score_csj.sh
2.81 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/bin/bash
# Copyright Johns Hopkins University (Author: Daniel Povey) 2012. Apache 2.0.
# Modified by Takafumi Moriya for Japanese speech recognition using CSJ.
# This script is for scoring with morpheme.
# begin configuration section.
cmd=run.pl
min_lmwt=5
max_lmwt=17
#end configuration section.
[ -f ./path.sh ] && . ./path.sh
. parse_options.sh || exit 1;
if [ $# -ne 3 ]; then
echo "Usage: local/score_csj.sh [--cmd (run.pl|queue.pl...)] <data-dir> <lang-dir|graph-dir> <decode-dir>"
echo " Options:"
echo " --cmd (run.pl|queue.pl...) # specify how to run the sub-processes."
echo " --min_lmwt <int> # minumum LM-weight for lattice rescoring "
echo " --max_lmwt <int> # maximum LM-weight for lattice rescoring "
exit 1;
fi
data=$1
lang=$2
dir=$3
model=$dir/../final.mdl # assume model one level up from decoding dir.
hubscr=$KALDI_ROOT/tools/sctk/bin/hubscr.pl
#hubscr=$KALDI_ROOT/tools/sctk-2.4.0/bin/hubscr.pl
[ ! -f $hubscr ] && echo "Cannot find scoring program at $hubscr" && exit 1;
hubdir=`dirname $hubscr`
for f in $data/text $lang/words.txt $dir/lat.1.gz; do
[ ! -f $f ] && echo "$0: expecting file $f to exist" && exit 1;
done
name=`basename $data`; # e.g. eval1
mkdir -p $dir/scoring/log
mkdir -p $dir/label
mkdir -p $dir/label/log
mkdir -p $dir/label/wer
function filter_text_mor {
perl -e 'foreach $w (@ARGV) { $bad{$w} = 1; }
while(<STDIN>) { @A = split(" ", $_); $id = shift @A; print "$id ";
foreach $a (@A) { if (!defined $bad{$a}) { print "$a "; }} print "\n"; }' \
'<UNK>'
}
function filter_text {
perl -e 'foreach $w (@ARGV) { $bad{$w} = 1; }
while(<STDIN>) { @A = split(" ", $_); $id = shift @A; print "$id ";
foreach $a (@A) { if (!defined $bad{$a}){ @W=split(/\+/,$a); $word=$W[0]; { print "$word "; }}} print "\n"; }' \
'<UNK>'
}
$cmd LMWT=$min_lmwt:$max_lmwt $dir/scoring/log/best_path.LMWT.log \
lattice-best-path --lm-scale=LMWT --word-symbol-table=$lang/words.txt \
"ark:gunzip -c $dir/lat.*.gz|" ark,t:$dir/scoring/LMWT.tra || exit 1;
for lmwt in `seq $min_lmwt $max_lmwt`; do
utils/int2sym.pl -f 2- $lang/words.txt <$dir/scoring/$lmwt.tra | \
filter_text > $dir/scoring/$lmwt.txt || exit 1;
utils/int2sym.pl -f 2- $lang/words.txt <$dir/scoring/$lmwt.tra | \
filter_text_mor > $dir/label/${lmwt}-trans.text || exit 1;
done
filter_text <$data/text >$dir/scoring/text.filt
filter_text_mor <$data/text >$dir/label/text.filt
$cmd LMWT=$min_lmwt:$max_lmwt $dir/scoring/log/score.LMWT.log \
compute-wer --text --mode=present \
ark:$dir/scoring/text.filt ark:$dir/scoring/LMWT.txt ">&" $dir/wer_LMWT || exit 1;
$cmd LMWT=$min_lmwt:$max_lmwt $dir/scoring/log/score.LMWT.log \
compute-wer --text --mode=present \
ark:$dir/label/text.filt ark:$dir/label/LMWT-trans.text ">&" $dir/label/wer/wer_LMWT || exit 1;
exit 0