log \ ivector-compute-plda ark:$nnet_dir/xvectors_sre_segmented_128k/spk2utt \ "ark:ivector-subtract-global-mean \ scp:$nnet_dir/xvectors_sre_segmented_128k/xvector.scp ark:- \ | transform-vec $nnet_dir/xvectors_callhome2/transform.mat ark:- ark:- \ | ivector-normalize-length ark:- ark:- |" \ $nnet_dir/xvectors_callhome2/plda || exit 1; fi # Perform PLDA scoring if [ $stage -le 9 ]; then # Perform PLDA scoring on all pairs of segments for each recording. # The first directory contains the PLDA model that used callhome2 # to perform whitening (recall that we're treating callhome2 as a # held-out dataset). The second directory contains the x-vectors # for callhome1. diarization/nnet3/xvector/score_plda.sh --cmd "$train_cmd --mem 4G" \ --nj 20 $nnet_dir/xvectors_callhome2 $nnet_dir/xvectors_callhome1 \ $nnet_dir/xvectors_callhome1/plda_scores # Do the same thing for callhome2. diarization/nnet3/xvector/score_plda.sh --cmd "$train_cmd --mem 4G" \ --nj 20 $nnet_dir/xvectors_callhome1 $nnet_dir/xvectors_callhome2 \ $nnet_dir/xvectors_callhome2/plda_scores fi # Cluster the PLDA scores using a stopping threshold. if [ $stage -le 10 ]; then # First, we find the threshold that minimizes the DER on each partition of # callhome. mkdir -p $nnet_dir/tuning for dataset in callhome1 callhome2; do echo "Tuning clustering threshold for $dataset" best_der=100 best_threshold=0 utils/filter_scp.pl -f 2 data/$dataset/wav.scp \ data/callhome/fullref.rttm > data/$dataset/ref.rttm # The threshold is in terms of the log likelihood ratio provided by the # PLDA scores. In a perfectly calibrated system, the threshold is 0. # In the following loop, we evaluate the clustering on a heldout dataset # (callhome1 is heldout for callhome2 and vice-versa) using some reasonable # thresholds for a well-calibrated system. for threshold in -0.3 -0.2 -0.1 -0.05 0 0.05 0.1 0.2 0.3; do diarization/cluster.sh --cmd "$train_cmd --mem 4G" --nj 20 \ --threshold $threshold $nnet_dir/xvectors_$dataset/plda_scores \ $nnet_dir/xvectors_$dataset/plda_scores_t$threshold md-eval.pl -1 -c 0.25 -r data/$dataset/ref.rttm \ -s $nnet_dir/xvectors_$dataset/plda_scores_t$threshold/rttm \ 2> $nnet_dir/tuning/${dataset}_t${threshold}.log \ > $nnet_dir/tuning/${dataset}_t${threshold} der=$(grep -oP 'DIARIZATION\ ERROR\ =\ \K[0-9]+([.][0-9]+)?' \ $nnet_dir/tuning/${dataset}_t${threshold}) if [ $(perl -e "print ($der < $best_der ? 1 : 0);") -eq 1 ]; then best_der=$der best_threshold=$threshold fi done echo "$best_threshold" > $nnet_dir/tuning/${dataset}_best done # Cluster callhome1 using the best threshold found for callhome2. This way, # callhome2 is treated as a held-out dataset to discover a reasonable # stopping threshold for callhome1. diarization/cluster.sh --cmd "$train_cmd --mem 4G" --nj 20 \ --threshold $(cat $nnet_dir/tuning/callhome2_best) \ $nnet_dir/xvectors_callhome1/plda_scores $nnet_dir/xvectors_callhome1/plda_scores # Do the same thing for callhome2, treating callhome1 as a held-out dataset # to discover a stopping threshold. diarization/cluster.sh --cmd "$train_cmd --mem 4G" --nj 20 \ --threshold $(cat $nnet_dir/tuning/callhome1_best) \ $nnet_dir/xvectors_callhome2/plda_scores $nnet_dir/xvectors_callhome2/plda_scores mkdir -p $nnet_dir/results # Now combine the results for callhome1 and callhome2 and evaluate it # together. cat $nnet_dir/xvectors_callhome1/plda_scores/rttm \ $nnet_dir/xvectors_callhome2/plda_scores/rttm | md-eval.pl -1 -c 0.25 -r \ data/callhome/fullref.rttm -s - 2> $nnet_dir/results/threshold.log \ > $nnet_dir/results/DER_threshold.txt der=$(grep -oP 'DIARIZATION\ ERROR\ =\ \K[0-9]+([.][0-9]+)?' \ $nnet_dir/results/DER_threshold.txt) # Using supervised calibration, DER: 8.39% # Compare to 10.36% in ../v1/run.sh echo "Using supervised calibration, DER: $der%" fi # Cluster the PLDA scores using the oracle number of speakers if [ $stage -le 11 ]; then # In this section, we show how to do the clustering if the number of speakers # (and therefore, the number of clusters) per recording is known in advance. diarization/cluster.sh --cmd "$train_cmd --mem 4G" \ --reco2num-spk data/callhome1/reco2num_spk \ $nnet_dir/xvectors_callhome1/plda_scores $nnet_dir/xvectors_callhome1/plda_scores_num_spk diarization/cluster.sh --cmd "$train_cmd --mem 4G" \ --reco2num-spk data/callhome2/reco2num_spk \ $nnet_dir/xvectors_callhome2/plda_scores $nnet_dir/xvectors_callhome2/plda_scores_num_spk mkdir -p $nnet_dir/results # Now combine the results for callhome1 and callhome2 and evaluate it together. cat $nnet_dir/xvectors_callhome1/plda_scores_num_spk/rttm \ $nnet_dir/xvectors_callhome2/plda_scores_num_spk/rttm \ | md-eval.pl -1 -c 0.25 -r data/callhome/fullref.rttm -s - 2> $nnet_dir/results/num_spk.log \ > $nnet_dir/results/DER_num_spk.txt der=$(grep -oP 'DIARIZATION\ ERROR\ =\ \K[0-9]+([.][0-9]+)?' \ $nnet_dir/results/DER_num_spk.txt) # Using the oracle number of speakers, DER: 7.12% # Compare to 8.69% in ../v1/run.sh echo "Using the oracle number of speakers, DER: $der%" fi # Variational Bayes resegmentation using the code from Brno University of Technology # Please see https://speech.fit.vutbr.cz/software/vb-diarization-eigenvoice-and-hmm-priors # for details if [ $stage -le 12 ]; then utils/subset_data_dir.sh data/train 32000 data/train_32k # Train the diagonal UBM. sid/train_diag_ubm.sh --cmd "$train_cmd --mem 20G" \ --nj 40 --num-threads 8 --subsample 1 --delta-order 0 --apply-cmn false \ data/train_32k $num_components exp/diag_ubm_$num_components # Train the i-vector extractor. The UBM is assumed to be diagonal. diarization/train_ivector_extractor_diag.sh \ --cmd "$train_cmd --mem 35G" \ --ivector-dim $ivector_dim --num-iters 5 --apply-cmn false \ --num-threads 1 --num-processes 1 --nj 40 \ exp/diag_ubm_$num_components/final.dubm data/train \ exp/extractor_diag_c${num_components}_i${ivector_dim} fi if [ $stage -le 13 ]; then output_rttm_dir=exp/VB/rttm mkdir -p $output_rttm_dir || exit 1; cat $nnet_dir/xvectors_callhome1/plda_scores/rttm \ $nnet_dir/xvectors_callhome2/plda_scores/rttm > $output_rttm_dir/x_vector_rttm init_rttm_file=$output_rttm_dir/x_vector_rttm # VB resegmentation. In this script, I use the x-vector result to # initialize the VB system. You can also use i-vector result or random # initize the VB system. The following script uses kaldi_io. # You could use `sh ../../../tools/extras/install_kaldi_io.sh` to install it diarization/VB_resegmentation.sh --nj 20 --cmd "$train_cmd --mem 10G" \ --initialize 1 data/callhome $init_rttm_file exp/VB \ exp/diag_ubm_$num_components/final.dubm exp/extractor_diag_c${num_components}_i${ivector_dim}/final.ie || exit 1; # Compute the DER after VB resegmentation mkdir -p exp/VB/results || exit 1; md-eval.pl -1 -c 0.25 -r data/callhome/fullref.rttm -s $output_rttm_dir/VB_rttm 2> exp/VB/log/VB_DER.log \ > exp/VB/results/VB_DER.txt der=$(grep -oP 'DIARIZATION\ ERROR\ =\ \K[0-9]+([.][0-9]+)?' \ exp/VB/results/VB_DER.txt) # After VB resegmentation, DER: 6.48% echo "After VB resegmentation, DER: $der%" fi |