Blame view
egs/csj/s5/local/score_csj.sh
2.81 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
#!/bin/bash # Copyright Johns Hopkins University (Author: Daniel Povey) 2012. Apache 2.0. # Modified by Takafumi Moriya for Japanese speech recognition using CSJ. # This script is for scoring with morpheme. # begin configuration section. cmd=run.pl min_lmwt=5 max_lmwt=17 #end configuration section. [ -f ./path.sh ] && . ./path.sh . parse_options.sh || exit 1; if [ $# -ne 3 ]; then echo "Usage: local/score_csj.sh [--cmd (run.pl|queue.pl...)] <data-dir> <lang-dir|graph-dir> <decode-dir>" echo " Options:" echo " --cmd (run.pl|queue.pl...) # specify how to run the sub-processes." echo " --min_lmwt <int> # minumum LM-weight for lattice rescoring " echo " --max_lmwt <int> # maximum LM-weight for lattice rescoring " exit 1; fi data=$1 lang=$2 dir=$3 model=$dir/../final.mdl # assume model one level up from decoding dir. hubscr=$KALDI_ROOT/tools/sctk/bin/hubscr.pl #hubscr=$KALDI_ROOT/tools/sctk-2.4.0/bin/hubscr.pl [ ! -f $hubscr ] && echo "Cannot find scoring program at $hubscr" && exit 1; hubdir=`dirname $hubscr` for f in $data/text $lang/words.txt $dir/lat.1.gz; do [ ! -f $f ] && echo "$0: expecting file $f to exist" && exit 1; done name=`basename $data`; # e.g. eval1 mkdir -p $dir/scoring/log mkdir -p $dir/label mkdir -p $dir/label/log mkdir -p $dir/label/wer function filter_text_mor { perl -e 'foreach $w (@ARGV) { $bad{$w} = 1; } while(<STDIN>) { @A = split(" ", $_); $id = shift @A; print "$id "; foreach $a (@A) { if (!defined $bad{$a}) { print "$a "; }} print " "; }' \ '<UNK>' } function filter_text { perl -e 'foreach $w (@ARGV) { $bad{$w} = 1; } while(<STDIN>) { @A = split(" ", $_); $id = shift @A; print "$id "; foreach $a (@A) { if (!defined $bad{$a}){ @W=split(/\+/,$a); $word=$W[0]; { print "$word "; }}} print " "; }' \ '<UNK>' } $cmd LMWT=$min_lmwt:$max_lmwt $dir/scoring/log/best_path.LMWT.log \ lattice-best-path --lm-scale=LMWT --word-symbol-table=$lang/words.txt \ "ark:gunzip -c $dir/lat.*.gz|" ark,t:$dir/scoring/LMWT.tra || exit 1; for lmwt in `seq $min_lmwt $max_lmwt`; do utils/int2sym.pl -f 2- $lang/words.txt <$dir/scoring/$lmwt.tra | \ filter_text > $dir/scoring/$lmwt.txt || exit 1; utils/int2sym.pl -f 2- $lang/words.txt <$dir/scoring/$lmwt.tra | \ filter_text_mor > $dir/label/${lmwt}-trans.text || exit 1; done filter_text <$data/text >$dir/scoring/text.filt filter_text_mor <$data/text >$dir/label/text.filt $cmd LMWT=$min_lmwt:$max_lmwt $dir/scoring/log/score.LMWT.log \ compute-wer --text --mode=present \ ark:$dir/scoring/text.filt ark:$dir/scoring/LMWT.txt ">&" $dir/wer_LMWT || exit 1; $cmd LMWT=$min_lmwt:$max_lmwt $dir/scoring/log/score.LMWT.log \ compute-wer --text --mode=present \ ark:$dir/label/text.filt ark:$dir/label/LMWT-trans.text ">&" $dir/label/wer/wer_LMWT || exit 1; exit 0 |